Fusion of p-Adic and Real Variants of Quantum TGD to a More General Theory

M. Pitkänen,
June 19, 2019
Email: matpitka6@gmail.com,
Recent postal address: Rinnekatu 2-4 A 8, 03620, Karkkila, Finland.

Contents

1 Introduction 5
1.1 What P-Adic Physics Means? 5
1.2 Number Theoretic Vision Briefly 6
1.3 P-Adic Space-Time Sheets As Solutions Of Real Field Equations Continued Algebraically To P-Adic Number Field 8
1.4 The Notion Of Pinary Cutoff 8
1.5 Program 8

2 P-Adic Numbers And Consciousness 9
2.1 P-Adic Physics As Physics Of Cognition 9
2.1.1 In what sense space-time surface decomposes to real and p-adic regions? 9
2.1.2 Different kinds of cognitive representations 9
2.1.3 P-Adic physics as a mimicry 10
2.2 Zero Energy Ontology, Cognition, And Intentionality 11
2.2.1 Zero energy ontology classically 11
2.2.2 ZEO at quantum level 11
2.2.3 Hyper-finite factors of type II1 and new view about S-matrix 12
2.2.4 The new view about quantum measurement theory 12
2.2.5 How do real and p-adic physics relate? 13

3 An Overall View About P-Adicization Of TGD 13
3.1 P-Adic Imbedding Space 14
3.1.1 The identification of the fundamental p-adic length scale 14
3.1.2 P-Adic counterpart of M^4_4 15
3.1.3 The two variants of CP^3 16
7.3 Hierarchy Of Finite Measurement Resolutions And Hierarchy Of P-Adic Normal Lie Groups
Abstract

The mathematical aspects of p-adicization of quantum TGD are discussed. In a well-defined sense Nature itself performs the p-adicization and p-adic physics can be regarded as physics of cognitive regions of space-time which in turn provide representations of real space-time regions. Cognitive representations presumably involve the p-adicization of the geometry at the level of the space-time and imbedding space by a mapping of a real space-time region to a p-adic one. One can differentiate between two kinds of maps: the identification induced by the common rationals of real and p-adic space-time region and the representations of the external real world to internal p-adic world induced by a canonical identification type maps.

Only the identification by common rationals respects general coordinate invariance, and it leads to a generalization of the number concept. Different number fields form a book like structure with number fields and their extensions representing the pages of the book glued together along common rationals representing the rim of the book. This generalization forces also the generalization of the manifold concept: both imbedding space and WCW are obtained as union of copies corresponding to various number fields glued together along common points, in particular rational ones. Space-time surfaces decompose naturally to real and p-adic space-time sheets. In this framework the fusion of real and various p-adic physics reduces more or less to an algebraic continuation of rational number based physics to various number fields and their extensions.

The definition of p-adic manifold is not discussed although it has turned out to be highly non-trivial. The feasible definition of p-adic sub-manifold emerged two decades after the emergence of the notion of p-adic space-time sheet. The definition relies on the idea that p-adic space-time surfaces serve as p-adic charts - cognitive maps - for real space-time surfaces and vice versa and that both real and p-adic space-time sheets are preferred extremals of Kähler action and defined only modulo finite measurement/cognitive resolution.

The program makes sense only if also extensions containing transcendentals are allowed: the p-dimensional extension containing powers of e is perhaps the most important transcendental extension involved. Entire cognitive hierarchy of extension emerges and the dimension of extension can be regarded as a measure for the cognitive resolution and the higher the dimension the shorter the length scale of resolution. Cognitive resolution provides also number theoretical counterpart for the notion of length scale cutoff unavoidable in quantum field theories: now the length scale cutoffs are part of the physics of cognition rather than reflecting the practical limitations of theory building.

There is a lot of p-adicizing to do.

1. The p-adic variant of classical TGD must be constructed. Field equations make indeed sense also in the p-adic context. The strongest assumption is that real space time sheets have the same functional form as real space-time sheet so that there is non-uniqueness only due to the hierarchy of dimensions of extensions.

2. Probability theory must be generalized. Canonical identification playing central role in p-adic mass calculations using p-adic thermodynamics maps genuinely p-adic probabilities to their real counterparts. p-Adic entropy can be defined and one can distinguish between three kinds of entropies: real entropy, p-adic entropy mapped to its real counterpart by canonical identification, and number theoretical entropies applying when probabilities are in finite-dimensional extension of rationals. Number theoretic entropies can be negative and provide genuine information measures, and it turns that bound states should correspond in TGD framework to entanglement coefficients which belong to a finite-dimensional extension of rationals and have negative number theoretic entropic entanglement entropy. These information measures generalize by quantum-classical correspondence to space-time level.

3. p-Adic quantum mechanics must be constructed. p-Adic unitarity differs in some respects from its real counterpart: in particular, p-adic cohomology allows unitary S-matrices $S = 1 + T$ such that T is hermitian and nilpotent matrix. p-Adic quantum measurement theory based on Negentropy Maximization Principle (NMP) leads to the notion of monitoring, which might have relevance for the physics of cognition.

4. Generalized quantum mechanics results as fusion of quantum mechanics in various number fields using algebraic continuation from the field of rational as a basic guiding principle. It seems possible to generalize the notion of unitary process in such a manner that unitary matrix leads from rational Hilbert space H_Q to a formal superposition of states in all Hilbert spaces H_F, where F runs over number fields. The basic objection is that p-adic numbers allow non-vanishing zero norm states. If one can avoid this objection,
1. Introduction

The notion of p-adicization has for a long time been a somewhat obscure attempt to provide a theoretical justification for the successes of the p-adic mass calculations. The reduction of quantum TGD to a generalized number theory and the developments in TGD inspired theory of consciousness have however led to a better understanding what the p-adicization possibly means.

1.1 What P-Adic Physics Means?

Contrary to the original expectations finite-p p-adic physics means the physics of the p-adic cognitive representations about real physics rather than “real physics”. This forces to update the prejudices about what p-adicization means. The original hypothesis was that p-adicization is a strict one-to-one map from real to p-adic physics and this led to technical problems with symmetries.

The new vision about quantum TGD the notion of the p-adic space-time emerges dynamically and p-adic space-time regions are absolutely “real” and certainly not “p-adicized” in any sense. Furthermore, the new view also encourages the hypothesis that p-adic regions provide cognitive models for the real matter like regions becoming more and more refined in the evolutionary self-organization process by quantum jumps. p-Adic region can serve as a cognitive model for particle itself or for the external world. The model is defined by some cognitive map of real region to its p-adic counterpart. This cognitive map need not be unique. At the level of TGD inspired theory of consciousness the p-adicization becomes modelling of how cognition works.

In this conceptual framework the successes of the p-adic mass calculations can be understood only if p-adic mass calculations provide a model a “cognitive model” of an elementary particle. The successes of the p-adic mass calculations, and also the fact that they rely on the fundamental symmetries of quantum TGD, encourages the idea that one could try to mimic Nature. Thus p-adic physics could be seen as an abstract mimicry for what Nature already does by constructing explicitly p-adic cognitive representations. This new view about p-adic physics allows much more flexibility since p-adicization can be interpreted as a cognitive map mapping real world physics to p-adic physics. In this view p-adicization need not and cannot be a unique procedure.
1.2 Number Theoretic Vision Briefly

The number theoretic vision \[\text{[K13, K14, K12]}\] about the classical dynamics of space-time surfaces is now relatively detailed although it involves unproven conjectures inspired by physical intuition.

1. Hyper-quaternions and octonions

The original idea was that space-time surfaces could be regarded as four-surfaces in 8-D embedding space with the property that the tangent spaces of these spaces can be locally regarded as 4- resp. 8-dimensional number fields of quaternions and octonions.

The difficulties caused by the Euclidian metric signature of the number theoretical norm have however forced to give up the original idea as such, and to introduce complexified octonions and quaternions resulting by extending quaternionic and octonionic algebra by adding imaginary units multiplied with \(\sqrt{-1}\). This spoils the number field property but the notion of prime is not lost. The sub-space of hyper-quaternions resp. octonions is obtained from the algebra of ordinary quaternions and octonions by multiplying the imaginary part with \(\sqrt{-1}\). The transition is the number theoretical counterpart of the transition from Riemannian to pseudo-Riemannian geometry performed already in Special Relativity.

The problem is that \(H = M^4 \times CP_2\) cannot be endowed with a hyper-octonionic manifold structure. Indeed, space-time surfaces are assumed to be hyper-quaternionic or co-hyper-quaternionic 4-surfaces of 8-dimensional Minkowski space \(M^8\) identifiable as the hyper-octonionic space \(HO\). Since the hyper-quaternionic sub-spaces of \(HO\) with fixed complex structure are labelled by \(CP_2\), each (co)-hyper-quaternionic four-surface of \(HO\) defines a 4-surface of \(M^4 \times CP_2\). One can say that the number-theoretic analog of spontaneous compactification occurs.

2. Space-time-surface as a hyper-quaternionic sub-manifold of hyper-octonionic imbedding space?

Space-time identified as a hyper-quaternionic sub-manifold of the hyper-octonionic space in the sense that the tangent space of the space-time surface defines a hyper-quaternionic sub-algebra of the hyper-octonionic tangent space of \(H\) at each space-time point, looks an attractive idea. Second possibility is that the tangent space-algebra of the space-time surface is either associative or co-associative at each point. One can also consider possibility that the dynamics of the space-time surface is determined from the requirement that space-time surface is algebraically closed in the sense that tangent space at each point has this property. Also the possibility that the property in question is associated with the normal space at each point of \(X^4\) can be considered. Some delicacies are caused by the question whether the induced algebra at \(X^4\) is just the hyper-octonionic product or whether the algebra product is projected to the space-time surface. If normal part of the product is projected out the space-time algebra closes automatically.

The first guess would be that space-time surfaces are hyper-quaternionic sub-manifolds of hyper-octonionic space \(HO = M^8\) with the property that complex structure is fixed and same at all points of space-time surface. This corresponds to a global selection of a preferred octonionic imaginary unit. The automorphisms leaving this selection invariant form group \(SU(3)\) identifiable as color group. The selections of hyper-quaternionic sub-space under this condition are parameterized by \(CP_2\). This means that each 4-surface in \(HO\) defines a 4-surface in \(M^4 \times CP_2\) and one can speak about number-theoretic analog of spontaneous compactification having of course nothing to do with dynamics. It would be possible to make physics in two radically different geometric pictures: \(HO\) picture and \(H = M^4 \times CP_2\) picture.

For a theoretical physicists of my generation it is easy to guess that the next step is to realize that it is possible to fix the preferred octonionic imaginary at each point of \(HO\) separately so that local \(S^8 = G_2/SU(3)\), or equivalently the local group \(G_2\) subject to \(SU(3)\) gauge invariance, characterizes the possible choices of hyper-quaternionic structure with a preferred imaginary unit. \(G_2 \subset SO(7)\) is the automorphism group of octonions, and appears also in M-theory. This local choice has interpretation as a fixing of the plane of non-physical polarizations and rise to degeneracy which is a good candidate for the ground state degeneracy caused by the vacuum extremals.

\(OH = M^4 \times CP_2\) duality allows to construct a foliation of \(HO\) by hyper-quaternionic space-time surfaces in terms of maps \(HO \to SU(3)\) satisfying certain integrability conditions guaranteeing that the distribution of hyper-quaternionic planes integrates to a foliation by 4-surfaces. In fact, the freedom to fix the preferred imaginary unit locally extends the maps to \(HO \to G_2\) reducing to
1.2 Number Theoretic Vision Briefly

maps $HO \to SU(3) \times S^6$ in the local trivialization of G_2. This foliation defines a four-parameter family of 4-surfaces in $M^4 \times CP_2$ for each local choice of the preferred imaginary unit. The dual of this foliation defines a 4-parameter family co-hyper-quaternionic space-time surfaces.

Hyper-octonion analytic functions $HO \to HO$ with real Taylor coefficients provide a physically motivated ansatz satisfying the integrability conditions. The basic reason is that hyper-octonion analyticity is not plagued by the complications due to non-commutativity and non-associativity. Indeed, this notion results also if the product is Abelianized by assuming that different octonionic imaginary units multiply to zero. A good candidate for the HO dynamics is free massless Dirac action with Weyl condition for an octonion valued spinor field using octonionic representation of gamma matrices and coupled to the G_2 gauge potential defined by the tensor 7×7 tensor product of the imaginary parts of spinor fields.

The basic conjecture is that the absolute minima of Kähler action correspond to the hyper-quaternion analytic surfaces. This conjecture has several variants. It could be that only asymptotic behavior corresponds to hyper-quaternion analytic function but that that hyper-quaternionicity is a general property of absolute minima. It could also be that maxima of Kähler function correspond to this kind of 4-surfaces. The encouraging hint is the fact that Hamilton-Jacobi coordinates appear naturally also in the construction of general solutions of field equations.

3. The representation of infinite hyper-octonionic primes as 4-surfaces

The discovery of infinite primes suggested strongly the possibility to reduce physics to number theory. The construction of infinite primes can be regarded as a repeated second quantization of a super-symmetric arithmetic quantum field theory. This hierarchy of second quantizations means an enormous generalization of physics to what might be regarded a physical counterpart for a hierarchy of abstractions about abstractions about.... The ordinary second quantized quantum physics corresponds only to the lowest level infinite primes. This hierarchy can be identified with the corresponding hierarchy of space-time sheets of the many-sheeted space-time.

One can even try to understand the quantum numbers of physical particles in terms of infinite primes. In particular, the hyper-quaternionic primes correspond four-momenta and mass squared is prime valued for them. The properties of 8-D hyper-octonionic primes motivate the attempt to identify the quantum numbers associated with CP_2 degrees of freedom in terms of these primes. Infinite primes can be mapped to polynomial primes and this observation allows to identify completely generally the spectrum of infinite primes.

This in turn led to the idea that it might be possible represent infinite primes (integers) geometrically as surfaces defined by the polynomials associated with infinite primes (integers). Obviously, infinite primes would serve as a bridge between Fock-space descriptions and geometric descriptions of physics: quantum and classical. Geometric objects could be seen as concrete representations of infinite numbers providing amplification of infinitesimals to macroscopic deformations of space-time surface. We see the infinitesimals as concrete geometric shapes!

Since the notion of prime makes sense for the complexified octonions, it makes sense also for the hyper-octonions. It is possible to assign to infinite prime of this kind a hyper-octonion analytic polynomial $P : OH \to OH$ and hence also a foliation of OH and $H = M^4 \times CP_2$ by hyper-quaternionic 4-surfaces and notion of Kähler calibration. Therefore space-time surface could be seen as a geometric counterpart of a Fock state. The assignment is not unique but determined only up to an element of the local octonionic automorphism group G_2 acting in HO and fixing the local choices of the preferred imaginary unit of the hyper-octonionic tangent plane. In fact, a map $HO \to S^6$ characterizes the choice since $SO(6)$ acts effectively as a local gauge group.

The construction generalizes to all levels of the hierarchy of infinite primes and produces also representations for integers and rationals associated with hyper-octonionic numbers as space-time surfaces. A close relationship with algebraic geometry results and the polynomials define a natural hierarchical structure in the space of 4-surfaces. By the effective 2-dimensionality naturally associated with infinite primes represented by real polynomials 4-surfaces are determined by data given at partonic 2-surfaces defined by the intersections of 3-D and 7-D light-like causal determinants. In particular, the notions of genus and degree serve as classifiers of the algebraic geometry of the 4-surfaces. The great dream is to prove that this construction yields the preferred extremals of Kähler action.
1.3 P-Adic Space-Time Sheets As Solutions Of Real Field Equations Continued Algebraically To P-Adic Number Field

The ideas about how p-adic topology emerges from quantum TGD have varied. The first belief was that p-adic topology is only an effective topology of real space-time sheets. This belief turned out to be not quite correct. P-Adic topology emerges also as a genuine topology of the space-time and p-adic regions could be identified as correlations for cognition. This requires a generalization of the notion of number by gluing reals and various p-adic number fields together along common rationals. This in turn implies generalization of the notion of imbedding space. P-Adic transcendental can be regarded as infinite numbers in the real sense and thus most points of the p-adic space-time sheets would be at infinite distance and real and p-adic space-time sheets would intersect in discrete set consisting of rational points. This view in which cognition and intentionality would be literally cosmic phenomena is in a sharp contrast with the often held belief that p-adic topology emerges below Planck length scale.

1.4 The Notion Of Pinary Cutoff

The notion of pinary cutoff is central for p-adic TGD and it should have some natural definition and interpretation in the new approach. The presence of p-adic pseudo constants implies that there is large number of cognitive representations with varying degrees of faithfulness. Pinary cutoff must serve as a measure for how faithful the p-adic cognitive representation is. Since the cognitive maps are not unique, one cannot even require any universal criterion for the faithfulness of the cognitive map. One can indeed imagine two basic criteria corresponding to self-representations and representations for external world.

1. The subset of rationals common to the real and p-adic space-time surface could define the resolution. In this case, the average distance between common rational points of these two surfaces would serve as a measure for the resolution. Pinary cutoff could be defined as the smallest number of pinary digits in expansions of functions involved above which the resolution does not improve. Physically the optimal resolution would mean that p-adic space-time surface, “cognitive space-time sheet”, has a maximal number of intersections with the real space-time surface for which it provides a self-representation. This purely algebraic notion of faithfulness does not respect continuity: two rational points very near in real sense could be arbitrary far from each other with respect to the p-adic norm.

2. One could base the notion of faithfulness on the idea that p-adic space-time sheet provides almost continuous map of the real space-time sheet belonging to the external world by the basic properties of the canonical identification. The real canonical image of the p-adic space-time sheet and real space-time sheet could be compared and some geometric measure for the nearness of these surfaces could define the resolution of the cognitive map and pinary cutoff could be defined in the same manner as above.

1.5 Program

These ideas lead to a rather well defined p-adicization program. Define precisely the concepts of the p-adic space-time and reduced configuration space, formulate the finite-p p-adic versions of quantum TGD and construct the p-adic variants of TGD. Of course, the aim is not to just construct p-adic version of the real quantum TGD but to understand how real and p-adic quantum TGD:s fuse together to form the full theory of physics and cognition.

The construction of the p-adic TGD necessitates the generalization of the basic tools of standard physics such as differential and integral calculus, the concept of Hilbert space, Riemannian geometry, group theory, action principles, probability and unitary concepts to p-adic context. Also new physical thinking and philosophy is needed and this long chapter is devoted to the description of the new elements. Before going to the detailed exposition it is appropriate to give a brief overall view of the basic mathematical tools.

The appendix of the book gives a summary about basic concepts of TGD with illustrations. Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.fi/tgdglossary.pdf.
2 P-Adic Numbers And Consciousness

The idea that p-adic physics provides the physics of cognition has become more and more attractive during the 12 years or so that I have spent with p-adic numbers and I feel that it is good to add a summary about these ideas here.

2.1 P-Adic Physics As Physics Of Cognition

p-Adic physics began from p-adic mass calculations. The next step in the progress was the idea that p-adic physics serves as a correlate for cognition and this thread gradually led to the recent view requiring the generalization of the number concept.

2.1.1 In what sense space-time surface defomposes to real and p-adic regions?

The original view that space-time surfaces contain genuinely p-adic and possibly even rational-adic regions and that p-adic regions mimic the real regions. This view turned out to be partially wrong. Rather, the adelic view holds true [K24]. Reals and replaced by an infinite Cartesian product of real and various p-adic numbers fields or their extensions corresponding to fixed extension of rationals - all of them are allowed. Same happens at the level of imbedding space, space-time, and WCW. Therefore one has separate real and p-adic sectors rather than separate regions. Every system - even elementary particle - has both its real sector and p-adic sectors representing cognitive correlates of existence as indeed suggested by p-adic mass calculations [K6].

P-Adic space-time sheets indeed mimic their real counterparts in the sense that they are p-adic variants of real preferred extremals. This correspondence is induced by the strong form of holography from the correspondence at string world sheets and partonic 2-surfaces induced by the fact that numbers in the extension of rationals can be interpreted as both real and p-adic numbers. The strings world sheets and partonic 2-surfaces, whose defining parameters are in algebraic extension of rationals are continued to preferred extremals in various number fields so that cognitive and sensory representations can be said to result as a consequence. String world sheets themselves can be said to be in the intersection of reality and p-adicities.

2.1.2 Different kinds of cognitive representations

At the level of the space-time surfaces and imbedding space p-adicization boils down to the task of finding a map mapping real space-time region to a p-adic space-time region. These regions correspond to definite regions of the rational imbedding space so that the map has a clear geometric interpretation at the level of rational physics.

The basic constraint on the map is that both real and p-adic space-time regions satisfy field equations: p-adic field equations make sense even if the integral defining the Kähler action does not exist p-adically. P-Adic nondeterminism makes possible this map when one allows finite pinary cutoff characterizing the resolution of the cognitive representation.

I have considered several basic types of cognitive representations which might be called self-representations and representations of the external world and the map mediating p-adicization is different for these two maps. It has however turned that the continuation of string world sheets and partonic 2-surfaces in the intersection of reality and various p-adicities to preferred extremals - made possible by strong form of holography implied in turn by strong form of general coordinate invariance - is too elegant manner to define the map between real and p-adic sectors that these options can be safely forgotten. Of course, the notion of finite measurement resolution is still present and is expected to be realized as the assumption that parameters characterizing geometric objects of various dimensions are in algebraic extension of rationals with some cutoff.

1. The correspondence induced by the common rational points respects algebraic structures and defines self-representation. Real and p-adic space-time surfaces have a subset of rational points (defined by the resolution of the cognitive map) as common. The quality of the representation is defined by the resolution of the map and pinary cutoff for the rationals in pinary expansion is a natural measure for the resolution just as decimal cutoff is a natural measure for the resolution of a numerical model.
2. Canonical identification maps rationals to rationals since the periodic pinary expansion of a rational is mapped to a periodic expansion in the canonical identification. The rationals \(q = m/n \) for which \(n \) is not divisible by \(p \) are mapped to rationals with \(p \)-adic norm not larger than unity. Canonical identification respects continuity. Real numbers with real norm larger than \(p \) are mapped to real numbers with norm smaller than one in canonical identification whereas reals with real norm in the interval \([1, p)\) are mapped to \(p \)-adics with \(p \)-adic norm equal to one. Obviously the generalization of the canonical identification can map the world external to a given space-time region into the interior of this region and provides an example of an abstract cognitive representation of the external world. Also now pinary cutoff serves as a natural measure for the quality of the cognitive map.

3. The basic problems of canonical identification is that it does not respect unitarity. For this reason it is not well suited for relating \(p \)-adic and real scattering amplitudes. The problem of the correspondence via direct rationals is that it does not respect continuity. A compromise between algebra and topology is achieved by using a modification of canonical identification \(I_{R_p \to R} \) defined as \(I_1(r/s) = I(r)/I(s) \). If the conditions \(r \ll p \) and \(s \ll p \) hold true, the map respects algebraic operations and also unitarity and various symmetries.

This variant of canonical identification is not equivalent with the original one using the infinite expansion of \(q \) in powers of \(p \) since canonical identification does not commute with product and division. The variant is however unique in the recent context when \(r \) and \(s \) in \(q = r/s \) have no common factors. For integers \(n < p \) it reduces to direct correspondence.

It seems that this option, the discovery of which took almost a decade, must be used to relate \(p \)-adic transition amplitudes to real ones and vice versa [K8]. In particular, real and \(p \)-adic coupling constants are related by this map. Also some problems related to \(p \)-adic mass calculations find a nice resolution when \(I_1 \) is used.

4. The proposal for a map taking \(p \)-adic and real preferred extremals to each other utilizing canonical identification was proposed in [K22] and was based on the discretization of space-time surfaces induced by that of the imbedding space and in terms of algebraic points assuming pinary cutoffs. Needless to say, the holography based proposal is much more elegant.

A fascinating possibility is that cognitive self-maps and maps of the external world at the level of human brain are basically realized by the holography induced mapping. Obviously canonical identification performed separately for all coordinates is the only possibility if this map is required to be maximally continuous.

2.1.3 \(p \)-Adic physics as a mimicry

The success of the \(p \)-adic mass calculations suggests that one could apply the idea of \(p \)-adic cognitive representation even at the level of quantum TGD to build models which have maximal simplicity and calculational effectiveness. \(p \)-Adic mass calculations represent this kind of model: now canonical identification is performed for the \(p \)-adic mass squared values and can be interpreted as a map from cognitive representation back to real world.

The basic task is the construction of the cognitive self-map or a cognitive map of external world: the laws of \(p \)-adic physics define the cognitive model itself automatically. For the cognitive representations of external world involving some variant of canonical identification mapping the exterior of the imbedding space region inside this region. For self-representations situation is much more simpler. In practice, the direct modelling of \(p \)-adic physics without explicit construction of the cognitive map could give valuable information about real physics.

In the earlier approach based on phase preserving canonical identification to the mapping of real space-time surface to its \(p \)-adic counterpart led to the requirement about existence of unique (almost) imbedding space coordinates. In present case the selection of the quaternionic coordinates for the imbedding space is unique only apart from quaternion-analytic change of coordinates. This does not seem however pose any problems now. One must also remember that only cognitive representations are in question. These representations are not unique and selection of quaternionic coordinates might be even differentiate between different cognitive representations.
Since infinite primes serve as a bridge between classical and quantum, this map also assigns to a real Fock state associated with infinite prime its p-adic version identifiable as the ground state of a superconformal representation. Thus the map respects quantum symmetries automatically. If the construction of the states of the representation is a completely algebraic process, there are hopes of constructing the p-adic counterpart of S-matrix. If S-matrix is complex rational it can be mapped to its real counterpart. If the localization in zero modes occurs in each quantum jump the predictions of the theory could reduce to the integration in fiber degrees of freedom of CH reducible in turn to purely algebraic expressions making sense also p-adically.

The most recent view about the correspondence between real and p-adic sectors is based on an adelic picture. All number fields are present and imbedding space-time, space-time, and “world of classical worlds ” (WCW) are adeles.

Strong form of holography implied by strong form of General Coordinate Invariance leads to the suggestion that partonic 2-surfaces and string world sheets at which the induced spinor fields are localized in order to have a well-defined em charge (this is only one of the reasons) and having having discrete set as intersection points with partonic 2-surfaces define what might called “space-time genes”. Space-time surfaces would be obtained as preferred extremals satisfying certain boundary conditions at string world sheets. Space-time surfaces are defined only modulo transformations of super-symplectic algebra defining its sub-algebra and acting as conformal gauge transformations so that one can talk about conformal gauge equivalences classes of space-time surfaces.

The map assigning to real space-time surface a cognitive representation would be replaced by a correspondence assigning to the string world sheets preferred extremals of Kähler action in various number fields: string world sheets would be indeed like genes. String world sheets would be in the intersection of realities and p-adicities in the sense that the parameters characterizing them would be algebraic numbers associated with the algebraic extension of rationals and p-adic numbers in question. It is not clear whether the preferred extremal is possible for all p-adic primes but this would fit nicely with the vision that elementary particles are characterized by p-adic primes. It could be also that the classical non-determinism of Kähler action responsible for the conformal gauge symmetry corresponds to p-adic non-determinism for some particular prime so that the cognitive map is especially good for this prime. Also the emergence of preferred p-adic primes can be understood: they correspond to so called ramified primes of the extension K_{24}.

2.2 Zero Energy Ontology, Cognition, And Intentionality

Zero Energy Ontology (ZEO) K_4, K_21, K_3 has become gradually one of the basic building brickes of quantum TGD.

2.2.1 Zero energy ontology classically

In TGD inspired cosmology K_{11} the imbeddings of Robertson-Walker cosmologies are vacuum extremals. Same applies to the imbeddings of Reissner-Nordström solution K_15 and in practice to all solutions of Einstein’s equations imbeddable as extremals of Kähler action. Since four-momentum currents define a collection of vector fields rather than a tensor in TGD, both positive and negative signs for energy corresponding to two possible assignments of the arrow of the geometric time to a given space-time surface are possible. This leads to the view that all physical states have vanishing net energy classically and that physically acceptable universes are creatable from vacuum.

As such this view was wrong but served as a stepping stone to ZEO in which the notion of positive energy state is replaced with zero energy state which is pair of states with opposite quantum numbers rather than positive energy state at the limit of vanishing energy.

What is nice in ZEO that one can avoid unpleasant questions such as “What are the net values of conserved quantities like rest mass, baryon number, lepton number, and electric charge for the entire universe?” , “What were the initial conditions in the big bang?” , “If only single solution of field equations is selected, isn’t the notion of physical theory meaningless since in principle it is not possible to compare solutions of the theory?” . This picture fits also nicely with the view that entire universe understood as quantum counterpart 4-D space-time is recreated in each quantum jump and allows to understand evolution as a process of continual re-creation.
2.2 Zero Energy Ontology, Cognition, And Intentionality

2.2.2 ZEO at quantum level

Also the construction of S-matrix \[K3\] leads to the conclusion that all physical states can be said to possess vanishing conserved quantum numbers. In ZEO zero energy states can be seen as pairs of positive - and negative energy states with opposite quantum numbers identifiable as counterparts of initial and final states of physical events. Furthermore, the entanglement coefficients between positive and negative energy components of the state define a unitary S-matrix. S-matrix thus becomes a property of the zero energy state and physical states code by their structure what is usually identified as quantum dynamics.

Also the transitions between zero energy states are possible but general arguments lead to the conclusion that the corresponding S-matrix is almost trivial. This finding, which actually forced the new view about S-matrix, is highly desirable since it explains why positive energy ontology works so well if one forgets effects related to intentional action.

At space-time level this would mean that positive energy component and negative energy component are at a temporal distance characterized by an appropriate p-adic time scale and the integer characterizing the value of Planck constant for the state in question. The scale in question would also characterize the geometric duration of quantum jump and the size scale of space-time region contributing to the contents of conscious experience. The interpretation in terms of a mini bang followed by a mini crunch suggests itself also.

2.2.3 Hyper-finite factors of type \(II_1\) and new view about S-matrix

The representation of S-matrix as entanglement coefficients defining a unitary matrix would not make sense in ordinary quantum theory but in TGD the von Neumann algebra in question is not a type I factor as for quantum mechanics or a type III factor as for quantum field theories, but what is called hyper-finite factor of type \(II_1\) \[K17\]. This algebra is an infinite-dimensional algebra with the almost defining, and at the first look very strange, property that the infinite-dimensional unit matrix has unit trace. The infinite dimensional Clifford algebra spanned by WCW gamma matrices (WCW understood as the space of 3-surfaces, the “world of classical worlds”) is indeed very naturally algebra of this kind since infinite-dimensional Clifford algebras provide a canonical representations for hyper-finite factors of type \(II_1\).

It is now possible to relate the inclusion hierarchies of HFFs to hierarchies of phase transitions reducing quantum criticality and to hierarchy of Planck constants \(h_{eff} = n \times h\) labelling phases of dark matter \[K5, K23\].

2.2.4 The new view about quantum measurement theory

This mathematical framework leads to a new kind of quantum measurement theory. The basic assumption is that only a finite number of degrees of freedom can be quantum measured in a given measurement and the rest remain untouched. What is known as Jones inclusions \(N \subset M\) of von Neumann algebras allow to realize mathematically this idea \[K17\]. \(N\) characterizes measurement resolution and quantum measurement reduces the entanglement in the non-commutative quantum space \(M/N\). The outcome of the quantum measurement is still represented by a unitary S-matrix but in the space characterized by \(N\). It is not possible to end up with a pure state with a finite sequence of quantum measurements.

The obvious objection is that the replacement of a universal S-matrix coding entire physics with a state dependent unitary entanglement matrix is too heavy a price to be paid for the resolution of the above mentioned paradoxes. Situation could be saved if the S-matrices have fractal structure. The quantum criticality of TGD Universe indeed implies fractality. The possibility of an infinite sequence of Jones inclusions for hyperfinite type \(II_1\) factors isomorphic as von Neumann algebras expresses this fractal character algebraically. Thus one can hope that the S-matrix appearing as entanglement coefficients is more or less universal in the same manner as Mandelbrot fractal looks more or less the same in all length scales and for all resolutions. Whether this kind of universality must be posed as an additional condition on entanglement coefficients or is an automatic consequence of unitarity in type \(II_1\) sense is an open question.

In Zero Energy Ontology (ZEO) which emerged much later than the above text was written the view about quantum measurement theory becomes very detailed and allows to formulate the notion of self quantitatively, understand how the arrow of geometric time emerges, and also to
understand sensory perception, cognition, and volition at fundamental level [K16, K1]. There is also a connection with hyper-finite factors and their inclusions and it reduces to finite cognitive resolution.

2.2.5 How do real and p-adic physics relate?

In zero energy ontology (ZEO) conservation laws do not forbid p-adic-real transitions and one can ask whether this kind of transitions could make sense. My original view was optimistic. During years it has however become clear that the quantum description of the transitions between different number fields poses very strong mathematical challenges suggesting a negative answer to the question of the title. It also seems that one can do without p-adic-to-real transitions if one accepts the adelic view about physics [K24]. All number fields are present and p-adic number fields decribe the correlates of cognition. In this framework even elementary particles have cognitive side as the success of p-adic mass calculations indeed suggests [K6].

The starting point of the original argument was the generalization of the number concept obtained by gluing p-adic number fields and real numbers along common rationals (expressing it very roughly, see Fig. http://tgdtheory.fi/appfigures/book.jpg, which is also in the appendix of this book). At the level of the imbedding space this means that p-adic and real space-time sheets intersect only along common rational points of the imbedding space and transcendental p-adic space-time points are infinite as real numbers so that they can be said to be infinite distant points so that intentionality and cognition become cosmic phenomena.

In this framework the long range correlations characterizing p-adic fractality can be interpreted as being due to a large number of common rational points of imbedding space for real space-time sheet and p-adic space-time sheet from which it resulted in the realization of intention in quantum jump. Thus real physics would carry direct signatures about the presence of intentionality. Intentional behavior is indeed characterized by short range randomness and long range correlations.

A more detailed view is based on the idea that p-adic space-time sheets indeed define a theory about real space-time sheets. The interaction between real and p-adic number fields would mean that p-adic space-time surfaces define cognitive representations of real space-time surfaces (preferred extremals). One could also say that real space-time surface represents sensory aspects of conscious experience and p-adic space-time surfaces its cognitive aspects. Both real and p-adics rather than real or p-adics.

Strong form of holography implied by strong form of General Coordinate Invariance leads to the suggestion that partonic 2-surfaces and string world sheets at which the induced spinor fields are localized in order to have a well-defined em charge (this is only one of the reasons) and having having discrete set as intersection points with partonic 2-surfaces define what might called “space-time genes”. Space-time surfaces would be obtained as preferred extremals satisfying certain boundary conditions at string world sheets. Space-time surfaces are defined only modulo transformations of super-symplectic algebra defining its sub-algebra and acting as conformal gauge transformations so that one can talk about conformal gauge equivalences classes of space-time surfaces.

The map assigning to real space-time surface a cognitive representation would be replaced by a correspondence assigning to the string world sheets preferred extremals of Kähler action in various number fields: string world sheets would be indeed like genes. String world sheets would be in the intersection of realities and p-adicities in the sense that the parameters characterizing them would be algebraic numbers associated with the algebraic extension of p-adic numbers in question. It is not clear whether the preferred extremal is possible for all p-adic primes but this would fit nicely with the vision that elementary particles are characterized by p-adic primes. It could be also that the classical non-determinism of Kähler action responsible for the conformal gauge symmetry corresponds to p-adic non-determinism for some particular prime so that the cognitive map is especially good for this prime.

3 An Overall View About P-Adicization Of TGD

In this section the basic problems and ideas related to the p-adicization of quantum TGD are discussed. One should define the notions of Riemann geometry and its variants such as Kähler
3.1 P-Adic Imbedding Space

The construction of both quantum TGD and p-adic QFT limit requires p-adicization of the imbedding space geometry. Also the fact that p-adic Poincare invariance throws considerable light to the p-adic geometry is really needed. The construction of the p-adic version of the imbedding space geometry and spinor structure relies on the symmetry arguments and to the generalization of the analytic formulas of the real case almost. The essential element is the notion of finite measurement resolution leading to discretization in large and to p-adicization below the resolution scale. This approach leads to a highly nontrivial generalization of the symmetry concept and p-adic Poincare invariance throws light to the p-adic length scale hypothesis. An important delicacy is related to the identification of the fundamental p-adic length scale, which corresponds to the unit element of the p-adic number field and is mapped to the unit element of the real number field in the canonical identification mapping p-adic mass squared to its real counterpart.

3.1.1 The identification of the fundamental p-adic length scale

The fundamental p-adic length scale corresponds to the p-adic unit $e = 1$ and is mapped to the unit of the real numbers in the canonical identification. The correct physical identification of the fundamental p-adic length scale is of crucial importance since the predictions of the theory for p-adic masses depend on the choice of this scale.

In TGD the "radius" R of CP_2 is the fundamental length scale ($2\pi R$ is by definition the length of the CP_2 geodesics). In accordance with the idea that p-adic QFT limit makes sense only above length scales larger than the radius of CP_2 R is of same order of magnitude as the p-adic length scale defined as $l = \pi/m_0$, where m_0 is the fundamental mass scale and related to the "cosmological constant" Λ ($R_{ij} = \Lambda s_{ij}$) of CP_2 by

$$m_0^2 = 2\Lambda.$$ \hspace{1cm} (3.1)

The relationship between R and l is uniquely fixed:

$$R^2 = \frac{3}{m_0^2} = \frac{3}{2\Lambda} = \frac{3l^2}{\pi^2}.$$ \hspace{1cm} (3.2)

Consider now the identification of the fundamental length scale.

1. One must use R^2 or its integer multiple, rather than l^2, as the fundamental p-adic length scale squared in order to avoid the appearance of the p-adically ill defined π: s in various formulas of CP_2 geometry.

2. The identification for the fundamental length scale as $1/m_0$ leads to difficulties.

(a) The p-adic length for the CP_2 geodesic is proportional to $\sqrt{3}/m_0$. For the physically most interesting p-adic primes satisfying $p \mod 4 = 3$ so that $\sqrt{-1}$ does not exist as an ordinary p-adic number, $\sqrt{3} = i\sqrt{-3}$ belongs to the complex extension of the p-adic numbers. Hence one has troubles in getting real length for the CP_2 geodesic.
(b) If m_0^2 is the fundamental mass squared scale then general quark states have mass squared, which is integer multiple of 1/3 rather than integer valued as in string models.

3. These arguments suggest that the correct choice for the fundamental length scale is as $1/R$ so that $M^2 = 3/R^2$ appearing in the mass squared formulas is p-adically real and all values of the mass squared are integer multiples of $1/R^2$. This does not affect the real counterparts of the thermal expectation values of the mass squared in the lowest p-adic order but the effects, which are due to the modulo arithmetics, are seen in the higher order contributions to the mass squared. As a consequence, one must identify the p-adic length scale l as

$$l \equiv \pi R,$$

rather than $l = \pi/m_0$. This is indeed a very natural identification. What is especially nice is that this identification also leads to a solution of some longstanding problems related to the p-adic mass calculations. It would be highly desirable to have the same p-adic temperature $T_p = 1$ for both the bosons and fermions rather than $T_p = 1/2$ for bosons and $T_p = 1$ for fermions. For instance, black hole elementary particle analogy as well as the need to get rid of light boson exotics suggests this strongly. It indeed turns out possible to achieve this with the proposed identification of the fundamental mass squared scale.

3.1.2 p-Adic counterpart of M^4

The construction of the p-adic counterpart of M^4 seems a relatively straightforward task and should reduce to the construction of the p-adic counterpart of the real axis with the standard metric. As already noticed, linear Minkowski coordinates are physically and mathematically preferred coordinates and it is natural to construct the metric in these coordinates.

There are some quite interesting delicacies related to the p-adic version of the Poincare invariance. Consider first translations. In order to have imaginary unit needed in the construction of the ordinary representations of the Poincare group one must have $p \mod 4 = 3$ to guarantee that $\sqrt{-1}$ does not exist as an ordinary p-adic number. It however seems that the construction of the representations is at least formally possible by replacing imaginary unit with the square root of some other p-adic number not existing as a p-adic number.

It seems that only the discrete group of translations allows representations consisting of orthogonal plane waves. p-Adic plane waves can be defined in the lattice consisting of the multiples of $x_0 = m/n$ consisting of points with p-adic norm not larger that $|x_0|_p$ and the points $p^n x_0$ define fractally scaled-down versions of this set. In canonical identification these sets corresponds to volumes scaled by factors p^{-n}.

A physically interesting question is whether the Lorentz group should contain only the elements obtained by exponentiating the Lie-algebra generators of the Lorentz group or whether also large Lorentz transformations, containing as a subgroup the group of the rational Lorentz transformations, should be allowed. If the group contains only small Lorentz transformations, the quantization volume of M^4 (say the points with coordinates m^k having p-adic norm not larger than one) is also invariant under Lorentz transformations. This means that the quantization of the theory in the p-adic cube $|m^k| < p^n$ is a Poincare invariant procedure unlike in the real case.

The appearance of the square root of p, rather than the naively expected p, in the expression of the p-adic length scale can be understood if the p-adic version of M^4 metric contains p as a scaling factor:

$$ds^2 = pR^2m_{kl}dm^kdm^l,$$

$$R \leftrightarrow 1,$$

(3.3)

where m_{kl} is the standard M^4 metric $(1,-1,-1,-1)$. The p-adic distance function is obtained by integrating the line element using p-adic integral calculus and this gives for the distance along the k: th coordinate axis the expression

$$s = R\sqrt{pm^k}.$$

(3.4)
3.1 P-Adic Imbedding Space

The map from p-adic M^4 to real M^4 is canonical identification plus a scaling determined from the requiremnt that the real counterpart of an infinitesimal p-adic geodesic segment is same as the length of the corresponding real geodesic segment:

$$m^k \rightarrow \pi(m^k) R.$$ \hspace{1cm} (3.5)

The p-adic distance along the k: th coordinate axis from the origin to the point $m^k = (p-1)(1 + p + p^2 + ...) = -1$ on the boundary of the set of the p-adic numbers with norm not larger than one, corresponds to the fundamental p-adic length scale $L_p = \sqrt{p} l = \sqrt{p} \pi R$:

$$\sqrt{p}(p-1)(1 + p + ...)) R \rightarrow \pi R \frac{(p-1)(1 + p^{-1} + p^{-2} + ...)}{\sqrt{p}} = L_p.$$ \hspace{1cm} (3.6)

What is remarkable is that the shortest distance in the range $m^k = 1,..m-1$ is actually L/\sqrt{p} rather than l so that p-adic numbers in range span the entire R_+ at the limit $p \rightarrow \infty$. Hence p-adic topology approaches real topology in the limit $p \rightarrow \infty$ in the sense that the length of the discretization step approaches to zero.

3.1.3 The two variants of CP^2

As noticed, CP^2 allows two variants based on rational discretization and on the discretiation based on roots of unity. The root of unity option corresponds to the phases associated with $1/(1+r^2) = tan^2(u/2) = (1-cos(u))/(1+cos(u))$ and implies that integrals of spherical harmonics can be reduced to summations when angular resolution $\Delta u = 2\pi/N$ is introduced. In the p-adic context, one can replace distances with trigonometric functions of distances along zig zag curves connecting the points of the discretization. Physically this notion of distance is quite reasonable since distances are often measured using interferometer.

In the case of rational variant of CP^2 one can proceed by defining the p-adic counterparts of $SU(3)$ and $U(2)$ and using the identification $CP^2 = SU(3)/U(2)$. The p-adic counterpart of $SU(3)$ consists of all 3×3 unitary matrices satisfying p-adic unitarity conditions (rows/columns are mutually orthogonal unit vectors) or its suitable subgroup: the minimal subgroup corresponds to the exponentials of the Lie-algebra generators. If one allows algebraic extensions of the p-adic numbers, one obtains several extensions of the group. The extension allowing the square root of a p-adically real number is the most interesting one in this respect since the general solution of the unitarity conditions involves square roots.

The subgroup of $SU(3)$ obtained by exponentiating the Lie-algebra generators of $SU(3)$ normalized so that their non-vanishing elements have unit p-adic norm, is of the form

$$SU(3)_0 \quad = \quad \{ x = exp(\sum_k i t_k X_k) \ ; \ |t_k|_p < 1 \} = \{ x = 1 + iy \ ; \ |y|_p < 1 \}.$$ \hspace{1cm} (3.7)

The diagonal elements of the matrices in this group are of the form $1 + O(p)$. In order $O(p)$ these matrices reduce to unit matrices.

Rational $SU(3)$ matrices do not in general allow a representation as an exponential. In the real case all $SU(3)$ matrices can be obtained from diagonalized matrices of the form

$$h = \text{diag}\{ exp(i\phi_1), exp(i\phi_2), exp(exp(-i(\phi_1 + \phi_2)) \}.$$ \hspace{1cm} (3.8)

The exponentials are well defined provided that one has $|\phi_i|_p < 1$ and in this case the diagonal elements are of form $1 + O(p)$. For $p \ mod \ 4 = 3$ one can however consider much more general diagonal matrices

$$h = \text{diag}\{ z_1, z_2, z_3 \},$$

for which the diagonal elements are rational complex numbers.
3.1 P-Adic Imbedding Space

\[z_i = \frac{(m_i + in_i)}{\sqrt{m_i^2 + n_i^2}}, \]

satisfying \[z_1 z_2 z_3 = 1 \] such that the components of \(z \) are integers in the range \((0, p - 1)\) and the square roots appearing in the denominators exist as ordinary \(p \)-adic numbers. These matrices indeed form a group as is easy to see. By acting with \(SU(3)_0 \) to each element of this group and by applying all possible automorphisms \(h \rightarrow ghg^{-1} \) using rational \(SU(3) \) matrices one obtains entire \(SU(3) \) as a union of an infinite number of disjoint components.

The simplest (unfortunately not physical) possibility is that the “physical’’ \(SU(3) \) corresponds to the connected component of \(SU(3) \) represented by the matrices, which are unit matrices in order \(O(p) \). In this case the construction of \(CP_2 \) is relatively straightforward and the real formalism should generalize as such. In particular, for \(p \ mod \ 4 = 3 \) it is possible to introduce complex coordinates \(\xi_1, \xi_2 \) using the complexification for the Lie-algebra complement of \(su(2) \times u(1) \). The real counterparts of these coordinates vary in the range \([0, 1)\) and the end points correspond to the values of \(t_i \) equal to \(t_i = 0 \) and \(t_i = -p \). The \(p \)-adic sphere \(S^2 \) appearing in the definition of the \(p \)-adic light cone is obtained as a geodesic sub-manifold of \(CP_2 \) (\(\xi_1 = \xi_2 \) is one possibility). From the requirement that real \(CP_2 \) can be mapped to its \(p \)-adic counterpart it is clear that one must allow all connected components of \(CP_2 \) obtained by applying discrete unitary matrices having no exponential representation to the basic connected component. In practice this corresponds to the allowance of all possible values of the \(p \)-adic norm for the components of the complex coordinates \(\xi_i \) of \(CP_2 \).

The simplest approach to the definition of the \(CP_2 \) metric is to replace the expression of the Kähler function in the real context with its \(p \)-adic counterpart. In standard complex coordinates for which the action of \(U(2) \) subgroup is linear, the expression of the Kähler function reads as

\[
K = \log(1 + r^2),
\]

\[
r^2 = \sum_i \bar{\xi}_i \xi_i.
\]

(3.9)

\(p \)-Adic logarithm exists provided \(r^2 \) is of order \(O(p) \). This is the case when \(\xi_i \) is of order \(O(p) \). The definition of the Kähler function in a more general case, when all possible values of the \(p \)-adic norm are allowed for \(r \), is based on the introduction of a \(p \)-adic pseudo constant \(C \) to the argument of the Kähler function

\[
K = \log\left(1 + \frac{r^2}{C}\right).
\]

(3.10)

\(C \) guarantees that the argument is of the form \(\frac{1 + r^2}{C} = 1 + O(p) \) allowing a well-defined \(p \)-adic logarithm. This modification of the Kähler function leaves the definition of Kähler metric, Kähler form and spinor connection invariant.

A more elegant manner to avoid the difficulty is to use the exponent \(\Omega = \exp(K) = 1 + r^2 \) of the Kähler function instead of Kähler function, which indeed well defined for all coordinate values. In terms of \(\Omega \) one can express the Kähler metric as

\[
g_{kl} = \frac{\partial_k \partial_l \Omega}{\Omega} - \frac{\partial_k \Omega \partial_l \Omega}{\Omega^2}.
\]

(3.10)

The \(p \)-adic metric can be defined as

\[
s_{ij} = R^2 \partial_i \partial_j K = R^2 \frac{(\xi_i \xi_j - \bar{\xi}_j \xi_i)}{(1 + r^2)^2}.
\]

(3.11)

The expression for the Kähler form is the same as in the real case and the components of the Kähler form in the complex coordinates are numerically equal to those of the metric apart from the factor of \(i \). The components in arbitrary coordinates can be deduced from these by the standard transformation formulas.
3.2 Infinite Primes And Cognition

Somehow it is obvious that infinite primes must have some very deep role to play in quantum TGD and TGD inspired theory of consciousness. What this role precisely is has remained an enigma although I have considered several detailed interpretations, one of them above.

In the following an interpretation allowing to unify the views about fermionic Fock states as a representation of Boolean cognition and p-adic space-time sheets as correlates of cognition is discussed. Very briefly, real and p-adic partonic 3-surfaces serve as space-time correlates for the bosonic super algebra generators, and pairs of real partonic 3-surfaces and their algebraically continued p-adic variants as space-time correlates for the fermionic super generators. Intentions/actions are represented by p-adic/real bosonic partons and cognitions by pairs of real partons and their p-adic variants and the geometric form of Fermi statistics guarantees the stability of cognitions against intentional action. It must be emphasized that this interpretation is not identical with the one discussed above since it introduces different identification of the space-time correlates of infinite primes.

3.2.1 Infinite primes very briefly

Infinite primes have a decomposition to infinite and finite parts allowing an interpretation as a many-particle state of a super-symmetric arithmetic quantum field theory for which fermions and bosons are labelled by primes. There is actually an infinite hierarchy for which infinite primes of a given level define the building blocks of the infinite primes of the next level. One can map infinite primes to polynomials and these polynomials in turn could define space-time surfaces or at least light-like partonic 3-surfaces appearing as solutions of Chern-Simons action so that the classical dynamics would not pose too strong constraints.

The simplest infinite primes at the lowest level are of form $m_B X/s_F + n_B s_F$, $X = \prod_i p_i$ (product of all finite primes). The simplest interpretation is that X represents Dirac sea with all states filled and $X/s_F + s_F$ represents a state obtained by creating holes in the Dirac sea. m_B, n_B, and s_F are defined as $m_B = \prod_i q_i^{m_i}$, $n_B = \prod_i q_i^{n_i}$, and $s_F = \prod_i q_i$, m_B and n_B have no common prime factors. The integers m_B and n_B characterize the occupation numbers of bosons in modes labelled by p_i and q_i and $s_F = \prod_i q_i$ characterizes the non-vanishing occupation numbers of fermions.

The simplest infinite primes at all levels of the hierarchy have this form. The notion of infinite prime generalizes to hyper-quaternionic and even hyper-octonionic context and one can consider the possibility that the quaternionic components represent some quantum numbers at least in the sense that one can map these quantum numbers to the quaternionic primes.

The obvious question is whether WCW degrees of freedom and WCW spinor (Fock state) of the quantum state could somehow correspond to the bosonic and fermionic parts of the hyper-quaternionic generalization of the infinite prime. That hyper-quaternionic (or possibly hyper-octonionic) primes would define as such the quantum numbers of fermionic super generators does not make sense. It is however possible to have a map from the quantum numbers labelling super-generators to the finite primes. One must also remember that the infinite primes considered are only the simplest ones at the given level of the hierarchy and that the number of levels is infinite.

3.2.2 Precise space-time correlates of cognition

The best manner to end up with the proposal about how p-adic cognitive representations relate bosonic representations of intentions and actions and to fermionic cognitive representations is through the following arguments.

1. In TGD inspired theory of consciousness Boolean cognition is assigned with fermionic states. Cognition is also assigned with p-adic space-time sheets. Hence quantum classical correspondence suggests that the decomposition of the space-time into p-adic and real space-time sheets should relate to the decomposition of the infinite prime to bosonic and fermionic parts in turn relating to the above mention decomposition of physical states to bosonic and fermionic parts.

If infinite prime defines an association of real and p-adic space-time sheets this association could serve as a space-time correlate for the Fock state defined by WCW spinor for given
3.2 Infinite Primes And Cognition

1. Consider the concrete interpretation of integers m_B and n_B. The most natural guess is that the primes dividing $m_B = \prod_i p_i^{m_i}$ characterize the effective p_i-adicities possible for the real 3-surface. m_i could define the numbers of disjoint partonic 3-surfaces with effective p_i-adic topology and associated with the same real space-time sheet. These boundary conditions would force the corresponding real 4-surface to have all these effective p_i-adicities implying multi-p_i-adic fractality so that particle and wave pictures about multi-p_i-adic fractality would be mutually consistent. It seems natural to assume that also the integer n_i appearing in $m_B = \prod_i q_i^{n_i}$ code for the number of real partonic 3-surfaces with effective q_i-adic topology.

2. Fermionic statistics allows only single genuinely q_i-adic 3-surface possibly forming a pair with its real counterpart from which it is obtained by algebraic continuation. Pairing would conform with the fact that n_F appears both in the finite and infinite parts of the infinite prime (something absolutely essential concerning the consistency of interpretation!). The interpretation could be as follows.

 (a) Cognitive representations must be stable against intentional action and fermionic statistics guarantees this. At space-time level this means that fermionic generators correspond to pairs of real effectively q_i-adic 3-surface and its algebraically continued q_i-adic counterpart. The quantum jump in which q_i-adic 3-surface is transformed to a real 3-surface is impossible since one would obtain two identical real 3-surfaces lying on top of each other, something very singular and not allowed by geometric exclusion principle for surfaces. The pairs of boson and fermion surfaces would thus form cognitive representations stable against intentional action.

 (b) Physical states are created by products of super algebra generators Bosonic generators can have both real or p_i-adic partonic 3-surfaces as space-time correlates depending on whether they correspond to intention or action. More precisely, m_B and n_B code for collections of real and p_i-adic partonic 3-surfaces. What remains to be interpreted is why m_B and n_B cannot have common prime factors (this is possible if one allows also infinite integers obtained as products of finite integer and infinite primes).

 (c) Fermionic generators to the pairs of a real partonic 3-surface and its p_i-adic counterpart obtained by algebraic continuation and the pictorial interpretation is as fermion hole pair.

 (d) This picture makes sense if the partonic 3-surfaces containing a state created by a product of super algebra generators are unstable against decay to this kind of 3-surfaces so that one could regard partonic 3-surfaces as a space-time representations for a configuration space spinor field.

3. Are alternative interpretations possible? For instance, could $q = m_B/m_B$ code for the effective q-adic topology assignable to the space-time sheet. That q-adic numbers form a ring but not a number field casts however doubts on this interpretation as does also the general physical picture.

3.2.3 Number theoretical universality of S-matrix

The discreteness of the intersection of the real space-time sheet and its p_i-adic variant obtained by algebraic continuation would be a completely universal phenomenon associated with all fermionic states. This suggests that also real-to-real S-matrix elements involve instead of an integral a sum with the arguments of an n-point function running over all possible combinations of the points in the intersection. S-matrix elements would have a universal form which does not depend on the number field at all and the algebraic continuation of the real S-matrix to its p_i-adic counterpart would trivialize. Note that also fermionic statistics favors strongly discretization unless one allows Dirac delta functions.
3.3 P-Adicization Of Second Quantized Induced Spinor Fields

Induction procedure makes it possible to geometrize the concept of a classical gauge field and also of the spinor field with internal quantum numbers. In the case of the electro-weak gauge fields induction means the projection of the H-spinor connection to a spinor connection on the space-time surface.

In the most recent formulation induced spinor fields appear only at the 3-dimensional light-like partonic 3-surfaces and the solutions of the Kähler-Dirac equation can be written explicitly as simple algebraic functions involving powers of the preferred coordinate variables very much like various operators in conformal field theory can be expressed as Laurent series in powers of a complex variable z with operator valued coefficients. This means that the continuation of the second quantized induced spinor fields to various p-adic number fields is a straightforward procedure. The second quantization of these induced spinor fields as free fields is needed to construct WCW geometry and anti-commutation relation between spinor fields are fixed from the requirement that WCW gamma matrices correspond to super-symplectic generators.

The idea about rational physics as the intersection of the physics associated with various number fields inspires the hypothesis that induced spinor fields have only modes labelled by rational valued quantum numbers. Quaternion conformal invariance indeed implies that zero modes are characterized by integers. This means that same oscillator operators can define oscillator operators are universal. Powers of the quaternionic coordinate are indeed well-defined in any number field provided the components of quaternion are rational numbers since p-adic quaternions have in this case always inverse.

3.4 Should One P-Adicize At The Level Of WCW ?

If Duistermaat-Heckman theorem \([A4]\) holds true in TGD context, one could express WCW functional integral in terms of exactly calculable Gaussian integrals around the maxima of the Kähler function defining what might be called reduced WCW CH_{red}. The huge super-conformal symmetries raise the hope that the rest of S-matrix elements could be deduced using group theoretical considerations so that everything would become algebraic. If this optimistic scenario is realized, the p-adicization of CH_{red} might be enough to p-adicize all operations needed to construct the p-adic variant of S-matrix.

The optimal situation would be that S-matrix elements reduce to algebraic numbers for rational valued incoming momenta and that p-adicization trivializes in the sense that it corresponds only to different interpretations for the imbedding space coordinates (interpretation as real or p-adic numbers) appearing in the equations defining the 4-surfaces. For instance, space-time coordinates would correspond to preferred imbedding space coordinates and the remaining imbedding space coordinates could be rational functions of the latter with algebraic coefficients. Algebraic points in a given extension of rationals would thus be common to real and p-adic surfaces. It could also happen that there are no or very few common algebraic points. For instance, Fermat’s theorem says that the surface $x^n + y^n = z^n$ has no rational points for $n > 2$.

This picture is probably too simple. The intuitive expectation is that ordinary S-matrix elements are proportional to a factor which in the real case involves an integration over the arguments of an n-point function of a conformal field theory defined at a partonic 2-surface. For p-adic-real transitions the integration should reduce to a sum over the common rational or algebraic points of the p-adic and real surface. Same applies to $p_1 \rightarrow p_2$ type transitions.

If this picture is correct, the p-adicization of WCW would mean p-adicization of CH_{red} consisting of the maxima of the Kähler function with respect to both fiber degrees of freedom and zero modes acting effectively as control parameters of the quantum dynamics. If CH_{red} is a discrete subset of CH ultra-metric topology induced from finite-p p-adic norm is indeed natural for it. “Discrete set in CH” need not mean a discrete set in the usual sense and the reduced WCW could be even finite-dimensional continuum. Finite-p p-adicization as a cognitive model would suggest that p-adicization in given point of CH_{red} is possible for all p-adic primes associated with the corresponding space-time surface (maximum of Kähler function) and represents a particular cognitive representation about CH_{red}.

A basic technical problem is, whether the integral defining the Kähler action appearing in the exponent of Kähler function exists p-adically. Here the hypothesis that the exponent of the Kähler
function is identifiable as a Dirac determinant of the Kähler-Dirac operator defined at the light-like partonic 3-surfaces \[K_{18} \] suggests a solution to the problem. By restricting the generalized eigen values of the Kähler-Dirac operator to an appropriate algebraic extension of rationals one could obtain an algebraic number existing both in the real and p-adic sense if the number of the contributing eigenvalues is finite. The resulting hierarchy of algebraic extensions of \(R_p \) would have interpretation as a cognitive hierarchy. If the maxima of Kähler function assignable to the functional integral are such that the number of eigenvalues in a given algebraic extension is finite this hypothesis works.

If Duistermaat-Heckman theorem generalizes, the p-adicization of the entire WCW would be un-necessary and it certainly does not look a good idea in the light of preceding considerations.

1. For a generic 3-surface the number of the eigenvalues in a given algebraic extension of rationals need not be finite so that their product can fail to be an algebraic number.

2. The algebraic continuation of the exponent of the Kähler function from \(CH_{red} \) to the entire \(CH \) would be analogous to a continuation of a rational valued function from a discrete set to a real or p-adic valued function in a continuous set. It is difficult to see how the continuation could be unique in the p-adic case.

4 P-Adic Probabilities

p-Adic Super Virasoro representations necessitate p-adic QM based on the p-adic unitarity and p-adic probability concepts. The concept of a p-adic probability indeed makes sense as shown by \[A2 \]. p-Adic probabilities can be defined as relative frequencies \(N_i / N \) in a long series consisting of total number \(N \) of observations and \(N_i \) outcomes of type \(i \). Probability conservation corresponds to

\[
\sum_i N_i = N ,
\]

and the only difference as compared to the usual probability is that the frequencies are interpreted as p-adic numbers.

The interpretation as p-adic numbers means that the relative frequencies converge to probabilities in a p-adic rather than real sense in the limit of a large number \(N \) of observations. If one requires that probabilities are limiting values of the frequency ratios in p-adic sense one must pose restrictions on the possible numbers of the observations \(N \) if \(N \) is larger than \(p \). For \(N \) smaller than \(p \), the situation is similar to the real case. This means that for \(p = M_{127} \approx 10^{38} \), appropriate for the particle physics experiments, p-adic probability differs in no observable manner from the ordinary probability.

If the number of observations is larger than \(p \), the situation changes. If \(N_1 \) and \(N_2 \) are two numbers of observations they are near to each other in the p-adic sense if they differ by a large power of \(p \). A possible interpretation of this restriction is that the observer at the \(p \): th level of the condensate cannot choose the number of the observations freely. The restrictions to this freedom come from the requirement that the sensible statistical questions in a p-adically conformally invariant world must respect p-adic conformal invariance.

4.1 P-Adic Probabilities And P-Adic Fractals

p-Adic probabilities are natural in the statistical description of the fractal structures, which can contain same structural detail with all possible sizes.

1. The concept of a structural detail in a fractal seems to be reasonably well defined concept.

The structural detail is clearly fixed by its topology and p-adic conformal invariants associated with it. Clearly, a finite resolution defined by some power of \(p \) of the p-adic cutoff scale must be present in the definition. For example, p-adic angles are conformal invariants in the p-adic case, too. The overall size of the detail doesn’t matter. Let us therefore assume that it is possible to make a list, possibly infinite, of the structural details appearing in the p-adic fractal.
2. What kind of questions related to the structural details of the p-adic fractal one can ask? The first thing one can ask is how many times \(i \):th structural detail appears in a finite region of the fractal structure: although this number is infinite as a real number it might possess (and probably does so!) finite norm as a p-adic number and provides a useful p-adic invariant of the fractal. If a complete list about the structural details of the fractal is at use one can calculate also the total number of structural details defined as \(N = \sum N_i \). This means that one can also define p-adic probability for the appearance of \(i \):th structural detail as a relative frequency \(p_i = N_i / N \).

3. One can consider conditional probabilities, too. It is natural to ask what is the probability for the occurrence of the structural detail subject to the condition that part of the structural detail is fixed (apart from the p-adic conformal transformations). In order to evaluate these probabilities as relative frequencies one needs to look only for those structural details containing the substructure in question.

4. The evaluation of the p-adic probabilities of occurrence can be done by evaluating the required numbers \(N_i \) and \(N \) in a given resolution. A better estimate is obtained by increasing the resolution and counting the numbers of the hitherto unobserved structural details. The increase in the resolution greatly increases the number of the observations in case of p-adic fractal and the fluctuations in the values of \(N_i \) and \(N \) increase with the resolution so that \(N_i / N \) has no well defined limit as a real number although one can define the probabilities of occurrence as a resolution dependent concept. In the p-adic sense the increase in the values of \(N_i \) and fluctuations are small and the procedure should converge rapidly so that reliable estimates should result with quite a reasonable resolution. Notice that the increase of the fluctuations in the real sense, when resolution is increased is in accordance with the criticality of the system.

5. p-Adic frequencies and probabilities define via the canonical correspondence real valued invariants of the fractal structure. It must be emphasized that this picture can have practical applications only for small values of \(p \), which could also be important in the macroscopic length scales. In elementary particle physics \(L_p \) is of the order of the Compton length associated with the particle and already in the first step \(CP_2 \) length scale is achieved and it is questionable whether it makes sense to continue the procedure below the length scale \(l \). In particle physics context the renormalization is related to the change of the reduction of the p-adic length scale \(L_p \) in the length scale hierarchy rather than p-adic fractality for a fixed value of \(p \).

The most important application of the p-adic probability in this book is the description of the particle massivation based on p-adic thermodynamics. Instead of energy, Virasoro generator \(l \) is thermalized and in the low temperature phase temperature is quantized in the sense that the counterpart of the Boltzmann weight \(\exp(H/T) \) is \(p^{L_0/T} \), where \(T = 1/n \) from the requirement that Boltzmann weight exists (\(L_0 \) has integer spectrum). The surprising success of the mass calculations shows that p-adic probability theory is much more than a formal possibility.

4.2 Relationship Between P-Adic And Real Probabilities

There are uniqueness problems related to the mapping of p-adic probabilities to real ones. These problems find a nice resolution from the requirement that the map respects probability conservation. The implied modification of the original mapping does not change measurably the predictions for the masses of light particles.

4.2.1 How unique the map of p-adic probabilities and mass squared values are mapped to real numbers is?

The mapping of p-adic thermodynamical probabilities and mass squared values to real numbers is not completely unique.

1. Symplectic identification \(I : \sum x_n p^n \rightarrow \sum x_n p^{-n} \) takes care of this mapping but does not respect the sum of probabilities so that the real images \(I(p_n) \) of the probabilities must be normalized. This is a somewhat alarming feature.
2. The modification of the canonical identification mapping rationals by the formula \(I(r/s) = I(r)/I(s) \) has appeared naturally in various applications, in particular because it respects unitarity of unitary matrices with rational elements with \(r < p, s < p \). In the case of p-adic thermodynamic the formula \(I(g(n)p^n/Z) \rightarrow I(g(n)p^n)/I(Z) \) would be very natural although \(Z \) need not be rational anymore. For \(g(n) < p \) the real counterparts of the p-adic probabilities would sum up to one automatically for this option. One cannot deny that this option is more convincing than the original one. The generalization of this formula to map p-adic mass squared to a real one is obvious.

3. Options 1) and 2) differ dramatically when the \(n = 0 \) massless ground state has ground state degeneracy \(D > 1 \). For option 1) the real mass is predicted to be of order \(CP^2 \) mass whereas for option 2) it would be by a factor \(1/D \) smaller than the minimum mass predicted by the option 1). Thus option 2) would predict a large number of additional exotic states. For those states which are light for option 1), the two options make identical predictions as far as the significant two lowest order terms are considered. Hence this interpretation would not change the predictions of the p-adic mass calculations in this respect. Option 2) is definitely more in accord with the real physics based intuitions and the main role of p-adic thermodynamics would be to guarantee the quantization of the temperature and fix practically uniquely the spectrum of the "Hamiltonian".

4.2.2 Under what conditions the mapping of p-adic ensemble probabilities to real probabilities respects probability conservation?

One can consider also a more general situation. Assume that one has an ensemble consisting of independent elementary events such that the number of events of type \(i \) is \(N_i \). The probabilities are given by \(p_i = N_i/N \) and \(N = \sum N_i \) is the total number of elementary events. Even in the case that \(N \) is infinite as a real number it is natural to map the p-adic probabilities to their real counterparts using the rational canonical identification \(I(p_i) = I(N_i)/I(N) \). Of course, \(N_i \) and \(N \) exist as well defined p-adic numbers under very stringent conditions only.

The question is under what conditions this map respects probability conservation. The answer becomes obvious by looking at the pinary expansions of \(N_i \) and \(N \). If the integers \(N_i \) (possibly infinite as real integers) have pinary expansions having no common pinary digits, the sum of probabilities is conserved in the map. Note that this condition can assign also to a finite ensemble with finite number of a unique value of \(p \).

This means that the selection of a basis for independent events corresponds to a decomposition of the set of integers labelling pinary digits to disjoint sets and brings in mind the selection of orthonormalized basis of quantum states in quantum theory. What is physically highly non-trivial that this "orthogonalization" alone puts strong constraints on probabilities of the allowed elementary events. One can say that the probabilities define distributions of pinary digits analogous to non-negative probability amplitudes in the space of integers labelling pinary digits, and the probabilities of independent events must be orthogonal with respect to the inner product defined by point-wise multiplication in the space of pinary digits.

p-Adic thermodynamics for which Boltzmann weights \(g(E) \exp(-E/T) \) are replaced by \(g(E)p^{E/T} \) such that one has \(g(E) < p \) and \(E/T \) is integer valued, satisfies this constraint. The quantization of \(E/T \) to integer values implies quantization of both \(T \) and "energy" spectrum and forces so called super conformal invariance in TGD applications, which is indeed a basic symmetry of the theory.

There are infinitely many ways to choose the elementary events and each choice corresponds to a decomposition of the infinite set of integers \(n \) labelling the powers of \(p \) to disjoint subsets. These subsets can be also infinite. One can assign to this kind of decomposition a resolution which is the poorer the larger the subsets involved are. p-Adic thermodynamics would represent the situation in which the resolution is maximal since each set contains only single pinary digit. Note the analogy with the basis of completely localized wave functions in a lattice.

4.2.3 How to map p-adic transition probabilities to real ones?

p-Adic variants of TGD, if they exist, give rise to S-matrices and transition probabilities \(P_{ij} \), which are p-adic numbers.
1. The p-adic probabilities defined by rows of S-matrix mapped to real numbers using canonical identification respecting the $q = r/s$ decomposition of rational number or its appropriate generalization should define real probabilities.

2. The simplest example would be simple renormalization for the real counterparts of the p-adic probabilities $(P_{ij})_R$ obtained by canonical identification (or more probably its appropriate modification).

$$P_{ij} = \sum_{k \geq 0} P_{ij}^k p^k,$$
$$P_{ij} \to \sum_{k \geq 0} P_{ij}^k p^{-k} \equiv (P_{ij})_R,$$
$$(P_{ij})_R \to \frac{(P_{ij})_R}{\sum_j (P_{ij})_R} \equiv P_{ij}^R. \tag{4.2}$$

The procedure converges rapidly in powers of p and resembles renormalization procedure of quantum field theories. The procedure automatically divides away one four-momentum delta function from the square of S-matrix element containing the square of delta function with no well defined mathematical meaning. Usually one gets rid of the delta function interpreting it as the inverse of the four-dimensional measurement volume so that transition rate instead of transition probability is obtained. Of course, also now same procedure should work either as a discrete or a continuous version.

3. Probability interpretation would suggest that the real counterparts of p-adic probabilities sum up to unity. This condition is rather strong since it would hold separately for each row and column of the S-matrix.

4. A further condition would be that the real counterparts of the p-adic probabilities for a given prime p are identical with the transition probabilities defined by the real S-matrix for real space-time sheets with effective p-adic topology characterized by p. This condition might allow to deduce all relevant phase information about real and corresponding p-adic S-matrices using as an input only the observable transition probabilities.

4.2.4 What it means that p-adically independent events are not independent in real sense?

A further condition would be that p-adic quantum transitions represent also in the real sense independent elementary events so that the real counterpart for a sum of the p-adic probabilities for a finite number of transitions equals to the sum of corresponding real probabilities. This condition is definitely too strong since only a single transition could correspond to a given p-adic norm of transition probability P_{ij} with i fixed.

The crucial question concerns the physical difference between the real counterpart for the sum of the p-adic transition probabilities and for the sum of the real counterparts of these probabilities, which are in general different:

$$\sum_j P_{ij} \neq \sum_j (P_{ij})_R. \tag{4.3}$$

The suggestion is that p-adic sum of the transition probabilities corresponds to the experimental situation, when one does not monitor individual transitions but using some common experimental signature only looks whether the transition leads to this set of the final states or not. When one looks each transition separately or effectively performs different experiment by considering only one transition channel in each experiment one must use the sum of the real probabilities. More precisely, the choice of the experimental signatures divides the set U of the final states to a disjoint union $U = \cup_i U_i$ and one must define the real counterparts for the transition probabilities P_{iU_k} as...
\[P_{iU_k} = \sum_{j \in U_k} P_{ij}, \]
\[P_{iU_k} \rightarrow (P_{iU_k})_R, \]
\[\langle P_{iU_k} \rangle_R \rightarrow \frac{(P_{iU_k})_R}{\sum_l (P_{iU_l})_R} \equiv P^R_{iU_k}. \]

(4.4)

The assumption means deep a departure from the ordinary probability theory. If p-adic physics is the physics of cognitive systems, there need not be anything mysterious in the dependence of the behavior of system on how it is monitored. At least half-jokingly one might argue that the behavior of an intelligent system indeed depends strongly on whether the boss is nearby or not. The precise definition for the monitoring could be based on the decomposition of the density matrix representing the entangled subsystem into a direct sum over the subspaces associated with the degenerate eigenvalues of the density matrix. This decomposition provides a natural definition for the notions of the monitoring and resolution.

The renormalization procedure is in fact familiar from standard physics. Assume that the labels \(j \) correspond to momenta. The division of momentum space to cells of a given size so that the individual momenta inside cells are not monitored separately means that momentum resolution is finite. Therefore one must perform p-adic summation over the cells and define the real probabilities in the proposed manner. p-Adic effects resulting from the difference between p-adic and real summations could be the counterpart of the renormalization effects in QFT. It should be added that similar resolution can be defined also for the initial states by decomposing them into a union of disjoint subsets.

An alternative interpretation for the degenerate eigenvalues has emerged years after writing this. The sub-spaces corresponding to given eigenvalue of density matrix represent entangled states resulting in state function reduction interpreted as measurement of density matrix. This entanglement would be negentropic and represent a rule/concept, whose instances the superposed state pairs are. The information measure would Shannon entropy based on the replacement of the probability appearing as argument of logarithm with its p-adic norm. This entropy would be negative and therefore measure the information associated with the entanglement. This number theoretic entropy characterizes two particle state rather than single particle state and has nothing to do with the ordinary Shannon entropy.

Maybe one could say that finite measurement resolution implies automatically conceptualization and rule building. Abstractions are indeed obtained by dropping out the details.

4.3 P-Adic Thermodynamics

The p-adic field theory limit as such is not expected to give a realistic theory at elementary particle physics level. The point is that particles are expected to be either massless or possess mass of order \(10^{-4} \) Planck mass. The p-adic description of particle massivation described in the third part of the book shows that p-adic thermodynamics provides the proper formulation of the problem. What is thermalized is Virasoro generator \(L_0 \) (mass squared contribution is not included to \(L_0 \) so that states do not have fixed conformal weight). Temperature is quantized purely number theoretically in low temperature limit \(\exp(H/kT) \rightarrow p^{L_0/T}, T = 1/n \): in fact, partition function does not even exist in high temperature phase. The extremely small mixing of massless states with Planck mass states implies massivation and predictions of the p-adic thermodynamics for the fermionic masses are in excellent agreement with experimental masses. Thermodynamic approach also explains the emergence of the length scale \(L_p \) for a given p-adic condensation level and one can develop arguments explaining why primes near prime powers of two are favored.

It should be noticed that rational p-adic temperatures \(1/T = k/n \) are possible, if one poses the restriction that thermal probabilities are non-vanishing only for some subalgebra of the Super Virasoro algebra isomorphic to the Super Virasoro algebra itself. The generators \(L_{kn}, G_{kn} \), where \(k \) is a positive integer, indeed span this kind of a subalgebra by the fractality of the Super Virasoro algebra and \(p^{L_0/T} \) is integer valued with this restriction.
One might apply thermodynamics approach should also in the calculation of S-matrix. What is needed is thermodynamical expectation value for the transition amplitudes squared over incoming and outgoing states. In this expectation value 3-momenta are fixed and only mass squared varies.

4.4 Generalization Of The Notion Of Information

TGD inspired theory of consciousness, in particular the formulation of Negentropy Maximization Principle (NMP) in p-adic context, has forced to rethink the notion of the information concept. In TGD state preparation process is realized as a sequence of self measurements. Each self measurement means a decomposition of the sub-system involved to two unentangled parts. The decomposition is fixed highly uniquely from the requirement that the reduction of the entanglement entropy is maximal.

The additional assumption is that bound state entanglement is stable against self measurement. This assumption is somewhat ad hoc and it would be nice to get rid of it. The only manner to achieve this seems to be a generalized definition of entanglement entropy allowing to assign a negative value of entanglement entropy to the bound state entanglement, so that bound state entanglement would actually carry information, in fact conscious information (experience of understanding). This would be very natural since macro-temporal quantum coherence corresponds to a generation of bound state entanglement, and is indeed crucial for ability to have long lasting non-entropic mental images.

The generalization of the notion of number concept leads immediately to the basic problem. How to generalize the notion of entanglement entropy that it makes sense for a genuinely p-adic entanglement? What about the number-theoretically universal entanglement with entanglement probabilities, which correspond to finite extension of rational numbers? One can also ask whether the generalized notion of information could make sense at the level of the space-time as suggested by quantum-classical correspondence.

In the real context Shannon entropy is defined for an ensemble with probabilities p_n as

$$S = - \sum_n p_n \log(p_n) . \tag{4.5}$$

As far as theory of consciousness is considered, the basic problem is that Shannon entropy is always non-negative so that as such it does not define a genuine information measure. One could define information as a change of Shannon entropy and this definition is indeed attractive in the sense that quantum jump is the basic element of conscious experience and involves a change. One can however argue that the mere ability to transfer entropy to environment (say by aggressive behavior) is not all that is involved with conscious information, and even less so with the experience of understanding or moment of heureka. One should somehow generalize the Shannon entropy without losing the fundamental additivity property.

4.4.1 p-Adic entropies

The key observation is that in the p-adic context the logarithm function $\log(x)$ appearing in the Shannon entropy is not defined if the argument of logarithm has p-adic norm different from 1. Situation changes if one uses an extension of p-adic numbers containing $\log(p)$: the conjecture is that this extension is finite-dimensional. One might however argue that Shannon entropy should be well defined even without the extension.

p-Adic thermodynamics inspires a manner to achieve this. One can replace $\log(x)$ with the logarithm $\log_p(|x|_p)$ of the p-adic norm of x, where \log_p denotes p-based logarithm. This logarithm is integer valued ($\log_p(p^n) = n$), and is interpreted as a p-adic integer. The resulting p-adic entropy

$$S_p = \sum_n p_n k(p_n) ,$$

$$k(p_n) = -\log_p(|p_n|) . \tag{4.6}$$

is additive: that is the entropy for two non-interacting systems is the sum of the entropies of composites. Note that this definition differs from Shannon’s entropy by the factor $\log(p)$. This
4.4 Generalization Of The Notion Of Information

entropy vanishes identically in the case that the p-adic norms of the probabilities are equal to one. This means that it is possible to have non-entropic entanglement for this entropy.

One can consider a modification of S_p using p-adic logarithm if the extension of the p-adic numbers contains $\log(p)$. In this case the entropy is formally identical with the Shannon entropy:

$$S_p = -\sum p_n \log(p_n) = -\sum p_n \left[-k(p_n)\log(p) + p^{k_n} \log(p_n/p^{k_n}) \right].$$

(4.7)

It seems that this entropy cannot vanish.

One must map the p-adic value entropy to a real number and here canonical identification can be used:

$$S_{p,R} = (S_p)_R \times \log(p),$$

$$\left(\sum_n x_n p^n \right)_R = \sum_n x_n p^{-n}. \quad (4.8)$$

The real counterpart of the p-adic entropy is non-negative.

4.4.2 Number theoretic entropies and bound states

In the case that the probabilities are rational or belong to a finite-dimensional extension of rationals, it is possible to regard them as real numbers or p-adic numbers in some extension of p-adic numbers for any p. The visions that rationals and their finite extensions correspond to islands of order in the seas of chaos of real and p-adic transcendentals suggests that states having entanglement coefficients in finite-dimensional extensions of rational numbers are somehow very special. This is indeed the case. The p-adic entropy entropy $S_p = -\sum p_n \log(p_n)\log(p)$ can be interpreted in this case as an ordinary rational number in an extension containing $\log(p)$.

What makes this entropy so interesting is that it can have also negative values in which case the interpretation as an information measure is natural. In the real context one can fix the value of the value of the prime p by requiring that S_p is maximally negative, so that the information content of the ensemble could be defined as

$$I \equiv \text{Max}\{-S_p, \ p \ prime\}. \quad (4.9)$$

This information measure is positive when the entanglement probabilities belong to a finite-dimensional extension of rational numbers. Thus kind of entanglement is stable against NMP, and has a natural interpretation as bound state entanglement. The prediction would be that the bound states of real systems form a number theoretical hierarchy according to the prime p and dimension of algebraic extension characterizing the entanglement.

Number theoretically state function reduction and state preparation could be seen as information generating processes projecting the physical states from either real or p-adic sectors of the state space to their intersection. Later an argument that these processes have a purely number theoretical interpretation will be developed based on the generalized notion of unitarity allowing the U-matrix to have matrix elements between the sectors of the state space corresponding to different number fields.

4.4.3 Number theoretic information measures at the space-time level

Quantum classical correspondence suggests that the notion of entropy should have also space-time counterpart. Entropy requires ensemble and both the p-adic non-determinism and the non-determinism of Kähler action allow to define the required ensemble as the ensemble of strictly deterministic regions of the space-time sheet. One can measure various observables at these space-time regions, and the frequencies for the outcomes are rational numbers of form $p_k = n(k)/N$, where N is the number of strictly deterministic regions of the space-time sheet. The number theoretic entropies are well defined and negative if p divides the integer N. Maximum is expected
to result for the largest prime power factor of N. This would mean the possibility to assign a unique prime to a given real space-time sheet.

The classical non-determinism resembles p-adic non-determinism in the sense that the space-time sheet obeys effective p-adic topology in some length and time scale range is consistent with this idea since p-adic fractality suggests that N is power of p.

5 About P-Adic Quantum Mechanics

An interesting question is whether p-adic quantum mechanics might exist in some sense. The purely formal generalization of the ordinary QM need not be very interesting physically and the following considerations describe p-adic QM as a limiting case of the p-adic field theory limit of TGD to be constructed later. This particular p-adic QM is based on the p-adic Hilbert-space, p-adic unitarity and p-adic probability concepts whereas the physical interpretation is based on the correspondence between the p-adic and real probabilities given by the canonical correspondence. p-Adic QM is expected to apply -if it applies at all- below the p-adic length scale $L_p = \sqrt{pl}$ and above L_p ordinary QM should work, when length scale resolution L_p is used.

Although one can define p-adic Schrödinger equation formally without any difficulty it is not at all obvious whether it emerges from the p-adic QFT limit of TGD. Therefore the following considerations - my first reaction to the question what p-adic quantum theory look like- should be taken as mere warming up exercises perhaps helping to get some familiarity with new concepts. In the next chapter “Negentropy Maximization Principle” a more serious approach starting directly from the condition that real and p-adic approaches must allow fusion to larger coherence whole will be discussed.

5.1 P-Adic Modifications Of Ordinary Quantum Mechanics

One can consider several modifications of the ordinary quantum mechanics depending on what kind of p-adicizations one is willing to make.

5.1.1 p-Adicization in dynamical degrees of freedom

The minimal alternative is to replace time- and spatial coordinates with their p-adic counterparts so that the space time is a Cartesian power of R_p. A more radical possibility is to replace the 3-space with a 3-dimensional algebraic extension of the p-adic numbers. This means that space time is replaced with a Cartesian product of R_p and its 3-dimensional extension. The most radical possibility, suggested by the relativistic considerations, is a four-dimensional algebraic extension treating space and time degrees of freedom in an equal position: this alternative is encountered in the formulation of the p-adic field theory limit of TGD.

In practice the formulation of the quantum theory involves an action principle defining the so called classical theory and this is defined by using the integral of the action density. These integrals certainly exists as real quantities and are defined by the Haar measure for the p-adic numbers. Algebraic continuation of real integrals seems to be the only reasonable manner to defined these integrals.

5.1.2 p-Adicization at Hilbert space level

One can imagine essentially two different manners to p-adicize Hilbert space.

1. The first approach, followed in [H1], is to keep Schrö-dinger amplitudes complex. In this case it is better to consider a Cartesian power of R_p instead of an algebraic extension as a coordinate space. The canonical identification allows to replace the expressions of the coordinate and momentum operators via their p-adic counterparts. For example, $x \times \Psi$ is replaced with $x \times_p \Psi$, where p-adic multiplication rule is used. Derivative corresponds to a p-adic derivative. It was the lack of the canonical identification replacement, which forced to give up the straightforward generalization of standard QM in the approach followed in [A3], [H1]. What this approach effects, is the replacement of the ordinary continuity and differentiability and concepts with the p-adic differentiability and the approach looks rather
5.1 P-Adic Modifications Of Ordinary Quantum Mechanics

reasonable manner to construct a fractal quantum mechanics. This approach however is not applicable in the present context.

2. A more radical approach uses Schrödinger amplitude with values in some complex extension, say a square root allowing extension of the p-adic numbers. p-Adic inner product implies that the ordinary unitarity and probability concepts are replaced with there p-adic counterparts. This approach looks natural for various reasons. The representation theory for the Lie-groups generalizes to p-adic case and the replacement implies certain mathematical elegance since p-analyticity and the realization of the p-adic conformal invariance becomes possible. It will be found that p-adic valued inner product is the natural inner product for the quantized harmonic oscillator and for Super Virasoro representations. The concept of the p-adic probability makes sense as first shown by [A2]. The physical interpretation of the theory is however always in terms of the real numbers and the canonical identification provides the needed tool to map the predictions of the theory to real numbers. That physical observables are always real numbers is suggested by the success of the p-adic mass calculations. p-Adic probabilities can be mapped to real probabilities and in the last chapter of the third part of the book it is shown that this correspondence predicts genuinely novel physical effects.

The p-adic representations of the Super Virasoro algebra to be used are defined in the p-adic Hilbert space and everything is well defined at algebraic level if 4- \(p > 2 \) or 8- \(p = 2 \) dimensional algebraic extension allowing square roots is used. Unitarity concept generalizes in a straightforward manner to the p-adic context and the elements of the S-matrix should have values in the same extension of the p-adic numbers. The requirement that the squares of S-matrix elements are p-adically real numbers gives strong constraints on the S-matrix elements since the quantities \(S(m,n) \bar{S}(m,n) \) in general belong to the 4- (2-) dimensional real subspace \(x + \theta y + \sqrt{p}z + \sqrt{p}u \) of the 8- (4-) dimensional extension and p-adic reality implies the conditions: \(y = z = .. = u = 0 \). Reality conditions can be solved always since the solution involves only square roots of rational functions. What is exciting is that space time and imbedding space dimensions for the extension allowing square roots are forced by the quantum mechanical probability concept, by p-adic group theory and by the p-adic Riemannian Geometry.

The existence of the p-adic valued definite integral is crucial concerning the practical construction of the p-adic Quantum Mechanics.

1. In the ordinary wave mechanics the inner product involves an integration over WCW degrees of freedom. This inner product can be generalized to the p-adic integral of \(\bar{\Psi}1 \Psi2 \) over the 3-space using p-adic valued integration defined in the first chapter, which works for all analytic functions and also for p-adic counterparts of the plane waves (non-analytic functions).

2. The perturbative formulation QM in terms of the time development operator

\[
U(t) = P(exp(i \int \exp(\int dt V))),
\]

(5.1)

generalizes to the p-adic context. In particular, the concept of the time ordered product \(P(\ldots) \) appearing in the definition of the time development operator generalizes since the canonical identification induces ordering for the values of the p-adic time coordinate: \(t_1 < t_2 \) if \((t_1)_R < (t_2)_R \) holds true. Non-trivialities are related to the p-adic existence of the time development operator: for sufficiently larger values of the time coordinate, the exponent appearing in the time development operator does not exist p-adically and this implies infrared cutoff time and length scale in the p-adic QM.

One can define the action of the time development operator for longer time intervals only if one makes some restrictions on the physical states appearing in the matrix elements. This could explain color confinement number theoretically. For sufficiently long time intervals the color interaction part of the interaction Hamiltonian is so large for colored states that p-adic time development operator fails to exist number theoretically and one must restrict the physical states to be color singlets.
The generalization of the p-adic formula for Riemann integral \(^{[K9]}\) suggests an exact formula for the time ordered product. The first guess is that one simply forms the product

\[
P \exp(i \int_0^t H dt) = P \prod_n \exp[i V(t(n)) \Delta t(n)],
\]

\[
\Delta t(n) = t_+(n) - t_-(n) = (1 + p) p^{m(n)}, \tag{5.2}
\]

to obtain the value of the time ordered product for time values \(t\) having finite number of pinary digits. The product is over all points \(t(n)\) having finite number of pinary digits and \(m(n)\) is the highest pinary digit in the expansion of \(t(n)\) under canonical identification. \(\Delta t(n)\) corresponds to the difference of the p-adic time coordinates, which are mapped to the same value of the real time coordinate in canonical identification so that one can regard the time ordered product as a limiting case in which real time coordinate differences are exactly zero in the time ordered product.

The time ordering of the product is induced by canonical identification from real time ordering. This time development operator is defined for time values with finite number of pinary digits only and defines p-adic pseudo constant. The hope is that the inherent non-determinism of the p-adic differential equations, implied by the existence of the p-adic pseudo constants, makes it possible to continue this function to a p-adically differentiable function of the p-adic time coordinate satisfying the counterpart of the Schrödinger equation for the time development operator.

Not surprisingly, number theoretical problems are encountered also now: the exponential \(\exp[i V(t(n)) \Delta t(n)]\) need not exist p-adically. The possibility of p-adic pseudo constants suggests that one could simply drop off the troublesome exponentials: this has far reaching physical consequences \(^{[K8]}\).

5.2 P-Adic Inner Product And Hilbert Spaces

Concerning the physical applications of algebraically extended p-adic numbers the problem is that p-adic norm is not in general bilinear in its arguments and therefore it does not define inner product and angle. One can however consider a generalization of the ordinary complex inner product \(\bar{z}z\) to a p-adic valued inner product. It turns out that p-adic quantum mechanics in the sense as it is used in p-adic TGD can be based on this inner product.

The algebraic generalization of the ordinary Hilbert space inner product is bilinear and symmetric, defines p-adic valued norm. The norm can however for non-vanishing states. This inner product leads to p-adic generalization of unitarity and probability concept. The solution of the unitarity condition \(\sum_k S_{mk} \bar{S}_{nk} = \delta(m,n)\) involves square root operations and therefore the minimal extension for the Hilbert space is 4-dimensional in \(p > 2\) case and 8-dimensional in \(p = 2\) case. Of course, extensions of arbitrary dimension are allowed.

The inner product associated with a minimal extension allowing square root near real axis provides a natural generalization of the real and complex Hilbert spaces respectively. Instead of real or complex numbers, a square root allowing algebraic extension extension appears as the multiplier field of the Hilbert space and one can understand the points of Hilbert space as infinite sequences \((Z_1, Z_2, ..., Z_n, ...)\), where \(Z_i\) belongs to the extension. The inner product \(\sum_k (Z_{1k}^\dagger Z_{2k}^\dagger)\) is completely analogous to the ordinary Hilbert space inner product.

The generalization of the Hilbert space of square integrable functions to a p-adic context is far from trivial since definite integral in ill defined procedure. Second problem is posed by the fact that p-adic counterparts of say oscillator operator wave functions do not exist in the entire p-adic variant of the configuration space. Algebraic definition of the inner product by using the rules of Gaussian integration provides a possible solution to the problem.

For Fock space generated by anti-commuting fermionic and commuting bosonic oscillator operators the p-adic counterpart exists naturally and it seems that Fock spaces can be seen as universal Hilbert spaces with rational coefficients identifiable as subspaces of both real Fock space and of all p-adic Fock spaces.
5.3 P-Adic Unitarity And P-Adic Cohomology

P-Adic unitarity and probability concepts lead to highly nontrivial conclusions concerning the general structure of the p-adic S-matrix. The most general S-matrix is a product of a complex rational (extended rationals are also possible) unitary S-matrix \(S_Q \) and a genuinely p-adic S-matrix \(S_p \) which deviates only slightly from unity

\[
S = 1 + i\sqrt{p}T , \\
T = O(p^0) .
\]

(5.3)

for \(p \mod 4 = 3 \) allowing imaginary unit in its four-dimensional algebraic extension. In perturbative context one expects that the p-adic S-matrix differs only slightly from unity. Using the form \(S = 1 + iT, \ T = O(p^0) \) one would obtain in general transition rates of order inverse of Planck mass and theory would have nothing to do with reality. Unitarity requirement implies iterative expansion of \(T \) in powers of \(p \) and the few lowest powers of \(p \) give excellent approximation for the physically most interesting values of \(p \).

The unitarity condition implies that the moduli squared of the matrix \(T \) in \(S = 1 + iT \) are of order \(O(p^{1/2}) \) if one assumes a four-dimensional p-adic extension allowing square root for the ordinary p-adic numbers and one can write

\[
S = 1 + iT , \\
i(T - T^\dagger) + \sqrt{p}TT^\dagger = 0 .
\]

(5.4)

This expression is completely analogous to the ordinary one since \(i\sqrt{p} \) is one of the units of the four-dimensional algebraic extension. Unitarity condition in turn implies a recursive solution of the unitary condition in powers of \(p \):

\[
T = \sum_{n \geq 0} T_n p^{n/2} , \\
T_n - T_n^\dagger = 1 \sum_{k=0,\ldots,n-1} T_{n-1-k} T_k^\dagger .
\]

(5.5)

If algebraic extension is not allowed then the expansion is in powers of \(p \) instead of \(\sqrt{p} \). Note that the real counterpart of the series converges extremely rapidly for physically interesting primes (such as \(M_{127} = 2^{127} - 1 \)).

In the p-adic context S-matrix \(S = 1 + T \) satisfies the unitarity conditions

\[
T + T^\dagger = -TT^\dagger
\]

(5.6)

if the conditions

\[
T = T^\dagger , \\
T^2 = 0 .
\]

(5.7)

defining what might be called p-adic cohomology, are satisfied [K26]. In the real context these conditions are not possible to satisfy as is clear from the fact that the total scattering rate from a given state, which is proportional to \(T_{m_m}^2 \), vanishes.

P-Adic cohomology defines a symmetry analogous to BRST symmetry: if \(T \) satisfies unitarity conditions and \(T_0 \) satisfies the conditions

\[
T_0 = T_0^\dagger , \\
\{T_0, T\} = T_0 T + TT_0 = 0 , \\
T_0^2 = 0 ,
\]

(5.8)

unitary conditions are satisfied also by the matrix \(T_1 = T + T_0 \). The total scattering rates are same for \(T \) and \(T_1 \).
5.4 The Concept Of Monitoring

The relationship between p-adic and real probabilities involves the hypothesis that real transition probabilities depend on the cognitive resolution. Cognitive resolution is defined by the decomposition of the state space H into direct sum $H = \oplus H_i$ so that the experimental situation cannot differentiate between different states inside H_i. Each resolution defines different real transition probabilities unlike in ordinary quantum mechanics. Physically this means that the arrangement, where each state in H_i is monitored separately differs from the situation, when one only looks whether the state belongs to H_i. One can say that monitoring affects the behavior of a p-adic subsystem. Of course, these exotic effects relate to the physics of cognition rather than real physics.

Standard probability theory, which also lies at the root of the standard quantum theory, predicts that the probability for a certain outcome of experiment does not depend on how the system is monitored. For instance, if system has N outcomes $o_1, o_2, ... o_N$ with probabilities $p_1, ..., p_N$ then the probability that o_1 or o_2 occurs does not depend on whether common signature is used for o_1 and o_2 or whether observer also detects which of these outcomes occurs. The crucial signature of p-adic probability theory is that monitoring affects the behavior of the system.

Physically monitoring is represented by quantum entanglement [K7], and differentiates between two eigen states of the density matrix only provided the eigenvalues of the density matrix are different. If there are several degenerate eigenvalues, quantum jump occurs to any state in the eigen space: the real probabilities for jumps into individual states are obtained by dividing total real probability by the degeneracy factor. Hence the p-adic probability for a quantum jump to a given eigenspace of density matrix is p-adic sum of probabilities over the eigen states belonging to this eigenspace:

$$P_i = (n(i)P(i))_R \sum_j (n(j)P(j))_R$$

Here n_i are dimensions of various eigenspaces.

If the degeneracy of the eigenvalues is removed by an arbitrary small perturbation, the total probability for the transition to the same subspace of states becomes the sum for the real counterparts of probabilities and one has in good approximation:

$$P^R = \frac{n(i)P(i)_R}{(\sum_j n(j)P(j)_R + n(i)P(i)_R)}.$$

Rather dramatic effects could occur. Suppose that that the entanglement probability $P(i)$ is of form $P(i) = np$, $n \in \{0, p - 1\}$ and that n is large so that $(np)_R = n/p$ is a considerable fraction of unity. Suppose that this state becomes degenerate with a degeneracy m and $mn > p$ as integer. In this kind of situation modular arithmetics comes into play and $(mn)R$ appearing in the real probability $P(1$ or $2)$ can become very small. The simplest example is $n = (p + 1)/2$: if two states i and j have very nearly equal but not identical entanglement probabilities $P(i) = (p + 1)p/2 + \epsilon$, $P(j) = (p + 1)p/2 - \epsilon$, monitoring distinguishes between them for arbitrary small values of ϵ and the total probability for the quantum jump to this subspace is in a good approximation given by

$$P(1 \text{ or } 2) \simeq \frac{x}{\sum_{k \neq i,j} (P_k)_R + x} = \frac{2((p + 1)p/2)_R}{x}.$$

and is rather large. For instance, for Merseenne primes $x \simeq 1/2$ holds true. If the two states become degenerate then one has for the total probability

$$P(1 \text{ or } 2) \simeq \frac{x}{\sum_{k \neq i,j} (P_k)_R + x} = \frac{1}{p}.$$

The order of magnitude for $P(1$ or $2)$ is reduced by a factor of order $1/p!$
Since p-adicity is essential for the exotic effects related to monitoring, the exotic phenomena of monitoring should be related to the quantum physics of cognition rather than real quantum physics. A test for quantum TGD would be provided by the study of the dependence of the transition rates of quantum systems on the resolution of monitoring defined by the dimensions of the degenerate eigenspaces of the subsystem density matrix. One could even consider the possibility of measuring the value of the p-adic prime in this manner. The behavior of living systems is known to be sensitive to monitoring and an exciting possibility is that this sensitivity, if it really can be shown to have statistical nature, could be regarded as a direct evidence for TGD inspired theory of consciousness. Note that the mapping of the physical quantities to entanglement probabilities could provide an ideal manner to compare physical quantities with huge accuracy! Perhaps bio-systems have invented this possibility before physicists and this could explain the miraculous accuracy of biochemistry in realizing genetic code. The measurement of the monitoring effect could provide a manner to determine the value of \(p_i \) for each p-adic region of space-time.

An alternative interpretation for the degenerate eigenvalues has emerged years after writing this. The sub-spaces corresponding to given eigenvalue of density matrix represent entangled states resulting in state function reduction interpreted as measurement of density matrix. This entanglement would be negentropic and represent a rule/concept, whose instances the superposed state pairs are. The information measure would Shannon entropy based on the replacement of the probability appearing as argument of logarithm with its p-adic norm. This entropy would be negative and therefore measure the information associated with the entanglement. This number theoretic entropy characterizes two particle state rather than single particle state and has nothing to do with the ordinary Shannon entropy.

Maybe one could say that finite measurement resolution implies automatically conceptualization and rule building. Abstractions are indeed obtained by dropping out the details.

5.5 P-Adic Schrödinger Equation

5.5.1 The emergence of the p-adic infrared cutoff

The experience with the construction of the p-adic counterpart of the standard model shows that p-adic quantum theory involves in practice infrared cutoff length scale in both time and spatial directions. The cutoff length scale comes out purely number theoretically. In the time like direction the cutoff length scale comes out from the exponent of the time ordered integral: p-adic exponent function \(\exp(x) \) does not exist unless the p-adic norm of the argument is smaller than one and this in turn means that \(P(\exp(i \int_0^t V dt)) \) does not exist for too larger values of time argument. A more concrete manner to see this is to consider time dependence for the eigenstates of Hamiltonian: the exponent \(\exp(i Et) \) exists only for \(|Et|_p < 1 \). The necessity of the spatial cutoff length scale is seen by considering concrete examples. For instance, the p-adic counterparts of the harmonic oscillator Gaussian wave functions are defined only in a finite range of the argument. As far as the definition of exponent function is considered one must keep in mind that the formal exponent function does not have the usual periodicity properties. The definition as a p-adic plane wave gives the needed periodicity properties but also in this case the infrared cutoff is necessary.

One should be able to construct also global solutions of the p-adic Schrödinger equation. The concept of p-adic integration constant might make this possible: by multiplying the solution of the Schrödinger equation with a constant depending on a finite number of the pinary digits, one can extend the solution to an arbitrary large region of the space time. What one cannot however avoid is the decomposition of the space time into disjoint quantization volumes.

One of the original motivation to introduce p-adic numbers was to introduce ultraviolet cutoff as a p-adic cutoff but, as the considerations of the second part of the book show, UV divergences are absent in the p-adic case and short distance contributions to the loops are negligibly small so that the mere p-adicization eliminates automatically UV divergences. Rather, it seems that the length scale \(L_p \) serves as an infrared cutoff and, if a length scale resolution rougher than \(L_p \) is used, ordinary real theory should work. Only in the length scales \(L \leq L_p \) should the p-adic field theory and Quantum Mechanics be useful. The applicability of the real QM for length scale resolution \(L \geq L_p \) is in accordance with the fact that the real continuity implies p-adic continuity.
5.5 P-Adic Schrödinger Equation

5.5.2 Formal p-adicization of the Schrödinger equation

The formal p-adic generalization of the Schrödinger equation is of the following general form

\[\theta \frac{d\Psi}{dt} = H \Psi, \]

(5.11)

where \(H \) is in some sense Hermitian operator. If Schrödinger amplitudes are complex values \(\theta \) can be taken to be imaginary unit \(i \). The same identification is possible if \(\Psi \) possesses values in the extension of p-adic allowing square root and the condition \(p \mod 4 = 3 \) or \(p = 2 \) guaranteeing that \(\sqrt{-1} \) does not exist as an ordinary p-adic number, is satisfied. For \(p \mod 4 = 1 \) the situation is more complicated since imaginary unit \(i \) does not in general belong to the generators of the minimal extension allowing a square root. An open problem is whether one could replace \(\theta \) appearing in the quadratic extension and define complex conjugation as the operation \(\theta \rightarrow -\theta \). The analogy with the ordinary quantum mechanics suggests the form

\[H = -\frac{\nabla^2}{2m} + V, \]

(5.12)

for the Hamiltonian in \(p \mod 4 = 3 \) case. In the complex case \(\nabla^2 \) is obtained by replacing the ordinary derivatives with the p-adic derivatives and \(V \) is a p-adically differentiable function of the coordinates typically obtained from a p-analytic function via the canonical identification.

Although the formal p-adicization is possible, it is not at all obvious whether one can get anything physically interesting from the straightforward p-adicization of the Schrödinger equation. The study of the p-adic hydrogen atom shows that formal p-adicization need not have anything to do with physics. For instance, Coulomb potential contains a factor \(1/4\pi \) not existing p-adically, the energy eigenvalues depend on \(\pi \) and the straightforward p-adic counterparts of the exponentially decreasing wave functions are not exponentially decreasing functions p-adically and do not even exist for sufficiently large values of the argument \(r \). It seems that a more realistic manner to define the p-adic Schrödinger equation is as limiting case of the p-adic field theory. Of course, it might also be that p-adic Schrödinger equation does not make sense. A more radical solution of the problems is the allowance of finite-dimensional extensions of p-adic numbers allowing also transcendental numbers.

5.5.3 p-Adic harmonic oscillator

The formal treatment of the p-adic oscillator using oscillator operator formalism is completely analogous to that of the ordinary harmonic oscillator. The only natural inner product is the p-adic valued one. That the treatment is correct is suggested by the fact that it is purely algebraic involving only the p-adic counterpart of the oscillator algebra. The matrix elements of the oscillator operators \(a^\dagger \) and \(a \) involve square roots and they exist provided the minimal extension allowing square roots appears as a coefficient ring of the Hilbert space. If two-dimensional quadratic extension not containing \(\sqrt{p} \) is used occupation number must be restricted to the range \([0, p - 1]\). If the Hilbert space inner product based on non-degenerate p-adic inner product \(Z_0 \) the extension implies a characteristic degeneracy of states with complex amplitudes related to the conjugation \(\sqrt{p} \rightarrow -\sqrt{p} \). 2-adic and p-adic cases differ in radical manner since the dimensions of the extension are 4 for \(p > 2 \) and 8 for \(p = 2 \). Since the representations of the Kac Moody and Super Virasoro algebras are based on oscillator operators this means that there is deep difference between \(p = 2 \) and \(p > 2 \) p-adic conformal field theories.

The p-adic energy eigen values are \(E_n = (n + 1/2)\omega_0 \) and their real counterparts form a quasi-continuous spectrum in the interval \((2, 4)\) for \(p = 2 \) and \((1, p)\) for \(p > 2 \). If \(p \) is very large (of order \(10^{38} \) in TGD applications) the small quantum number limit \(n < p \) gives the quantum number spectrum of the ordinary quantum mechanics. The occupation numbers \(n > p \) have no counterpart in the conventional quantum theory and it seems that the classical theory with a quasi-continuous spectrum but with energy cutoff \(p\omega_0 \) is obtained at the limit of the arbitrarily large occupation
numbers. The limit \(p \to \infty \) gives essentially the classical theory with no upper bound for the energy.

The results suggest the idea that p-adic QM might be somewhere halfway between ordinary QM and classical mechanics. This need not however be the case as the study of the p-adic thermodynamics suggests. P-Adic thermodynamics allows a low temperature phase \(\exp(E_n/T_k) \equiv p^{n/T_k} \). \(T_k = 1/k \), with quantized value of temperature. In this phase the probabilities for the energy eigenstates \(E_n, n = \sum_k n_k p^k \) are extremely small except for the smallest values of \(n \) so that low temperature thermodynamics does not allow the effective energy continuum. One might argue that situation changes in the high temperature phase. The problem is that p-adic thermodynamics for the harmonic oscillator allows only formally high temperature phase \(T = t_0 \omega_0/p^k, k = 1, 2, \ldots \). \(|t_0|=1\). The reason is that Boltzmann weights \(\exp(-E_n/T) = \exp(n p^k/t_0) \) have p-adic norm equal to 1 so that the sum of probabilities giving free energy converges only formally. If one accepts the formal definition of the free energy as \(\exp(F) \equiv 1/(1 - \exp(-E_0/T)) \) then the real counterpart of the energy spectrum indeed becomes continuum also in the thermodynamic sense.

Consider next what a more concrete treatment using Schrödinger equation gives. The p-adic counterpart of the Schrödinger equation is formally the same as the ordinary Schrödinger equation. \(\Psi \) is assumed to have values in a minimal extension of p-adic numbers allowing square root and possessing imaginary unit so that the condition \(p \mod 4 = 3 \) or \(p = 2, 3 \) must hold true. For the energy momentum eigenstates the equation reduces to

\[
(-\frac{d^2}{dy^2} + y^2) \Psi = 2e \Psi ,
\]
where the dimensionless variables \(y = \sqrt{\omega} x \) and \(e = \frac{E}{\hbar} \) have been introduced. This transformation makes sense provided \(\omega \) possesses p-adic square root.

The solution ansatz to this equation can be written in the general form \(\Psi = \exp(-y^2/2) H_{n-1/2}(y) \), where \(H \) is the p-adic counterpart of a Hermite polynomial. The first thing to notice is that vacuum wave function does not converge in a p-adic sense for all values of \(y \). A typical term in series is of the form \(X_n = \frac{y^n}{2^n n!} \). In ordinary situation the factors, in particular \(n! \), in the numerator imply convergence but in present case the situation is exactly the opposite.

In 2-adic case both the factor 2\(^n\) and the factor \(n! \) in the denominator cause troubles whereas for \(p > 2 \) the p-adic norm of \(2^n \) is equal to one. \(n! \) gives at worst the power \(2^{n-1} \) to the 2-adic norm. Therefore the 2-adic norm of \(X_n \) behaves as \(N(X_n) \simeq |y|_2 2^n 2^{n-1} \). The convergence is therefore achieved for \(|y|_2 \leq 1/4 \) only. For \(p > 2 \) the convergence is achieved for \(|y|_p \leq 1/p \). One can continue the oscillator Gaussian to a globally defined function of \(y \) by observing that the scaling \(y \to y/\sqrt{2} \) corresponds to taking a square root of the oscillator Gaussian and this square root exists if minimal quadratic extension allowing square root is used. In the usual situation the function \(H_n(y) \) must be polynomial since otherwise it behaves as \(\exp(y^2) \) and does not converge: this implies the quantization of energy also now.

The inner product, which should orthogonalize the states is the p-adic valued inner product based on the p-adic generalization of the definite integral. The generalizations of the analytic formulas encountered in the real case should hold true also now. The guess motivated by the formal treatment is that p-adic energies are quantized according to the usual formula and classical energies form a continuum below the upper bound \(E_R \leq 4 \) in 2-adic case and \(E_R \leq p \) in p-adic case. In fact, the mere requirement \(|e|_p \leq 1 \) implies that energy is quantized according to the formula \(e = n + 1/2 \) in p-adic case.

5.5.4 p-Adic fractality in the temporal domain

The assumption that p-adic physics gives faithful cognitive representation of the real physics leads to highly nontrivial predictions, the most important prediction being p-adic fractality with long range temporal correlations and microtemporal chaos.

In p-adic context the diagonalization of the Hamiltonian for N-dimensional state space in general requires N-dimensional algebraic extension of p-adic numbers even when the matrix elements of the Hamiltonian are complex rational numbers. TGD as a generalized number theory vision allows all algebraic extensions of p-adic numbers so that this is not a problem. The necessity to decompose p-adic Hamiltonian to a complex rational free part and p-adically small interaction part could
provide the fundamental reason for why Hamiltonians have the characteristic decomposition into free and interaction parts. Of course, it might be that Hamiltonian formalism does not make sense in the p-adic context and should be replaced with the approach based on Lagrangian formalism: at least in case of p-adic QFT limit of TGD this approach seems to be more promising. One could also argue that the very fact that p-adic physics provides a cognitive representations of TGD based physics gives a valuable guide to the real physics itself, and that one should try to identify the constraints on real physics from the requirement that its p-adic counterpart exists. The following discussion is motivated by this kind of attitude.

The emergence of various dynamical time scales is a very general phenomenon. For instance, it seems that strong and weak interactions correspond to different time scales in well defined sense and that it is a good approximation to neglect strong interaction in weak time scales and vice versa. p-Adic framework gives hopes of finding a more precise formulation for this heuristics using number theoretical ideas. The basic observation is that the time ordered exponential of a given interaction gives hopes of finding a more precise formulation for this heuristics using number theoretical ideas. The basic observation is that the time ordered exponential of a given interaction Hamiltonian exists only over a finite time interval of length $T_p(n) = p^n L_p$. This suggests that one should distinguish between the time developments associated with various p-adic time scales $T_n = p^n L_p/c$: obviously temporal fractality would be in question.

More concretely, the p-adic exponential $exp(iH\Delta t)$ of the free Hamiltonian exists p-adically only if one assumes that Δt is a small rational proportional to a positive power of p: $\Delta t \propto p^n$. Of course, this restriction to the allowed values of Δt might be interpreted as a failure of the cognitive representation rather than a real physical effect. Alternatively, one might argue that the emergence of the p-adic time scales is a real physical effect and that one must define a separate S-matrix for each p-adic time scale $\Delta t \propto p^n$. Thus p-adic S-matrices for time intervals that differ from each other by arbitrarily long real time interval could be essentially identical. This would mean extremely precise fractal long range correlations and chaos in short time scales also at the level of real physics. This is certainly a testable and rather dramatic prediction in sharp contrast with standard physics views. $1/f$ noise could be seen as one manifestation of these long range correlations.

What would distinguish between different times scales would be different decomposition of the Hamiltonian to free and interaction parts to achieve interaction part which is p-adically small in the time scale involved. For instance, it could be possible to understand color confinement in this manner: in quark gluon plasma phase below the length scale L_p many quark states without any constraints on color are the natural state basis whereas above the length scale L_p physical states must be color singlets since otherwise time evolution operator does not exist.

In case of the cognitive representations of the external world canonical identification maps long external time and length scales to short internal time and length scales and vice versa. Thus p-adic fractality of the cognitive dynamics induces at the level of cognitive representation order in short length and time scales and chaos in long length and time scales: this is of course natural since sensory information comes mainly from the nearby spatiotemporal regions of the system. For self-representations there is chaos in short time scales and fractal long range correlations (so that our temptation to see our life as a coherent temporal pattern would not be self deception!). This kind of fractality is of course absolutely essential in order to understand bio-systems as intentional systems able to plan their future behavior. This prediction is about behavioral patterns of cognitive systems and also testable.

One can get a more quantitative grasp on this idea by studying the time development operator associated with a diagonalizable Hamiltonian. If the eigenvalues E_n of the diagonalized Hamiltonian have p-adic norms $|E_n|_p \leq p^{-m}$, the time evolution determined by this Hamiltonian is defined at most over a time interval of length norm $T_p(m) = p^{m-1} L_p$ since for time intervals longer than this the eigenvalues $exp(iE_n t)$ or $exp(iHt)$ do not exists as a p-adic numbers for all energy eigenstates. Thus one must restrict the time evolution to time scale $t \leq p^{m-1} L_p$: this is consistent with a p-adic hierarchy of interaction time scales.

An alternative approach is based on the requirement that the complex phase factors $exp(iET)$ for the eigenstates of the diagonal part of the Hamiltonian are complex rational phases forming a multiplicative group. This means that one can map the phase factors $exp(iET)$ directly to their p-adic counterparts as complex rational numbers. With suitable constraints on the energy spectrum this makes sense if the interaction time T is quantized so that it is proportional to a power of p. The decomposition of the Hamiltonian to free and interacting parts could be done in such a manner that the exponential of Hamiltonian decomposes to a product of diagonal part

5.5 P-Adic Schrödinger Equation

The p-adic Schrödinger equation

$\exp(iET)$

provides a fundamental reason for why Hamiltonians have the characteristic decomposition into free and interaction parts. Of course, it might be that Hamiltonian formalism does not make sense in the p-adic context and should be replaced with the approach based on Lagrangian formalism: at least in case of p-adic QFT limit of TGD this approach seems to be more promising. One could also argue that the very fact that p-adic physics provides a cognitive representations of TGD based physics gives a valuable guide to the real physics itself, and that one should try to identify the constraints on real physics from the requirement that its p-adic counterpart exists. The following discussion is motivated by this kind of attitude.

The emergence of various dynamical time scales is a very general phenomenon. For instance, it seems that strong and weak interactions correspond to different time scales in well defined sense and that it is a good approximation to neglect strong interaction in weak time scales and vice versa. p-Adic framework gives hopes of finding a more precise formulation for this heuristics using number theoretical ideas. The basic observation is that the time ordered exponential of a given interaction Hamiltonian exists only over a finite time interval of length $T_p(n) = p^n L_p$. This suggests that one should distinguish between the time developments associated with various p-adic time scales $T_n = p^n L_p/c$: obviously temporal fractality would be in question.

More concretely, the p-adic exponential $\exp(iH\Delta t)$ of the free Hamiltonian exists p-adically only if one assumes that Δt is a small rational proportional to a positive power of p: $\Delta t \propto p^n$. Of course, this restriction to the allowed values of Δt might be interpreted as a failure of the cognitive representation rather than a real physical effect. Alternatively, one might argue that the emergence of the p-adic time scales is a real physical effect and that one must define a separate S-matrix for each p-adic time scale $\Delta t \propto p^n$. Thus p-adic S-matrices for time intervals that differ from each other by arbitrarily long real time interval could be essentially identical. This would mean extremely precise fractal long range correlations and chaos in short time scales also at the level of real physics. This is certainly a testable and rather dramatic prediction in sharp contrast with standard physics views. $1/f$ noise could be seen as one manifestation of these long range correlations.

What would distinguish between different times scales would be different decomposition of the Hamiltonian to free and interaction parts to achieve interaction part which is p-adically small in the time scale involved. For instance, it could be possible to understand color confinement in this manner: in quark gluon plasma phase below the length scale L_p many quark states without any constraints on color are the natural state basis whereas above the length scale L_p physical states must be color singlets since otherwise time evolution operator does not exist.

In case of the cognitive representations of the external world canonical identification maps long external time and length scales to short internal time and length scales and vice versa. Thus p-adic fractality of the cognitive dynamics induces at the level of cognitive representation order in short length and time scales and chaos in long length and time scales: this is of course natural since sensory information comes mainly from the nearby spatiotemporal regions of the system. For self-representations there is chaos in short time scales and fractal long range correlations (so that our temptation to see our life as a coherent temporal pattern would not be self deception!). This kind of fractality is of course absolutely essential in order to understand bio-systems as intentional systems able to plan their future behavior. This prediction is about behavioral patterns of cognitive systems and also testable.

One can get a more quantitative grasp on this idea by studying the time development operator associated with a diagonalizable Hamiltonian. If the eigenvalues E_n of the diagonalized Hamiltonian have p-adic norms $|E_n|_p \leq p^{-m}$, the time evolution determined by this Hamiltonian is defined at most over a time interval of length norm $T_p(m) = p^{m-1} L_p$ since for time intervals longer than this the eigenvalues $\exp(iE_n t)$ or $\exp(iHt)$ do not exists as a p-adic numbers for all energy eigenstates. Thus one must restrict the time evolution to time scale $t \leq p^{m-1} L_p$: this is consistent with a p-adic hierarchy of interaction time scales.

An alternative approach is based on the requirement that the complex phase factors $\exp(iET)$ for the eigenstates of the diagonal part of the Hamiltonian are complex rational phases forming a multiplicative group. This means that one can map the phase factors $\exp(iET)$ directly to their p-adic counterparts as complex rational numbers. With suitable constraints on the energy spectrum this makes sense if the interaction time T is quantized so that it is proportional to a power of p. The decomposition of the Hamiltonian to free and interacting parts could be done in such a manner that the exponential of Hamiltonian decomposes to a product of diagonal part
representable as complex rational phases and interaction part which is of higher order in p so that ordinary exponential exists for sufficiently small values of interaction time. This decomposition depends on the p-adic time scale.

5.5.5 How to define time ordered products?

In perturbation theory one must deal with the p-adic counterpart of the time ordered exponential $\prod_n P\exp \left[\int_0^1 H_m(n)dt \right]$ appearing in the definition of the time development operator. In the case of a non-diagonal, time dependent interaction Hamiltonian the very definition of the p-adic counterpart of the time ordered integral is far from obvious since p-adic numbers do not allow natural ordering. Perhaps the simplest possibility is based on Fourier analysis based on the use of Pythagorean phases. This automatically involves the introduction of a time resolution $\Delta t = q = m/n$ and discretization of the time coordinate. Depending on the p-adic norm of Δt one obtains a hierarchy of S-matrices corresponding to different p-adic fractalities. Time ordering would be naturally induced from the ordering of ordinary integers since only the integer multiples of Δt are involved in the discretized version of integral defined by the inner product for the Pythagorean plane waves. The requirement that all time values have same p-adic norm implies $T = n\Delta t$, $n = 0, ..., p - 1$. If one assumes that long range fractal temporal order is present one can also allow time intervals $T = n\delta t + mp^k$ which correspond to arbitrarily long real time intervals.

5.5.6 p-Adic particle stability is not equivalent with real stability

It is natural to require that single hadron states are eigenstates for that part of the total Hamiltonian which consists of the kinetic part of the Hamiltonian. If this the case, one can require that the effect of $\exp(iH_0t)$ is just a multiplication by the factor $\exp(iEt)$. The fact that particles are not stable against decay to many-particle states suggests that E must be complex. Generalizing the construction of the p-adic plane waves one could define this prefactor for all values of time even in this case. One can however criticize this approach: the introduction of the decay width as imaginary part of E is is category error since decay width characterizes the statistical aspects of the dynamics associated with quantum jumps rather than the dynamics of the Schrödinger equation.

p-Adic unitarity concept suggests a more elegant description. The truncated S-matrix describing the transitions $H_p \rightarrow H_p$ is unitary despite the fact that the transitions between different sectors are possible. This makes sense because the total p-adic transition probability from H_p to H_q, $q \neq p$, vanishes by generalized unitarity conditions. Generalizing, the p-adic representations of elementary particles and even hadrons would p-adically stable in the sense that the total p-adic decay probability would vanishes for them. One could also say that in absence of monitoring p-adic cognitive representation of particle would be stable. This picture is consistent with the notion of p-adic cohomology reducing unitarity conditions for S-matrix $S = 1 + iT$ to the conditions $T = T^\dagger$ and $T^2 = 0$. Of course, it would apply only at the level of cognitive physics.

6 Generalization Of The Notion Of Configuration Space

The number theoretic variants of Shannon entropy make sense for rational and even algebraic entanglement probabilities in finite-dimensional algebraic extensions of rationals and can have negative values so that negentropic entanglement (see Fig. http://tgdtheory.fi/appfigures/cat.jpg or Fig. ?? in the appendix of this book) becomes possible. This leads to the vision that life resides in the intersection of real and p-adic worlds for which partonic 2-surfaces- the basic geometric objects- allow a mathematical definition making sense both in real and p-adic sense in preferred coordinates dictated to a high degree by imbedding space symmetries. Rational functions with rational or algebraic coefficients provide a basic example of this kind of functions as also algebraic functions. This vision together with Negentropy Maximization Principle leads to an overall view about how the standard physics picture must be modified in TGD framework (see the next chapter [K7]).

The identification of life as something in the intersection means that there should be also physics outside it. In the real context this poses no problems of principle. But should one allow
the continuation of the coefficients of rational functions to p-adic integers infinite as real integers? This seems to raise formidable looking challenges.

1. One should be able to formulate the geometry of the world of classical worlds (WCW) in p-adic sense and also construct p-adic counterparts for the integration over WCW. Since no physically acceptable p-adic variant of definite integral does exists, algebraic continuation seems to be the only possible manner to meet this challenge.

2. One must construct the p-adic counterparts of Kähler function or of its exponent (or both), Kähler metric and Kähler form at the level of WCW.

3. Kähler function identified as Kähler action for preferred extremal and defined as integral does not make sense as such in p-adic context and the only manner to define the p-adic variant of Kähler function is by algebraic continuation from the real sector through the intersection of real and p-adic worlds.

6.1 Is Algebraic Continuation Between Real And P-Adic Worlds Possible?

It seems that algebraic continuation is the only reasonable manner to tackle these challenges. The following considerations suggests that there are some hopes.

1. Recall that the basic geometric objects can be identified either as light-like 3-surfaces connecting the boundaries of causal diamond (intersection of future and past directed light-cones) or as space-like 3-surfaces at the boundaries of CD. The condition that the identifications are equivalent implies effective 2-dimensionality: the partonic 2-surfaces at the boundaries of causal diamonds (CDs) together with the distribution of four-dimensional tangent planes of space-time surface at the points of the partonic surface, are the basic geometric objects. The tangent space distribution codes for various quantum numbers such as four-momentum so that also these must be rational valued in the common sector. In the following I will just speak about partonic 2-surfaces. It is this space-time 2-surfaces for a given CD, which should be geometrized. 2-dimensionality obviously suggests a connection with algebraic geometry.

2. Number theoretic vision [K14] leads to the conclusion that the space-time sheets are quaternionic in the sense that the Kähler-Dirac gamma matrices assignable to the Kähler action in their octonionic representations span quaternionic (co-quaternionic) and thus associative (co-associative) subspace of complexified octonions at each point of the space-time surface. Quaternionicity would be realized in Minkowskian regions and co-quaternionicity in the space-like regions defining geometrization of Feynman diagrams. This notion is independent of the number field so that the notion of p-adic space-time sheet seems to make sense. Note that also the field equations and criticality condition for the preferred extremals [K18] make sense p-adically as purely algebraic conditions.

3. The representability of WCW as a union of symmetric spaces means an enormous simplification since everything reduces to a single point, most naturally the maximum of Kähler function for given values of zero modes. If this maximum is always an algebraic surface and if the Kähler function or its exponent for it is algebraic number (there is infinity of tunings of zero modes guaranteeing this), the maxima make sense also in suitable algebraic extensions of p-adic numbers. The maxima would obviously define the intersection of real and p-adic worlds.

One might in fact argue that this is as it must be. What is cognitively representable is in the intersection of realities and p-adicities and mathematician can cognitively represent only these maxima and do perturbation theory around them and hope for a complete integrability.

4. What comes naturally in mind is that only p-adically small deformations of the partonic 2-surfaces in the intersections of the p-adic and real worlds are allowed at the p-adic side. If the exponent of Kähler function exists in some algebraic extension at the common point, its small perturbations can be expanded in powers of p as a functional of the coefficients of rational functions extended to p-adic numbers. Symmetric space structure of WCW raises
the hope that TGD is a completely integrable theory in the sense that the functional integral reduces to the exponent of Kähler action due to the cancellation of metric and Gaussian determinants the n-point functions. One would have effectively free field theory. If this is the case the functional integral would make sense also in p-adic context as algebraic continuation.

Consider now in more detail what the algebraic continuation could mean.

1. Kähler function is not uniquely defined since one can add to it a real part of a holomorphic function of WCW complex coordinates (associated with quantum fluctuating degrees of freedom) without affecting Kähler metric. By a suitable choice of this function algebraicity could be guaranteed for any partonic 2-surface. This symmetry is however much like gauge invariance, which suggests that functional integral expressions for n-point functions involving also normalization factors do not depend on the exponent of Kähler function at maximum. In the perturbative approach to quantum field theory the exponents indeed cancel from n-point functions. This would suggest that the algebraicity of Kähler function is only needed. One should be however be very cautious. The Kähler action for CP_2 type vacuum extremals has a deep meaning in TGD and would have interpretation in terms of a non-perturbative effect. If one allows the introduction of a finite-dimensional non-algebraic extension involving powers of some root of $e (e^p$ exists p-adically) both the exponent of Kähler function and Kähler function exist p-adically if Kähler function is a rational number.

2. WCW Kähler metric can be defined in terms of second partial derivatives of the exponent of Kähler function and is algebraic if Kähler function or its exponent are algebraic functions of the preferred WCW coordinates defined by WCW symmetries. The tangent space distribution at X^2 codes information about quantum numbers - in particular four-momenta - which define a measurement interaction terms in Kähler action and by supersymmetry also in Kähler-Dirac action [KTS]: by analogy with thermodynamics these terms are simply Lagrangian multiplier terms equating classical conserved charges of space-time surfaces in the quantum superposition with the quantal counterparts. By holography Kähler function or its exponent is expressible in terms of the data associated with X^2 and its tangent space and should be algebraic function of these data.

3. If Kähler function or its exponent is rational function of the parameters charactering partonic 2-surfaces, the continuation to the p-adic sectors at rational points is in principle possible. If Kähler function is proportional to a positive power of p its exponent exists automatically in p-adic context. For Kähler function this would mean that given partonic 2-surface would correspond to a finite number of primes only. The continuation of the exponent of Kähler function is not however very useful since WCW integral cannot be defined except by algebraic continuation. Exponent function behaves also completely differently in p-adic context than in real context (its p-adic norm equals always to one for instance). p-Adic thermodynamics would in turn suggest that the exponent function should be replaced by a power of p since it has desired convergence properties so that Kähler function divided by $\log(p)$ should be rational (allowing roots of p in the algebraic extension).

4. The perturbative approach relies on n-point functions involving WCW Hamiltonians and their super-counterparts at the intersection. One would obtain algebraic expressions for the n-point functions involving also contravariant metric of WCW as a propagator. If one always works in effectively finite-dimensional space (coefficients of polynomials with finite degree in the definition of partonic 2-surfaces involved and rational valued momenta) one has finite-dimensional space of partonic 2-surfaces, and the propagator is an algebraic object as the inverse of the Kähler metric defined by the second derivatives of the Kähler function if K or is exponent is algebraic function. p-Adicization also means the continuation of the momenta to the p-adic sector.

5. WCW Hamiltonians and their super-counterparts are defined as integrals over partonic 2-surface and it is not at all obvious that the result is algebraic number even if these quantities themselves are rational functions even in the partonic 2-surfaces themselves are rational surfaces. The condition for being in the intersection should therefore include also the condition about the algebraic character of these objects.
6. One could of course wonder whether coupling constant renormalization involving logarithmic functions of mass scales and powers of \(\pi \) in QFT context could spoil this nice picture and force to introduce infinite-dimensional transcendental extensions of p-adic numbers. There is indeed the danger that symmetric space property is not enough to avoid infinite perturbation series coming from the expansions of WCW Hamiltonians and their super counterparts. This kind of series would obviously spoil the algebraic character. There are however hopes. First of all, finite measurement resolution is one of the key aspects of quantum TGD and could boil down to a cutoff for the perturbation series. Secondly, the key idea of quantum criticality is that for the maxima of Kähler function the perturbative corrections sum up to zero since they are coded to the Kähler action itself since the scale of induced metric is proportional to the square of \(\hbar \).

If this optimistic picture is correct, the algebraic continuation to p-adic sector would reduce to an algebraic continuation of the expressions for n-point functions and the \(U \)-matrix in real sector to the p-adic sector, and would be almost trivial since only continuation in momenta and WCW coordinates parametrizing partonic 2-surfaces representing maxima of Kähler function would be in question. Everything could be computed in the real sector. A practically oriented theoretician might of course have suggested this from the beginning. It must be added that this vision is the latest one and need not completely consistent with all what is represented in the sequel.

6.2 P-Adic Counterparts Of WCW Hamiltonians

One must continue the \(\delta M_4^\pm \) local \(CP_2 \) Hamiltonians appearing in the integrals defining WCW Hamiltonians to various p-adic sectors. \(CP_2 \) harmonics are homogeneous polynomials with rational coefficients and do not therefore produce any trouble since normalization factors involve only square roots. The p-adicization of \(\delta M_4^\pm \) function basis defining representations of Lorentz group involves more interesting aspects.

6.2.1 p-Adicization of representations of Lorentz group

In the light cone geometry Poincare invariance is strictly speaking broken to Lorentz invariance with respect to the tip of the light cone and at least cosmologically a more natural basis is characterized by the eigenvalues of angular momentum and boost operator in a given direction. The eigenvalue spectrum of the boost operator is continuous without further conditions. One can study these conditions in the realization of the unitary representations of Lorenz group as left translations in the Lorentz group itself by utilizing homogenous functions of four complex variables \(z_1, z_2, z_3, z_4 \) satisfying the constraint \(z_1 z_4 - z_2 z_3 = 1 \) expressing the fact that they correspond to the homogenous coordinates of the Lorentz group defined by that matrix elements of the \(SL(2, \mathbb{C}) \) matrix

\[
\begin{pmatrix}
 z_1 & z_3 \\
 z_2 & z_4
\end{pmatrix}
\]

The function basis consists of

\[
f_{a_1, a_2, a_3, a_4}(z_1, z_2, z_3, z_4) \equiv \frac{z_1^{a_1} z_2^{a_2} z_3^{a_3} z_4^{a_4}}{z_1 z_2 z_3 z_4} ,
\]

\[
a_1 = m_1 + i\alpha , \quad a_2 = m_2 - i\alpha , \\
a_3 = m_3 - i\alpha , \quad a_4 = m_4 + i\alpha , \\
m_1 + m_2 = M , \quad m_3 + m_4 = M .
\]

The action of Lorentz transformation is given by

\[
\begin{pmatrix}
 z_1 & z_3 \\
 z_2 & z_4
\end{pmatrix} \rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix}
 z_1 & z_3 \\
 z_2 & z_4
\end{pmatrix} .
\] (6.1)

and unimodular \((ad - bc = 1)\). Lorentz transformation preserves the imaginary parts \(i\alpha \) of the complex degrees \(d_i = m \pm i\alpha \) of \(z_k^{\pm i\alpha + m_k} \) (as can be seen by using binomial series representations for the transformed coordinates). Also the sums \(m_1 + m_2 = M \) and \(m_3 + m_4 = M \) are Lorentz
invariants. Hence the representation is characterized by the pair \((\alpha, M)\). \(M\) corresponds to the minimum angular momentum for the \(SU(2)\) decomposition of the representation.

The imaginary parts \(i\alpha\) of the complex degrees correspond to the eigen values of Lorentz boost in the direction of the quantization axis of angular momentum. The eigen functions are proportional to the factor

\[
\rho_1^{2\alpha} \rho_2^{-2\alpha} \rho_3^{-2\alpha} \rho_4^{2\alpha} \text{ per,}
\]

\[
\rho_i = \sqrt{\frac{1 - \rho_i^2}{1 - \rho_1^2}}.
\]

Since one can write \(\rho_i^{2\alpha} = e^{i2\log(\rho_i)\alpha}\), these are nothing but the logarithmic plane waves. The value set of \(\alpha \geq 0\) is continuous in the real context.

The requirement that the logarithmic plane waves are continuiable to p-adic number fields and exist p-adically for rational values of \(\rho_i = m/n\), quantizes the values of \(\alpha\). This condition is satisfied if the quantities \(\rho_i^{2\alpha} = e^{i2\log(\rho_i)\alpha}\) exist p-adically for any prime. As shown in [K10], there seems to be no number theoretical obstructions for the simplest hypothesis \(\log(p) = q_1(p)\exp[q_2(p)]/\pi\), with \(q_2(p_1) \neq q_2(p_2)\) for all pairs of primes. The existence of \(p_i^\alpha\) in a finite-dimensional extension would require that \(\alpha_i\) is proportional to \(\pi\) by a coefficient which for a given prime \(p_1\) has sufficiently small p-adic norm so that the exponent can be expanded in powers series.

Obviously p-adicization gives strong quantization conditions. There is also a second possibility. As discussed in the same chapter, the allowance of infinite primes changes the situation. Let \(X = \prod p_i\) be the product of all finite primes. 1 + \(X\) is the simplest infinite prime and the ratio \(Y = X/(1 + X)\) equals to 1 in real sense and has p-adic norm 1/p for all finite primes. If one allows \(\alpha\) to be proportional to a power \(Y\), then the p-adic norm of \(\alpha\) can be so small for all primes that the expansion converges without further conditions. Infinite primes will be discussed later in more detail.

Exactly similar exponents \((p_i^\alpha)\) appear in the partition function decomposition of the Riemann Zeta, and the requirement that these quantities exist in a finite algebraic extension of p-adic numbers for the zeros \(z = 1/2 + iy\) of \(\zeta\) requires that \(e^{i2\log(\rho_i)\alpha}\) is in a finite-dimensional extension involving algebraic numbers and \(e\). One could argue that for the extensions of p-adiacs the zeros of Zeta define a universal spectrum of the eigen values of the Lorentz boost generator. This might have implications in hadron physics, where the so called rapidity distribution correspond to the distributions of the particles with respect to the variable characterizing finite Lorentz boosts.

Although the realization of the using the functions in Lorentz group differs from the discussed one, the conclusion is same also for them, in particular for the representation realized at the boundary of the light cone which is one of the homogenous spaces associated with Lorentz group.

6.2.2 Function basis of \(\delta M_+^4\)

One can consider two function basis for \(\delta M_+^4\) and both function basis allow continuation to p-adic values under similar conditions.

1. **Spherical harmonic basis**

 The first basis consists of functions \(Y_{m,n}^l \times (r_M/r_0)^{n/2+i\rho} \), \(n = -2, -1, 0, \ldots\). For \(n = -2\) these functions define a unitary representation of Lorentz group. The spherical harmonics \(Y_{m,n}^l\) require a finite-dimensional algebraic extension of p-adic numbers. Radial part defines a logarithmic wave \(\exp[i\rho\log(r_M/r_0)]\) and the existence of this for finite-dimensional extension of p-adic numbers for rational values \(\rho\) and \(r_M\) is guaratemd by \(\log(p) = q_1\exp(q_2)/\pi\) ansatz under the conditions already discussed.

2. **Basis consisting of eigen functions of angular momentum and boost**

 Another function basis of \(\delta M_+^4\) defining a non-unitary representation of Lorentz group and of conformal algebra consists of eigen states of rotation generator and Lorentz boost and is given by

 \[
 f_{m,n,k} = e^{im\phi} \frac{\rho^{n-k}}{(1 + \rho^2)^k} \times \left(\frac{r_M}{r_0}\right)^k.
 \]

 \(n = n_1 + in_2\) and \(k = k_1 + ik_2\) are in general complex numbers. The condition
\[n_1 - k_1 \geq 0 \]

is required by regularity at the origin of \(S^2 \). The requirement that the integral over \(S^2 \) defining norm exists (the expression for the differential solid angle is \(d\Omega = \frac{\sin \theta}{4\pi \rho^2} d\rho d\phi \)) implies

\[n_1 < 3k_1 + 2. \]

From the relationship \((\cos(\theta), \sin(\theta)) = (\rho^2 - 1)/(\rho^2 + 1), 2\rho/(\rho^2 + 1) \) one can conclude that for \(n_2 = k_2 = 0 \) the representation functions are proportional to \(f \sin(\theta)^{n-k}(\cos(\theta) - 1)^{n-k} \).

Therefore they have in their decomposition to spherical harmonics only spherical harmonics with angular momentum \(l < 2(n - k) \). This suggests that the condition

\[|m| \leq 2(n - k) \quad (6.3) \]

is satisfied quite generally.

The emergence of the three quantum numbers \((m, n, k)\) can be understood. Light cone boundary can be regarded as a coset space \(SO(3,1)/E^2 \times SO(2) \), where \(E^2 \times SO(2) \) is the group leaving the light like vector defined by a particular point of the light cone invariant. The natural choice of the Cartan group is therefore \(E^2 \times SO(2) \). The three quantum numbers \((m, n, k)\) have interpretation as quantum numbers associated with this Cartan algebra. The representations of the Lorentz group are characterized by half-integer valued parameter \(l_0 = m/2 \) and complex parameter \(l_1 \). Thus \(k_2 \) and \(n_2 \), which are Lorentz invariants, might not be independent parameters, and the simplest option is \(k_2 = n_2 \).

It is interesting to compare the representations in question to the unitary representations of Lorentz group discussed in [A5].

1. The unitary representations discussed in [A5] are characterized by are constructed by deducing the explicit representations for matrix elements of the rotation generators \(J_x, J_y, J_z \) and boost generators \(L_x, L_y, L_z \) by decomposing the representation into series of representations of \(SU(2) \) defining the isotropy subgroup of a time like momentum. Therefore the states are labelled by eigenvalues of \(J_z \). In the recent case the isotropy group is \(E^2 \times SO(2) \) leaving light like point invariant. States are therefore labelled by three different quantum numbers.

2. The representations of [A5] are realized the space of complex valued functions of complex coordinates \(\xi \) and \(\bar{\xi} \) labelling points of complex plane. These functions have complex degrees \(n_+ = m/2 - 1 + l_1 \) with respect to \(\xi \) and \(n_- = -m/2 - 1 + l_1 \) with respect to \(\bar{\xi} \). \(l_0 \) is complex number in the general case but for unitary representations of main series it is given by \(l_1 = i\rho \) and for the representations of supplementary series \(l_1 \) is real and satisfies \(0 < |l_1| < 1 \). The main series representation is derived from a representation space consisting of homogenous functions of variables \(z^0, z^1 \) of degree \(n_+ \) and of \(\bar{z}^0, \bar{z}^1 \) of degrees \(n_- \). One can separate express these functions as product of \((z^1)^{n_+}(\bar{z}^1)^{n_-} \) and a polynomial of \(\xi = z^1/z^2 \) and \(\bar{\xi} \) with degrees \(n_+ \) and \(n_- \). Unitarity reduces to the requirement that the integration measure of complex plane is invariant under the Lorentz transformations acting as Moebius transformations of the complex plane. Unitarity implies \(l_1 = -1 + i\rho \).

3. For the representations at \(\delta M_{\tau}^4 \) unitarity reduces to the requirement that the integration measure of \(r_M^2 d\Omega dr_M = \delta M_{\tau}^2 \) remains invariant under Lorentz transformations. The action of Lorentz transformation on the complex coordinates of \(S^2 \) induces a conformal scaling which can be compensated by an \(S^2 \) local radial scaling. At least formally the function space of \(\delta M_{\tau}^4 \) thus defines a unitary representation. For the function basis \(f_{mnk} \) \(k = -1 + i\rho \) defines a candidate for a unitary representation since the logarithmic waves in the radial coordinate are completely analogous to plane waves. This condition would be completely analogous to the vanishing of conformal weight for the physical states of super conformal representations. The problem is that for \(k_1 = -1 \) guaranteeing square integrability in \(S^2 \) implies \(-2 < n_1 < -2 \) so that unitarity in this sense is not possible.

There is no deep reason against non-unitary representations and symmetric space structure indeed requires that \(k_1 \) is half-integer valued. First of all, WCW spinor fields are analogous to
ordinary spinor fields in M^4, which also define non-unitary representations of Lorentz group. Secondly, if 3-surfaces at the light cone boundary are finite-sized, the integrals defined by f_{mnk} over 3-surfaces Y^3 are always well-defined. Thirdly, the continuous spectrum of k_2 could be transformed to a discrete spectrum when k_1 becomes half-integer valued.

6.2.3 Logarithmic waves and possible connections with number theory and fundamental physics

Logarithmic plane waves labelled by eigenvalues of the scaling momenta appear also in the definition of the Riemann Zeta defined as $\zeta(z) = \sum_n n^{-z}$, n positive integer. Riemann Zeta is expressible as a product of partition function factors $1/(1+p^{-x-iy})$, p prime and the powers n^{-x-iy} appear as summands in Riemann Zeta. Riemann hypothesis states that the non-trivial zeros of ζ reside at the line $x = 1/2$. There are indeed intriguing connections. Log(p) corresponds now to the $\log(r_M/r_{\text{min}})$ and $-x-iy$ corresponds to the scaling momentum $k_1 + ik_2$ so that the special physical role of the conformal weights $k_1 = 1/2 + iy$ corresponds to Riemann hypothesis. The appearance of powers of p in the definition of the Riemann Zeta corresponds to p-adic length scale hypothesis, $(r_M/r_0 = p$ in ζ and corresponds to a secondary p-adic length scale).

The assumption that the logarithmic plane waves are algebraically continuable from the rational points $r_M/r_{\text{min}} = m/n$ to p-adic plane waves using a finite-dimensional extension of p-adic numbers leads to the $\log(p) = q_1 \exp(q_2)/\pi$ ansatz. Similar hypothesis is inspired by the hypothesis that Riemann Zeta is a universal function existing simultaneously in all number fields. This inspires several interesting observations.

1. p-adic length scale hypothesis stating that $r_{\text{max}}/r_{\text{min}} = p^n$ is consistent with the number theoretical universality of the logarithmic waves. The universality of Riemann Zeta inspires the hypothesis that the zeros of Riemann Zeta correspond to rational numbers and to preferred values $k_1 + ik_2$ of the scaling momenta appearing in the logarithmic plane waves. In the recent context the most general hypothesis would be that the allowed momenta k_2 correspond to the linear combinations of the zeros of Riemann Zeta with integer coefficients.

2. Hardmuth Mueller [B1] claims on basis of his observations that gravitational interaction involves logarithmic radial waves for which the nodes come as $r/r_{\text{min}} = e^n$. This is true if the scaling momenta k_2 satisfy the condition $k_2/\pi \in \mathbb{Z}$. Perhaps Mueller’s logarithmic waves really could be seen as a direct signature of the fundamental symmetries of WCW. In particular, this would require $r_{\text{max}}/r_{\text{min}} = e^m$.

3. The special role of Golden Mean $\Phi = (1 + \sqrt{5})/2$ in Nature could be understood if also $\log(\Phi) = q_1 \exp(q_2)/\pi$ or more general ansatz holds true. This would imply that the nodes of logarithmic waves can correspond also to the powers of Φ.

One could of course argue that the number theory at the moment of Big Bang cannot have strong effects on what is observed in laboratory. This might be the case. On the other hand, the non-determinism of the Kähler action however strongly suggests that the construction of the WCW geometry involves all possible light like 3-surfaces of the future light cone so that logarithmic waves would appear in all length scales. Be as it may, it would be amazing if such an abstract mathematical structure as WCW geometry would have direct implications to cosmology and to the physics of living systems.

6.3 WCW Integration

Assuming that U-matrix exists simultaneously in all number fields (allowing finite-dimensional extensions of p-adics), the immediate question is whether also the construction procedure of the real S-matrix could have a p-adic counterpart for each p, and whether the mere requirement that this is the case could provide non-trivial intuitions about the general structure of the theory. Not only the configuration space but also Kähler function and its exponent, Kähler metric, and WCW functional integral should have p-adic variants. In the following this challenge is discussed in a rather optimistic number theoretic mood using the ideas stimulated by the connections between number theory and cognition.
6.3 WCW Integration

6.3.1 Does symmetric space structure allow algebraization of WCW integration?

The basic structure is the rational WCW whose points have rational valued coordinates. This space is common to both real and p-adic variants of WCW. Therefore the construction of the generalized WCW as such is not a problem.

The assumption that WCW decomposes into a union of symmetric spaces labeled by zero modes means that the left invariant metric for each space in the union is dictated by isometries. It should be possible to interpret the matrix elements of WCW metric in the basis of properly normalized isometry currents as p-adic numbers in some finite extension of p-adic numbers allowing perhaps also some transcendentals. Note that the Kähler function is proportional to the inverse of Kähler coupling strength α_K which depends on p-adic prime p, and does seem to be a rational number if one takes seriously various arguments leading to the hypothesis $1/\alpha_K = k \log(K^2)$, $K^2 = p \times 2 \times 3 \times 5 \times \ldots \times 23$, and $k = \pi/4$ or $k = 137/107$ for the two alternative options discussed in [K10]. If so then the most general transcendentals required and allowed in the extensions used correspond to roots of polynomials with coefficients in an extension of rationals by e and algebraic numbers. As already discussed, infinite primes might provide the ultimate solution to the problem of continuation.

The continuation of the exponent of Kähler function and of WCW spinor fields to p-adic sectors would require some selection of a subset of points of the rational WCW. On the other hand, the minimum requirement is that it is possible to define WCW integration in the p-adic context. The only manner to achieve this is by defining WCW integration purely algebraically by perturbative expansion. For free field theory Gaussian integrals are in question and one can calculate them trivially. The Gaussian can be regarded as a Kähler function of a flat Kähler manifold having maximal translational and rotational symmetries. Physically infinite number of harmonic oscillators are in question. The origin of the symmetric space is preferred point as far as Kähler function is considered: metric itself is invariant under isometries.

6.3.2 Algebraization of WCW functional integral

WCW is a union of infinite-dimensional symmetric spaces labelled by zero modes. One can hope that the functional integral could be performed perturbatively around the maxima of the Kähler function. In the case of CP^2 Kähler function has only single maximum and is a monotonically decreasing function of the radial variable r of CP^2 and thus defines a Morse function. This suggests that a similar situation is true for all symmetric spaces and this might indeed be the case. The point is that the presence of several maxima implies also saddle points at which the matrix defined by the second derivatives of the Kähler function is not positive definite. If the derivatives of type $\partial K/\partial L$ and $\partial^2 K/\partial L^2$ vanish at the saddle point (this is the crucial assumption) in some complex coordinates holomorphically related to those in which the same holds true at maximum, the Kähler metric is not positive definite at this point. On the other hand, by symmetric space property the metric should be isometric with the positive define metric at maxima so that a contradiction results.

If this argument holds true, for given values of zero modes Kähler function has only one maximum, whose value depends on the values zero modes. Staying in the optimistic mood, one could go on to guess that the Duistermaat-Heckman theorem [A4] generalizes and the functional integral is simply the exponent of the Kähler function at the maximum (due to the compensation of Gaussian and metric determinants). Even more, one could bravely guess that for configuration space spinor fields belonging to the representations of symmetries the inner products reduces to the generalization of correlation functions of Gaussian free field theory. Each WCW spinor field would define a vertex from which lines representing the propagators defined by the contravariant WCW metric in isometry basis emanate.

If this optimistic line of reasoning makes sense, the definition of the p-adic WCW integral reduces to a purely algebraic one. What is needed is that the contravariant Kähler metric fixed by the symmetric space-property exists and that the exponent of the maximum of the Kähler function exists for rational values of zero modes or subset of them if finite-dimensional algebraic extension is allowed. This would give could hopes that the U-matrix elements resulting from the WCW integrals would exist also in the p-adic sense.
6.3.3 Is the exponential of the Kähler function rational function?

The simplest possibility that one can imagine are that the exponent e^{2K} of Kähler function appearing in WCW inner products is a rational or at most a simple algebraic function existing in a finite-dimensional algebraic extension of p-adic numbers.

The exponent of the CP_2 Kähler function is a rational function of the standard complex coordinates and thus rational-valued for all rational values of complex CP_2 coordinates. Therefore one is lead to ask whether this property holds true quite generally for symmetric spaces and even in the infinite-dimensional context. If so, then the continuation of the vacuum functional to the p-adic sectors of the WCW would be possible in the entire WCW. Also the spherical harmonics of CP_2 are rational functions containing square roots in normalization constants. That also WCW spinor fields could use rational functions containing square roots as normalization constant as basic building blocks would conform with general number theoretical ideas as well as with the general features of harmonic oscillator wave functions.

The most obvious manner to realize this idea relies on the restriction of light-like 3-surfaces X^3_l to those representable in terms of polynomials or rational functions with rational or at most algebraic coefficients serving as natural preferred coordinates of the WCW. This of course requires identification of preferred coordinates also for H. This would lead to a hierarchy of inclusions for sub-WCWs induced by algebraic extensions of rationals.

The presence of cutoffs for the degrees of polynomials involved makes the situation finite-dimensional and give rise to a hierarchy of inclusions also now. These inclusion hierarchies would relate naturally also to hierarchies of inclusions for hyperfinite factors of type II_1 since the spinor spaces associated with these finite-D versions of WCW would be finite-dimensional. Hyper-finiteness means that this kind of cutoff can give arbitrarily precise approximate representation of the infinite-D situation.

This vision is supported by the recent understanding related to the definition of exponent of Kähler function as Dirac determinant [KIS]. The number of eigenvalues involved is necessarily finite, and if the eigenvalues of D_{C-S} are algebraic numbers for 3-surfaces X^3_l for which the coefficients characterizing the rational functions defining X^3_l are algebraic numbers, the exponent of Kähler function is algebraic number.

The general number theoretical conjectures implied by p-adic physics and physics of cognition support also this conjecture. Although one must take these arguments with a big grain of salt, the general idea might be correct. Also the elements of the configuration space metric would be rational functions as is clear from the fact that one can express the second derivatives of the Kähler function in terms of $F = exp(K)$ as

$$\partial_K \partial_T K = \frac{\partial_K \partial_T F}{F} - \frac{\partial_K F \partial_T F}{F^2}.$$

6.3.4 Coupling constant evolution and number theory

The coupling constant evolution associated with the Kähler action might be at least partially understood number-theoretically.

A given space-time sheet is connected by wormhole contacts to the larger space-time sheets. The induced metric within the wormhole contact has an Euclidian signature so that the wormhole contact is surrounded by elementary particle horizons at which the metric is degenerate so that the horizons are metrically effectively 2-dimensional giving rise to quaternion conformal invariance. Because of the causal horizon it would seem that Kähler coupling strength can depend on the space-time sheet via the p-adic prime characterizing it. If so the exponent of the Kähler function would be simply the product of the exponents for the space-time sheets and one would have finite-dimensional extension as required.

If the exponent of the Kähler function is rational function, also the components of the contravariant Kähler metric are rational functions. This would suggest that one function of the coupling constant evolution is to keep the exponent rational.

From the point of view of p-adicization the ideal situation results if Kähler coupling strength is invariant under the p-adic coupling constant evolution as I believed originally. For a long time it however seemed that this option cannot be realized since the prediction $G = L_p^2 exp(-2S_K(CP_2))$ for the gravitational coupling constant following from dimensional considerations alone implies that
7. How To Realize The Notion Of Finite Measurement Resolution Mathematically

One of the basic challenges of quantum TGD is to find an elegant realization for the notion of finite measurement resolution. The notion of resolution involves observer in an essential manner and this suggests that cognition is involved. If p-adic physics is indeed physics of cognition, the natural guess is that p-adic physics should provide the primary realization of this notion.

The simplest realization of finite measurement resolution would be just what one would expect it to be except that this realization is most natural in the p-adic context. One can however define this notion also in real context by using canonical identification to map p-adic geometric objects to real ones.

7.1 Does Discretization Define An Analog Of Homology Theory?

Discretization in dimension D in terms of pinary cutoff means division of the manifold to cube-like objects. What suggests itself is homology theory defined by the measurement resolution and by
the fluxes assigned to the induced Kähler form.

1. One can introduce the decomposition of n-D sub-manifold of the imbedding space to n-cubes by \(n-1 \)-planes for which one of the coordinates equals to its pinary cutoff. The construction works in both real and p-adic context. The hyperplanes in turn can be decomposed to \(n-2 \)-cubes by \(n-2 \)-planes assuming that an additional coordinate equals to its pinary cutoff. One can continue this decomposition until one obtains only points as those points for which all coordinates are their own pinary cutoffs. In the case of partonic 2-surfaces these points define in a natural manner the ends of braid strands. Braid strands themselves could correspond to the curves for which two coordinates of a light-like 3-surface are their own pinary cutoffs.

2. The analogy of homology theory defined by the decomposition of the space-time surface to cells of various dimensions is suggestive. In the p-adic context the identification of the boundaries of the regions corresponding to given pinary digits is not possible in purely topological sense since p-adic numbers do not allow well-ordering. One could however identify the boundaries sub-manifolds for which some number of coordinates are equal to their pinary cutoffs or as inverse images of real boundaries. This might allow to formulate homology theory to the p-adic context.

3. The construction is especially interesting for the partonic 2-surfaces. There is hierarchy in the sense that a square like region with given first values of pinary digits decompose to \(p \) square like regions labelled by the value 0, ..., \(p-1 \) of the next pinary digit. The lines defining the boundaries of the 2-D square like regions with fixed pinary digits in a given resolution correspond to the situation in which either coordinate equals to its pinary cutoff. These lines define naturally edges of a graph having as its nodes the points for which pinary cutoff for both coordinates equals to the actual point.

4. I have proposed earlier [K2] what I have called symplectic QFT involving a triangulation of the partonic 2-surface. The fluxes of the induced Kähler form over the triangles of the triangulation and the areas of these triangles define symplectic invariants, which are zero modes in the sense that they do not contribute to the line element of WCW although the WCW metric depends on these zero modes as parameters. The physical interpretation is as non-quantum fluctuating classical variables. The triangulation generalizes in an obvious manner to quadrangulation defined by the pinary digits. This quadrangulation is fixed once internal coordinates and measurement accuracy are fixed. If one can identify physically preferred coordinates - say by requiring that coordinates transform in simple manner under isometries - the quadrangulation is highly unique.

5. For 3-surfaces one obtains a decomposition to cube like regions bounded by regions consisting of square like regions and Kähler magnetic fluxes over the squares define symplectic invariants. Also Kähler Chern-Simons invariant for the 3-cube defines an interesting almost symplectic invariant. 4-surface decomposes in a similar manner to 4-cube like regions and now instanton density for the 4-cube reducing to Chern-Simons term at the boundaries of the 4-cube defines symplectic invariant. For 4-surfaces symplectic invariants reduce to Chern-Simons terms over 3-cubes so that in this sense one would have holography. The resulting structure brings in mind lattice gauge theory and effective 2-dimensionality suggests that partonic 2-surfaces are enough.

The simplest realization of this homology theory in p-adic context could be induced by canonical identification from real homology. The homology of p-adic object would the homology of its canonical image.

1. Ordering of the points is essential in homology theory. In p-adic context canonical identification \(x = \sum x_n p^n \rightarrow \sum x_n p^{-n} \) map to reals induces this ordering and also boundary operation for p-adic homology can be induced. The points of p-adic space would be represented by n-tuples of sequences of pinary digits for n coordinates. p-Adic numbers decompose to disconnected sets characterized by the norm \(p^{-n} \) of points in given set. Canonical identification allows to glue these sets together by inducing real topology. The points \(p^n \) and \((p-1)(1+p+p^2+...)//p^{n+1}\) having p-adic norms \(p^{-n} \) and \(p^{-n-1} \) are mapped to
the same real point p^{-n} under canonical identification and therefore the points p^n and $(p - 1)(1 + p + p^2 + \ldots)p^{n+1}$ can be said to define the endpoints of a continuous interval in the induced topology although they have different p-adic norms. Canonical identification induces real homology to the p-adic realm. This suggests that one should include canonical identification to the boundary operation so that boundary operation would be map from p-adicity to reality.

2. Interior points of p-adic simplices would be p-adic points not equal to their pinary cutoffs defined by the dropping of the pinary digits corresponding p^n, $n > N$. At the boundaries of simplices at least one coordinate would have vanishing pinary digits for p^n, $n > N$. The analogs of $n - 1$ simplices would be the p-adic points sets for which one of the coordinates would have vanishing pinary digits for p^n, $n > N$. $n - k$-simplices would correspond to points sets for which k coordinates satisfy this condition. The formal sums and differences of these sets are assumed to make sense and there is natural grading.

3. Could one identify the end points of braid strands in some natural manner in this cohomology? Points with $n \leq N$ pinary digits are closed elements of the cohomology and homologically equivalent with each other if the canonical image of the p-adic geometric object is connected so that there is no manner to identify the ends of braid strands as some special points unless the zeroth homology is non-trivial. In [K20] it was proposed that strand ends correspond to singular points for a covering of sphere or more general Riemann surface. At the singular point the branches of the covering would co-incide. The obvious guess is that the singular points are associated with the covering characterized by the value of Planck constant. As a matter fact, the original assumption was that all points of the partonic 2-surface are singular in this sense. It would be however enough to make this assumption for the ends of braid strands only. The orbits of braid strands and string world sheet having braid strands as its boundaries would be the singular loci of the covering.

7.2 Does The Notion Of Manifold In Finite Measurement Resolution Make Sense?

A modification of the notion of manifold taking into account finite measurement resolution might be useful for the purposes of TGD.

1. The chart pages of the manifold would be characterized by a finite measurement resolution and effectively reduce to discrete point sets. Discretization using a finite pinary cutoff would be the basic notion. Notions like topology, differential structure, complex structure, and metric should be defined only modulo finite measurement resolution. The precise realization of this notion is not quite obvious.

2. Should one assume metric and introduce geodesic coordinates as preferred local coordinates in order to achieve general coordinate invariance? Pinary cutoff would be posed for the geodesic coordinates. Or could one use a subset of geodesic coordinates for $\delta CD \times CP_2$ as preferred coordinates for partonic 2-surfaces? Should one require that isometries leave distances invariant only in the resolution used?

3. A rather natural approach to the notion of manifold is suggested by the p-adic variants of symplectic spaces based on the discretization of angle variables by phases in an algebraic extension of p-adic numbers containing n^{th} root of unity and its powers. One can also assign p-adic continuum to each root of unity [K13]. This approach is natural for compact symmetric Kähler manifolds such as S^2 and CP_2. For instance, CP_2 allows a coordinatization in terms of two pairs (P^k, Q^k) of Darboux coordinates or using two pairs (ξ^k, ξ^k), $k = 1, 2$, of complex coordinates. The magnitudes of complex coordinates would be treated in the manner already described and their phases would be described as roots of unity. In the natural quadrangulation defined by the pinary cutoff for ξ^k and by roots of unity assigned with their phases, Kähler fluxes would be well-defined within measurement resolution. For light-cone boundary metrically equivalent with S^2 similar coordinatization using complex coordinates (z, \bar{z}) is possible. Light-like radial coordinate r would appear only as a parameter in the induced metric and pinary cutoff would apply to it.
7.3 Hierarchy Of Finite Measurement Resolutions And Hierarchy Of P-Adic Normal Lie Groups

The formulation of quantum TGD is almost completely in terms of various symmetry group and it would be highly desirable to formulate the notion of finite measurement resolution in terms of symmetries.

1. In p-adic context any Lie-algebra \(g_G \) with p-adic integers as coefficients has a natural grading based on the p-adic norm of the coefficient just like p-adic numbers have grading in terms of their norm. The sub-algebra \(g_N \) with the norm of coefficients not larger than \(p^{-N} \) is an ideal of the algebra since one has \([g_M, g_N] \subseteq g_{M+N} \): this has of course direct counterpart at the level of p-adic integers. \(g_N \) is a normal sub-algebra in the sense that one has \([g, g_N] \subseteq g_N \). The standard expansion of the adjoint action \(g g_N g^{-1} \) in terms of exponentials and commutators gives that the p-adic Lie group \(G_N = \exp(tpg_N) \), where \(t \) is p-adic integer, is a normal subgroup of \(G = \exp(tpg) \). If indeed so then also \(G/G_N \) is group, and could perhaps be interpreted as a Lie group of symmetries in finite measurement resolution. \(G_N \) in turn would represent the degrees of freedom not visible in the measurement resolution used and would have the role of a gauge group.

2. The notion of finite measurement resolution would have rather elegant and universal representation in terms of various symmetries such as isometries of imbedding space, Kac-Moody symmetries assignable to light-like wormhole throats, symplectic symmetries of \(\delta CD \times CP_2 \), the non-local Yangian symmetry [A1] [B4, B2, B3], and also general coordinate transformations. This representation would have a counterpart in real context via canonical identification \(I \) in the sense that \(A \rightarrow B \) for p-adic geometric objects would correspond to \(I(A) \rightarrow I(B) \) for their images under canonical identification. It is rather remarkable that in purely real context this kind of hierarchy of symmetries modulo finite measurement resolution does not exist. The interpretation would be that finite measurement resolution relates to cognition and therefore to p-adic physics.

3. Matrix group \(G \) contains only elements of form \(g = 1 + O(p^m), m \geq 1 \) and does not therefore involve matrices with elements expressible in terms roots of unity. These can be included by writing the elements of the p-adic Lie-group as products of elements of above mentioned \(G \) with the elements of a discrete group for which the elements are expressible in terms of roots of unity in an algebraic extension of p-adic numbers. For p-adic prime \(p \) \(p \) th roots of unity are natural and suggested strongly by quantum arithmetics [K19].

REFERENCES

Mathematics

Theoretical Physics

Fringe Physics

Books related to TGD

