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Abstract

The understanding of the unitarity of the S-matrix has remained a major challenge of
Topological Geometrodynamics (TGD) for 4 decades. It has become clear that some basic
principle is still lacking. Assigning S-matrix to a unitary evolution works in non-relativistic
theory but fails already in the generic quantum field theory (QFT). The solution of the problem
turned out to be extremely simple. Einstein’s great vision was to geometrize gravitation by
reducing it to the curvature of space-time. Could the same recipe work for quantum theory?
Could the replacement of the flat Kähler metric of Hilbert space with a non-flat one allow
the identification of the analog of unitary S-matrix as a geometric property of Hilbert space?
Kähler metric is required to geometrize hermitian conjugation. It turns out that the Kähler
metric of a Hilbert bundle determined by the Kähler metric of its base space would replace
unitary S-matrix.

An amazingly simple argument demonstrates that one can construct scattering probabil-
ities from the matrix elements of Kähler metric and assign to the Kähler metric a unitary
S-matrix assuming that some additional conditions guaranteeing that the probabilities are
real and non-negative are satisfied. If the probabilities correspond to the real part of the
complex analogs of probabilities, it is enough to require that they are non-negative: complex
analogs of probabilities would define the analog of Teichmueller matrix. Teichmueller space
parameterizes the complex structures of Riemann surface: could the allowed WCW Kähler
metrics - or rather the associated complex probability matrices - correspond to complex struc-
tures for some space? By the strong from of holography (SH), the most natural candidate
would be Cartesian product of Teichmueller spaces of partonic 2 surfaces with punctures and
string world sheets.

Under some additional conditions one can assign to Kähler metric a unitary S-matrix but
this does not seem necessary. The experience with loop spaces suggests that for infinite-D
Hilbert spaces the existence of non-flat Kähler metric requires a maximal group of isometries.
Hence one expects that the counterpart of S-matrix is highly unique.

In the TGD framework the ”world of classical worlds” (WCW) has Kähler geometry al-
lowing spinor structure. WCW spinors correspond to Fock states for second quantized spinors
at space-time surface and induced from second quantized spinors of the embedding space.
Scattering amplitudes would correspond to the Kähler metric for the Hilbert space bundle
of WCW spinor fields realized in zero energy ontology and satisfying Teichmueller condition
guaranteeing non-negative probabilities.

Equivalence Principle generalizes to level of WCW and its spinor bundle. In ZEO one can
assign also to the Kähler space of zero energy states spinor structure and this strongly suggests
an infinite hierarchy of second quantizations starting from space-time level, continuing at the
level of WCW, and continuing further at the level of the space of zero energy states. This
would give an interpretation for an old idea about infinite primes as an infinite hierarchy of
second quantizations of an arithmetic quantum field theory.

1 Introduction

I have worked with the problem of understanding the construction of scattering amplitudes in
the framework provided by Topological Geometrodynamics (TGD) for about four decades. It
soon became clear that the näıve generalization of the path integral approach to a path integral
over space-time surfaces did not work because of the horrible non-linearities involved. Around
1985 I started to work with the notion that I later called the ”world of classical worlds” (WCW).
Eventually I apprehended that the realization of general coordinate invariance (GCI) forces to
assign to a 3-surface possibly unique space-time surface (X4) at which the general coordinate
transformations act [K5, K3]. Holography would reduce to GCI. The intuitive expectation is that
either space-like 3-surfaces or light-like partonic orbits defining boundaries between Minkowskian
and Euclidian space-time regions should be enough to determine X4 as an analog of Bohr orbit.
This leads to strong form of holography (SH) stating that data at partonic 2-surfaces and string
world sheets code for X4.

It should be possible to geometrize the entire quantum physics in terms of WCW geometry and
associated spinor structure identifying WCW spinors as fermionic Fock states. A geometrization of
the hermitian conjugation essential in quantum theory is needed. This fixed the WCW geometry to
be Kähler geometry determined by Kähler function and defining Kähler form providing a realization
of the imaginary unit as an antisymmetric tensor [K5]. The existence of Riemann connection fixes
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the Kähler geometry uniquely already in the case of loop spaces [A5]: maximal isometry group is
required. In TGD framework it would correspond supersymplectic transformations of δM4

±×CP2,
where δM4

±,denotes future or past light-cone [K3].
Classical physics becomes an exact part of quantum physics if the space-time surfaces are

preferred extremals for some action and therefore analogous to Bohr orbits. Spinor fields should
obey the modified Dirac equation (MDE). Modified Dirac action (MDA) is determined by the
bosonic action via supersymmetry condition. Kähler function identified as the action for the
preferred extremal associated with the 3-surface defines in complex coordinates the Kähler metric
and Kähler form via its second derivatives of type (1, 1).

The natural looking identification of the action was as Kähler action - a non-linear generalization
of Maxwell action replacing Maxwell field and metric with induced Kähler form and metric. It
possessed a huge vacuum degeneracy interpreted as spin glass degeneracy and for a long time I
looked this feature as something positive despite the fact that the WCW metric becomes degenerate
at the vacuum extremals and classical determinism is lost. The addition of volume term having
interpretation in terms of cosmological constant would have been a possible cure but would have
broken conformal invariance bringing in an ad hoc dimensional coupling.

Decades later the proposal for a twistor lift of TGD led to the identification of fundamental
action as an analog of Kähler action for 6-D twistor spaces having X4 as base space and S2 as
fiber [L25]. The induction of the twistor structure from that for the 6+6-D product of twistor
spaces of M4 and CP2 (these spaces are the only 4-spaces allowing twistor space with Kähler
structure [A7] so that TGD is unique) to the 6-surface forces a dimensional reduction reducing
6-D Kähler action to a sum of 4-D Kähler action and volume them. The counterpart of the
cosmological constant emerges dynamically. Λ depends on the p-adic length scale characterizing
space-time surfaces and approaches to zero in long length scales [L25].

The ontology of standard quantum theory in which 3-D t = constant slice of space-time con-
tains the quantum states, does not fit nicely with TGD framework. Space-time surfaces in 1-1
correspondence with 3-surfaces are more natural objects to consider. This conforms also with
the notion of holography implied by GCI: actually SH is highly suggestive and means that 2-D
data at partonic 2-surfaces and string world sheets determined the X4 as a preferred extremal. In
particular, various anomalies suggest that the arrow of time need not be fixed.

Eventually this led to zero energy ontology (ZEO) [L23] in which quantum states are essentially
superpositions of preferred extremals inside causal diamond (CD): space-time surfaces have ends
at the boundaries of CD and these pairs of 3-surfaces or equivalently the 4-surfaces are the basic
objects. CDs form a hierarchy: there are CDs with CDs and CDs can also intersect. They would
form an analog of atlas of coordinate charts. Each CD would serve as a correlate for a conscious
entity so that the charts can be said to be conscious.

ZEO leads to a quantum measurement theory and allows avoiding the basic problems of the
standard quantum measurement theory. Zero energy states correspond to state pairs at opposite
boundaries of CD or equivalently, superpositions of deterministic time evolutions. In state function
reduction (SFR) as a superposition of classical deterministic time evolutions is replaced with a new
one.

”Big” and ”small” state function reduction - BSFR and SSFR - are the basic notions. In SSFRs
as analogs of ”weak” measurements following a unitary time evolution, the size of CD increases in
statistical sense. The members of the state pairs associated with the passive boundary of CD do
not change during SSFRs: this gives rise to the analog of Zeno effect. The active boundary and the
states at it change. Active boundary also shifts farther from the passive one. BSFRs correspond
to ordinary state function reductions and in BSFRs the arrow of time changes. One could speak of
a death of a conscious entity in universal sense and reincarnation with an opposite arrow of time.
For instance, the findings of Minev et al [L21] provide support for the time reversal [L21].

1.1 How to construct the TGD counterpart of unitary S-matrix?

The concrete construction of scattering amplitudes remained a challenge from very beginning.
During years I have proposed several proposals and many important aspects of the problem are
understood but simple rules are still lacking.

1. The time evolutions assignable to SSFRs should be describable by a unitary S-matrix or its
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analog.

2. The counterpart of S-matrix should have the huge super-symplectic algebra (SSA) and Kac-
Moody algebras related to isometries of H as symmetries. These symmetries, extended fur-
ther to Yangian symmetries and quantum groups with both algebra and co-algebra structure,
are expected to be a key element in the construction of the counterpart of S-matrix. In par-
ticular, product and co-product in the super-symplectic algebra define excellent candidates
for vertices. What has been missing was a concrete guiding principle.

3. Feynman (or twistor) diagrammatics should generalize. Point-like particles are replaced
with 3-surfaces and topologically incoming and outgoing many-particle states correspond to
disjoint unions of 3-surfaces at the boundaries of CD. The first guess is that the vertices
correspond to 3-surfaces at which 4-D lines of the analog of Feynman diagram meet. SH and
M8 −H duality [L22] however suggest that the lines of the diagrams should correspond to
3-D light-like orbits of partonic 2-surfaces defining boundaries between space-time regions
with Euclidian and Minkowskian signature of the induced metric. Also string world sheets
connecting them and also serving as carriers of information in SH should be considered. The
1-D light-like intersections of strings world sheets with partonic orbits would define carriers
of fermion number.

4. The identification of fermionic anti-commutation relations was a longstanding challenge. It
turned out that the induction of second quantized free fermion fields from H to X4 fixes the
anti-commutations of the induced spinor fields and allows to calculate fermionic propagators.
Therefore quantum algebra would give what is needed to calculate scattering amplitudes:
the interaction vertices assignable to partonic 2-surfaces and fermionic propagators would
result from the induction procedure. 8-D fermions have however 7-D delta functions as anti-
commutators and normal ordering of fermions can produce divergences already at the level
of the MDA.

The problem disappears if the MDA is made bilocal [L35]: in this article a more detailed
discussion is given and leads to a rather detailed picture about MDA.

5. M8 −H duality [L22, L14, L15, L16] allows to concretize this picture. One can regard X4

either as a surface in the complexified M8 or in H. M8−H duality maps space-time surfaces
from M8 to H. Space-time surfaces in the complexified M8 correspond to algebraic 4-surfaces
determined by real polynomials with real (rational if one requires p-adicization) coefficients.
Also rational and even analytic functions can be considered, in which case polynomials could
be seen as approximations. The roots of the real polynomial dictate the space-time surfaces
as quaternionic/associative 4-surfaces in complexified octonionic M8. Holography becomes
discrete.

The algebraic equations defining space-time surfaces also have special solutions, in particular
6-spheres. These analogs of 6-branes have as M4 projections in both M8 and H = M4 ×
CP2t = rn hyperplanes, where rn corresponds to a root of a real polynomial defining X4 in
complexified M8 The interpretation of these hyper-planes is in TGD inspired consciousness
is as ”very special moments in the life of self”.

The solutions of the analog of Dirac equation in M8 as algebraic equation [L36] are localized
to 3-D light-like surfaces and mapped to light-like 3-surfaces in H identifiable as orbits of
partonic 2-surfaces. Partonic 2-surfaces serving as vertices of topological analogs of Feynman
diagrams would reside at the above described t = rn hyperplanes of H = M4 × CP2. Scat-
tering amplitudes would have partonic 2-surfaces as vertices and their 3-D light-like orbits
as lines. The intersections of string world sheets with the partonic orbits would be 1-D lines
and could be interpreted as fermion lines so that also the point particle description would be
part of the picture.

CDs inside CD would define the regions inside which particle reactions occur and this sug-
gests a fractal hierarchy of CDs within CDs as a counterpart for the hierarchy of radiative
corrections.

What is still missing is the general principle allowing a bird’s eye of view about the counterpart
of S-matrix. Wheeler was the first to introduce the notion of unitary S-matrix, which generalizes
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probability conservation to an infinite number of conditions. Could one challenge the unitary
principle and consider something else instead of it?

1. Unitary time evolution is natural in non-relativistic quantum mechanics but is already prob-
lematic in quantum field theory (QFT), in particular in twistor Grassmannian approach [B5].
The idea about the reduction of physics to Kähler geometry inspires the question whether
Kähler geometry of WCW could provide a general principle for the construction of the scat-
tering amplitudes and perhaps even an explicit formulas for them.

Kähler metric defines a complex inner product. Complex inner products also define scattering
amplitudes. Usually metric is regarded as defining length and angle measurements. Could
the Kähler metric of state space code the counterpart of S-matrix and even unitary S-matrix?
Also the Kähler metric satisfies conditions analogous to unitarity conditions.

An amazingly simple argument demonstrates that one could construct scattering probabili-
ties from the matrix elements of Kähler metric and assign to the Kähler metric the analog
of a unitary S-matrix by assuming that some additional conditions guaranteeing that the
probabilities are real and non-negative are satisfied.

(a) If the probabilities are identified as the real parts of complex analogs pci,j = gi,jg
j,i of

probabilities, it is enough to require Re(pci,j) ≥ 0. The complex analogs of ipci,j) would
define the analog of Teichmueller matrix [A3, A6, A4] (https://en.wikipedia.org/
wiki/Teichm\unhbox\voidb@x\bgroup\let\unhbox\voidb@x\setbox\@tempboxa\hbox{u\

global\mathchardef\accent@spacefactor\spacefactor}\let\begingroup\endgroup\

relax\let\ignorespaces\relax\accent127u\egroup\spacefactor\accent@spacefactorller_

space) for which imaginary parts of matrix elements are non-negative. Teichmueller
space parameterizes the complex structures of Riemann surface: could the allowed
WCW Kähler metrics - or rather the associated complex probability matrices - corre-
spond to complex structures for some space? By SH, the most natural candidate would
be Cartesian product of Teichmueller spaces of partonic 2 surfaces with punctures and
string world sheets.

(b) By positing the condition that gi,j and gj,i have opposite phases, one can assign to
Kähler metric a unitary S-matrix but this does not seem to be necessary. The ex-
perience with loop spaces suggests that for infinite-D Hilbert spaces the existence of
non-flat Kähler metric requires a maximal group of isometries. Hence one expects that
the counterpart of S-matrix is highly unique. These solutions would be special case
of Teichmueller solutions: Teichmueller matrix would be purely imaginary. The con-
dition looks too restrictive. For instance, for torus, this would correspond to a metric
conformally equivalent with a flat metric.

2. This inspires the idea that quantum physics could be geometrized by the same way as Einstein
geometrized gravitation. Take a flat Hilbert space bundle (in the case of TGD) and replace its
flat Kähler metric both base space and fiber with a non-flat Kähler metric. The replacement
of flat metric with a curved one would lead from a non-interacting quantum theory to an
interacting one. Quantum theory would be gravitation at the level of this Hilbert bundle!
This replacement is completely universal.

In the TGD framework the world of classical worlds (WCW) has Kähler geometry allow-
ing spinor structure. WCW spinors correspond to Fock states for second quantized spinors
at X4 and induced from second quantized spinors of the embedding space. Scattering am-
plitudes would be determined by the Kähler metric for the Hilbert space bundle of WCW
spinor fields realized in ZEO and satisfying Teichmueller condition guaranteeing non-negative
probabilities.

WCW geometry is also characterized by zero modes corresponding to non-complex coordi-
nates for WCW giving no contribution to WCW metric. This is self-evident from SH. The
zero modes would be in 1-1 correspondence with Teichmueller parameters and WCW Kähler
metrics.

Equivalence Principle (EP) generalizes to level of WCW and its spinor bundle. In ZEO one
can assign also to the Kähler space of zero energy states spinor structure and this suggests

https://en.wikipedia.org/wiki/Teichm\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {u\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \endgroup \relax \let \ignorespaces \relax \accent 127 u\egroup \spacefactor \accent@spacefactor ller_space
https://en.wikipedia.org/wiki/Teichm\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {u\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \endgroup \relax \let \ignorespaces \relax \accent 127 u\egroup \spacefactor \accent@spacefactor ller_space
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an infinite hierarchy of second quantizations starting from space-time level, continuing at
the level of WCW, and continuing further at the level of the space of zero energy states.
This would give a possible interpretation for an old idea about infinite primes as an infinite
hierarchy of second quantizations of an arithmetic QFT [K7].

There is also challenge of constructing the Kähler metric and associated spinor structure for
the spinor bundle of WCW. This would mean a specification of the analogs of Feynman rules so
that instead of two problems one would have only one problem.

1. WCW gamma matrices can be identified as superpositions of fermionic oscillator operators
associated with quark spinors [L24]. One can consider two approaches to the quantization
of these spinors: one studies induced spinor fields obeying MDE and quantizes this or one
generalizes the induction of spinors from H to the induction of second quantized spinor
fields in H: this would mean simply projecting the spinor fields to X4. The latter option
is extremely simple. It seems possible to avoid divergence problems if the anti-commutators
are assigned to different 3-surfaces at different boundaries of CD. This would allow the
identification of the Dirac propagator. As a matter of fact, the two approaches are equivalent.

2. WCW gamma matrices would allow the identification as super generators of SSA identified as
contractions of gamma matrices SSA with Killing vectors. Quantum states would be created
by bosonic and fermionic SSA generators.

3. I have proposed a further supersymmetrization of both H coordinates and spinors by replac-
ing them with expansions in powers of local composites of oscillator operators for quarks and
antiquarks [L24]. This however requires Kronecker delta type anti-commutators natural for
cognitive representations defining unique discretization of X4: this allows to avoid normal
ordering divergences. Induction of the H spinor fields would lead to 8-D delta function type
divergences. This suggests that local composites are not quite local but states consisting
of quarks and antiquarks at opposite throats of wormhole contacts identifiable as partonic
2-surfaces. One would obtain leptons as 3-quark states with quarks at the same partonic
2-surface but not at the same point anymore as in the proposal of [L24].

4. The matrix elements of the Kähler metric of WCW Hilbert bundle correspond to scattering
amplitudes analogous to Feynman diagrams. What are the Feynman rules? Partonic two
surfaces and their orbits correspond to vertices and propagators topologically. The TGD
counterpart for FFB vertex would correspond to a bosonic wormhole contact with a fermion
and antifermion at opposite wormhole throats and representing SCA generator which decom-
poses to two partonic 2-surfaces carrying fermions at opposite throats representing fermionic
SCA generators. This allows avoiding of normal ordering divergences.

The vertex would correspond to a product or co-product, which can be said to be time
reversals of each other. The structure constants of SCA extended to quantum algebra would
fix the vertices and thus the analogs of Feynman diagrams completely. Their number is
presumably finite for a X4 with fixed 3-surfaces at its ends and summation over Feynman
diagrams would correspond to integration in WCW.

Before discussing them current proposal in detail, the complementary way to overview TGD as
either WCW geometry or as number theory are discussed below. Readers might skip these sections
at their first reading and choose to read the section discussing the basic idea in more detail.

In the sequel the basic idea about representation of scattering amplitudes as elements of Kähler
metric satisfying what I call ”Teichmueller condition”, is discussed in TGD framework.

The detailed formulation allows a formulation of conditions for the cancellation of normal or-
dering divergences and also other divergences. The induction of the second quantized free spinor
field from H to space-time surface fixes the propagators at the space-time level. If the creation
and annihilation operators are at different space-time sheets - say at throats of wormhole contacts,
divergences are avoided. ZEO suggests an alternative but not exclusive option that the annihila-
tion operators correspond to creation operators for conjugated Dirac vacuum associated with the
opposite half-cone of CD or sub-CD.

The fact that the Dirac propagators for massive particles in the TGD sense reduce in a good
approximation to massless propagators when the propagation takes place along light-like distances,
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allows to considerable insight to why physical particles are so light although the spinor harmonics
for CP2 correspond to CP2 mass scale.

Of course, one must not forget that this proposal is only an interesting thought game. It is quite
possible that zero energy ontology allows to define a natural way a unitary S-matrix or a more
general isometric map between the states spaces associated with the extensions of rationals with
different algebraic dimensions assignable naturally to to space-time regions inside causal diamonds.
The huge symmetries of WCW generalized to Yangian symmetries could lead to a unique S-matrix
and number theoretic conditions pose extremely powerful constraints. In [L39], a proposal along
these lines was developed 3 years after writing this.

Figure 1: TGD is based on two complementary visions: physcs as geometry and physics as
number theory.

2 Physics as geometry

One can end up with TGD in two ways (see Fig. 2). Either as a solution of energy problem
of GRT realizing Einstein’s dream about geometrization of classical physicsor as a generalization
of hadronic string model or of superstring theory [B9]. In case of hadronic string model the
generalization of string to 3-surface would allow to get rid of spontaneous compactification and the
landscape catastrophe implied by it.

At fundamental level TGD could be seen as a hybrid of GRT and SRT: the notion of force
does not disappear and can be defined as rate for an exchange of conserved quantity which can be
Poincare or color charge. This connection with Newtonian limit is more clear than in GRT, where
the conservation laws are lost.
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Figure 2: The problems leading to TGD as their solution.

2.1 Classical physics as sub-manifold geometry

The new elements are many-sheeted space-time topologically non-trivial in all scales, and topolog-
ical field quantization implying that physical systems have field identity, field body, in particular
magnetic body (MB) central in applications [L2, L1] (see Fig. 3).

2.1.1 Induction procedure

One ends up to a geometrization of gravitational field and gauge fields of the standard model as
induced fields. Induction means induction of bundle structure is in question. Parallel translation
at X4 is carried out by using spinor connection of H and distances are measured using the metric
of H. The components of induced gauge potentials and metric are projections to X4. Color gauge
potentials are identified as projections of Killing vector fields of CP2 and one can define for them
gauge algebra structure. The components of the induced color field are proportional to HAJ , where
HA is the Hamiltonian of color isometry and J induced Kähler form. For details see [L3] or the
material at my homepage.

The induction of spinor structure allows to avoid the problems related to the definition of
spinor structure for general 4-geometry encountered in GRT. For the induced spinor structure
induction means projection of gamma matrices toX4. The definition of gamma matrices is modified
when classical action defining the space-time dynamics contains besides volume term also Kähler
action with the projection of CP2 Kähler form defining the analog of Maxwell field. Modified
gamma matrices are contractions Tαkγk of the embedding space gamma matrices γk with canonical
momentum currents Tαk associated with the action: this is required by the hermiticity of the
modified Dirac action and means existence of infinite number of super currents labelled by the
modes of the modified Dirac action.
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Figure 3: Questions about classical TGD.

2.1.2 Spacetime is topologically complex

Locally the theory is extremely simple: by GCI there are only 4 field-like variables corresponding to
a suitable identification of embedding space coordinates as space-time coordinates. The possibility
to choose the coordinates in this manner means enormous simplification since the problems caused
by GCI in GRT disappear. It is however obvious that 4 field-like variables does not conform with
standard model and GRT. This simplicity is compensated by topological complexity in all scales
implied by the many-sheeted space-time. The QFT-GRT limit explained in introduction gives the
space-time of gauge theories and GRT.

Geometrically the QFT limit for space-time surfaces having 4-D M4 projection is obtained by
replacing the sheets of many-sheeted space-time with slightly curved region of M4 and identifying
gauge potentials and gravitational field (deviation of the metric from M4 metric) as superpositions
of induced fields at various space-time sheets. Einstein’s equations hold true as a remnant of the
Poincare invariance.

The presence of space-time regions with M4 projection of dimension D < 4 must be described at
QFT limit as particle- or string-like entities. Particle-like entities correspond to CP2 type extremals
having Euclidian signature of induced metric and light-like M4 projection. 3-D light-like surfaces
serve as boundaries between them and Minkowskian space-time regions: the identification is as
partonic orbits carrying fermion number serving as building bricks of elementary particles [L18].

The topology of partonic 2-surface is characterized by its genus (number of handless attached
to sphere) and is propose to explain family replication for fermions. Also for bosons 3 families are
predicted. The existence of 3 light fermion families is understood in terms of the fact that only
3 lowest genera have global Z2 as conformal symmetry making possible bound state of 2 handles.
For the higher genera handles would behave like particles and mass spectrum would be continuum.
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Cosmic strings are fundamental objects of this kind and appear as two different species. Those
carrying monopole flux mean deviation from Maxwell’s theory. They are unstable against pertur-
bations making their M4 projection 4-D and transforming them to magnetic flux tubes playing a
key role in TGD inspired cosmology.

2.1.3 Twistor lift

One could end up with the twistor lift of TGD from problems of twistor Grassmannian approach
originally due to Penrose [B12] and developed to a powerful computational tool in N = 4 SYM
[B3, B2, B6, B1, B4].

Twistor lift of TGD [L11, L31, L32] generalizes the ordinary twistor approach [L19, L20] (see
Fig. 4). The 4-D masslessness implying problems in twistor approach is replaced with 8-D
masslessness so that masses can be non-vanishing in 4-D sense.

The basic recipe is simple: replaced fields with surfaces. Twistors as field configurations are
replaced with 6-D surfaces in the 12-D product T (M4)×T (CP2) of 6-D twistor spaces T (M4) and
T (CP2) having the structure of S2 bundle and analogous to twistor space T (X4). Bundle structure
requires dimensional reduction. The induction of twistor structure allows to avoid the problems
with the non-existence of twistor structure for arbitrary 4-geometry encountered in GRT.

The pleasant surprise is that twistor space has Kähler structure only for M4 and CP2 [A7]: this
had been discovered already when started to develop TGD! Since Kähler structure is necessary
for the twistor lift of TGD, TGD is unique. One outcome is length scale dependent cosmological
constant Λ assignable to any system - even hadron - taking a central role in the theory. At long
length scales Λ approaches zero and this solves the basic problem associated with it. At this limit
action reduces to Kähler action, which for a long time was the proposal for the variational principle.

Figure 4: Twistor lift
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2.2 Quantum physics as WCW geometry

2.2.1 WCW as an analog of Wheeler’s superspace

Quantum TGD replaces Wheeler’s superspace of 3-geometries with the “World of Classical Worlds”
(WCW) as the space of 3-surfaces (see Fig. 5). The holography forced by general coordinate
invariance (GCI) implies their 1-1 correspondence with space-time surfaces identified as preferred
extremals (PEs) of the basic variational principle analogous to Bohr orbits. Classical physics
becomes an exact part of quantum physics [L5, L4]. Einstein’s geometrization of classical physics
extends to that of quantum physics.

The geometry of infinite-D WCW (see Fig. 5) and physics is highly unique from its mere
existence requiring maximal group of isometries: a result proved by Freed for loop spaces [A5].
The group of WCW isometries is identified as the group of symplectic (contact) transformations
of δM3

+×CP2 having the light-like radial coordinate in the role of complex variable z in conformal
field theories

Remark: The geometric properties of boundary of 4-D light-cone are unique by its metric 2-
dimensionality. In particular, the ordinary 2-D conformal symmetries involving local scaling of the
radial light-like coordinate give rise to isometries).

Figure 5: Geometrization of quantum physics in terms of WCW

The assumption that space-time surfaces as preferred extremals (PEs) are fundamental entities
leads to zero energy ontology (ZEO) in which quantum superpositions of pairs (X3

1 , X
3
2 ) of 3-

surfaces at opposite boundaries of causal diamond (CD) and connected by PE represent quantum
states [L38]. This leads to a solution of the basic problem of quantum measurement theory due
to the conflict between the determinism of field equations and non-determinism of state function
reduction (SFR) and quantum measurement theory extends to a theory of consciousness bringing
observer a part of the physisal system.
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Quantum states are identified as modes of classical WCW spinor fields so that apart from
quantum jump the theory is formally classical. WCW spinor structure involves complexified gamma
matrices expressible as superpositions of second quantized oscillator operators of the induced spinor
fields at space-time so that a geometrization of fermionic statistics is achieved [L9, L33, L35]. The
simplest formulation assumes only quark spinors and would predict that lepton are local composites
of 3 quarks.

2.3 Super-symplectic group as isometries of WCW

The work of Freed related to the geometrization of loop spaces [A5] demonstrated that the Kähler
metric allows awell-defined Riemann connection onlyif it has a maximal group of isometries. This
fixes the metric completely. The natural conjecture isthat this is true also in 3-D case and that the
group consists of symplectic (contact) transformations at δM4

± ×CP2. Here δM4
± is future/past

directed lightcone boundary containing the ”upper”/”lower” boundary of a causal diamond of
M4.

WCW allows as infinitesimal isometries huge super-symplectic algebra (SSA) [K5, K3] act-
ing on space-like 3-surfaces at the ends of space-time surfaces inside causal diamond (CD) and
also generalization of Kac-Moody and conformal symmetries acting on the 3-D light-like orbits
of partonic 2-surfaces (partonic super-conformal algebra (PSCA)). These symmetry algebras have
a fractal structure containing a hierarchy of sub-algebras isomorphic to the full algebra. Even
ordinary conformal algebras with non-negative conformal weights have similar fractal structure as
also Yangian. In fact, quantum algebras are formulated in terms of these half algebras.

The proposal is that physical states are annihilated by a sub-algebra SSAn of SSA (with non-
negative conformal weights), n = 1, 2, ..., with conformal weights coming as n-multiples of those
for SSA and thus isomorphic to the entire SSA, and by the commutator [SSAn, SSA]. What
remains seems to be a finite-D Kac-Moody algebra as an effective “coset” algebra obtained. Note
that the resulting analog of a normal sub-group could actually be a quantum group.s There is a
direct analogy with the decomposition of the Galois group Gal to a product of sub-group and
normal subgroup H. If the normal subgroup H acts trivially on the representation of Gal reduces
to that of the group Gal/H. Now one works at Lie algebra level: Gal is replaced with SSA and H
with its sub-algebra with conformal weights multiples of those for SSA. These two hierarchies of
subgroups could correspond to each other and to the hierarchy of inclusions of hyperfinite factors
of type II1 (HFFs) [K8, K4]. These conditions would guarantee preferred extremal property of the
space-time surface and holography or even its strong form.

2.3.1 Holography from GCI

Gravitational holography has been one of the dominating themes in recent day theoretical physics.
It was originally proposed by Susskind [B11], and formulated by Maldacena as AdS/CFT corre-
spondence [B10]. One application is by Preskill et al to quantum error correcting codes [B8].

By holography implied by GCI the basic variational problem can be seen either as boundary
value problem with 3-surfaces at opposite boundaries of CD or as initial value problem caused by
PE property. Ordinary 3-D holography is thus forced by general coordinate invariance (GCI) and
loosely states that the data at 3-surface at either boundary of CD allows to determine X4 ⊂ H. In
ZEO 3-surfaces correspond to pairs of 3-surfaces with members at the opposite light-like boundaries
of causal diamond (CD) and are analogous to initial and final states of deterministic time evolution
as Bohr orbit.

Holography poses additional strong conditions on X4.

1. The conjecture is that these conditions state the vanishing of super-symplectic Noether
charges for a sub-algebra of super-symplectic algebra SSAn with radial conformal weights
coming as n-multiples of those for the entire algebra SSA and its commutator [SSAn, SSSA]
with the entire algebra: these conditions generalize super conformal conditions and one ob-
tains a hierarchy of realizations. An open question is whether this hierarchy corresponds to
the hierarchy of EQs with n identifiable as dimension of the extension.

2. Second conjecture is that PEs are extremals of both the volume term and Kähler action term
of the action resulting by dimensional reduction making possible the induction of twistor
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structure from the product of twistor spaces of M4 and CP2 to 6-D S2 bundle over X4

defining the analog of twistor space. These twistor spaces must have Kähler structure since
action for 6-D surfaces is Kähler action - it exists only in these two cases [A7] so that TGD
is unique.

2.3.2 Strong form of holography

Strong form of holography (SH) is a strengthening of 3-D holography. Strong form of GCI requires
that one can use either the data associated

1. either with light-like 3-surfaces defining partonic orbits as surfaces at which signature of the
induced metric changes from Euclidian to Minkowskian,

2. or the space-like 3-surfaces at the ends of CD to determine X4 as PE (in case that it exists),

This suggests that the data at the intersections of these 2-surfaces defined by partonic 2-surfaces
might be enough for holography. A slightly weaker form of SH is that also string world sheets
intersecting partonic orbits along their 1-D boundaries is needed and this form seems more realistic.

SH allows to weaken the strong form of M8 − H duality [L26] mapping X4 ⊂ M8 to X4 ⊂
H = M4 × CP2 that it allows to map only certain 2-D sub-manifolds X2 ⊂ X4 ⊂M8: SH allows
to determine X4 ⊂ H from this 2-D data.

2.3.3 Further generalizations

This picture about WCW is not general enough.

1. M8 − H duality [L26] suggests that the notion of WCW applies also M8 picture. The
parameters of polynomials defining X4 ⊂M8 are assumed to be rational. The points of M8

counterpart of WCW have the rational coefficients of these polynomials as coordinates so that
WCW should be discrete in real topology. This should be the case also for H counterpart
of WCW. Could one see real and p-adic variants of WCW as completions of this discrete
WCW.

2. Adelic physics inspires the question whether p-adic and adelic variants of WCW make sense
or is it enough to have number theoretically universal cognitive representations to define
unique discretized variants of X4 and correspondingly discretized WCW.

3. For TGD variant of SUSY [L30, L29] super coordinates for H correspond to hermitian local
composites of quark oscillator operators. For super-quarks they correspond to local compo-
nents with fixed quark number. Leptons can be understand as local composites of quarks
- super field components [L35]. SUSY replaces modes of super-field with super-surfaces so
that the components of super-field correspond to sets of disjoint 4-surfaces. This is true also
for the points of super WCW.

3 Physics as number theory

Number theoretical vision is second thread of TGD. It decomposes to 3 threads corresponding to
various p-adic physics [L6] fusing to adelic physics [L18], classical number fields [L7], and infinite
primes [L8] (not discussed in the sequel).

3.1 p-Adic and adelic physics and extensions of rationals (EQs)

p-Adic number fields would serve as correlates of cognition and imagination (see Fig. 6) . Space-
time is replaced with a book like structure having both real and various p-adic space-time sheets
as pages. The outcome is adelic physics as fusion of various p-adic physics [L17, L18] (see http:

//tinyurl.com/ycbhse5c). The EQ induces extensions of p-adic numbers fields and of adele
giving rise to a hierarchy of physics having interpretation in terms of evolution induced by the
increase of the complexity of the EQ.

http://tinyurl.com/ycbhse5c
http://tinyurl.com/ycbhse5c
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Figure 6: p-Adic physics as physics of cognition and imagination.

Adelic physics leads also the hierarchy of Planck constants heff/h0 = n with n identified as
dimension of EQ labelling phases of ordinary matter behaving like dark mater, and making possible
quantum coherence in arbitrarily long time scales essential for understanding living matter.

EQs are characterized by discriminant D assignable to a polynomial giving rise to the extension
(for second order polynomials D has expression familiar from school days). Now polynomials
with rationals (equivalently integer) valued coefficients are interesting. The primes dividing the
discriminant are known as ramified primes and they have a property that for p-adic variant of
polynomial degenerate roots appear in O(p) = 0 approximation [L28]. The interpretation could
be in terms of quantum criticality and physically preferred p-adic primes are identified as ramified
primes of extension [L34].

Remark: One can also consider polynomials with algebraic coefficients. The notion of Galois
group make sense also for real coefficients.

The hierarchy of EQs labelling levels of dark matter hierarchy and of hierarchy of adelic physics
follows from M8−H duality allowing to identify X4 ⊂M8 as a projection of X4

c ⊂M8
c - identified

as complexified octonions Oc - and satisfying algebraic equations associated with a polynomial of
degree n.

Real and p-adic physics are strongly correlated and mass calculations represent the most impor-
tant application of p-adic physics [K6]. Elementary particles seem to correspond to p-adic primes
near powers 2k (there are also indicatons for powers of 3). Corresponding p-adic length - and time
scales would come as half-octaves of basic scale if all integers k are allowed. For odd values of k
one would have octaves as analog for period doubling. In chaotic systems also the generalization
of period doubling in which prime p = 2 is replaced by some other small prime appear and there is
indeed evidence for powers of p = 3 (period tripling as approach to chaos) [I1, I2]. Many elemen-
tary particles and also hadron physics and electroweak physics seem to correspond to Mersenne
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primes and Gaussian Mersennes which are maximally near to powers of 2 and the challenge is to
understand this [L12].

3.2 Classical number fields

Second aspect of number theoretical vision are classical number fields: reals, complex numbers,
quaternions and octonions and their complexifications by a commuting imaginary unit i (see Fig.
7).

Figure 7: M8 −H duality

3.2.1 Space-time as 4-surface in M8
c = Oc

One can regard real space-time surface X4 ⊂ M8 as a M8−-projection of X4
c ⊂ M8

c = Oc. M
4
c

is identified as complexified quaternions Hc [L26, L34]. The dynamics is purely algebraic and
therefore local.

1. The basic condition is associativity of X4 ⊂M8 in the sense that either the tangent space or
normal space is associative - that is quaternionic. This would be realized if X4

c as a root for
the quaternion-valued “real” or “imaginary part” for the Oc algebraic continuation of real
analytic function P (x) in octonionic sense. Number theoretical universality requires that the
Taylor coefficients are rational numbers and that only polynomials are considered.

The 4-surfaces with associative normal space could correspond to elementary particle like
entities with Euclidian signature (CP2 type extremals) and those with associative tangent
space to their interaction regions with Minkowskian signature. These two kinds space-time
surfaces could meet along these 6-branes suggesting that interaction vertices are located at
these branes.
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2. The conditions allow also exceptional solutions for any polynomial for which both “real” and
“imaginary” parts of the octonionic polynomial vanish. Brane-like solutions correspond to 6-
spheres S6 having t = rn 3-ball B3 of light-cone as M4 projection: here rn is a root of the real
polynomial with rational coefficients and can be also complex - one reason for complexification
by commuting imaginary unit i. For scattering amplitudes the topological vertices as 2-
surfaces would be located at the intersections of X4

c with 6-brane. Also Minkowski space M4

is a universal solution appearing for any polynomial and would provide a universal reference
space-time surface.

3. Polynomials with rational coefficients define EQs and these extensions form a hierarchy real-
ized at the level of physics as evolutionary hierarchy. Given extension induces extensions of
p-adic number fields and adeles and one obtains a hierarchy of adelic physics. The dimension
n of extension allows interpretation in terms of effective Planck constant heff = n×h0. The
phases of ordinary matter with effective Planck constant heff = nh0 behave like dark matter
and galactic dark matter could correspond to classical energy in TGD sense assignable to
cosmic strings thickened to magnetic flux tubes. It is not completely clear whether number
galactic dark matter must have heff > h. Dark energy in would correspond to the volume
part of the energy of the flux tubes.

There are good arguments in favor of the identification h = 6h0 [?] “Effective” means that the
actual value of Planck constant is h0 but in many-sheeted space-time n counts the number
of symmetry related space-time sheets defining X4 as a covering space locally. Each sheet
gives identical contribution to action and this implies that effective value of Planck constant
is nh0.

The ramified primes of extension in turn are identified as preferrred p-adic primes. The
moduli for the time differences |tr− ts| have identification as p-adic time scales assignable to
ramified primes [L34]. For ramified primes the p-adic variants of polynomials have degenerate
zeros in O(p) = 0 approximation having interpretation in terms of quantum criticality central
in TGD inspired biology.

4. During the preparation of this article I made a trivial but overall important observation.
Standard Minkowski signature emerges as a prediction if conjugation in Oc corresponds to
the conjugation with respect to commuting imaginary unit i rather than octonionic imaginary
units as though earlier. If X4 corresponds to the projection Oc →M8 →M4 with real time
coordinate and imaginary spatial coordinates the metric defined by the octonionic norm
is real and has Minkowskian signature. Hence the notion of Minkowski metric reduces to
octonionic norm for Oc - a purely number theoretic notion.

3.2.2 How to realize M8 −H duality?

M8 − H duality (see Fig. 7) allows to X4 ⊂ M8 to X4 ⊂ H so that one has two equivalent
descriptions for the space-time surfaces as algebraic surfaces in M8 and as minimal surfaces with 2-
D preferred 2-surfaces defining holography making possible M8−H duality and possibly appearing
as singularities in H. The dynamics of minimal surfaces, which are also extremals of Kähler action,
reduces for known extremals to purely algebraic conditions analogous to holomorphy conditions in
string models and thus involving only gradients of coordinates. This condition should hold generally
and should induce the required huge reduction of degrees of freedom proposed to be realized also
in terms of the vanishing of super-symplectic Noether charges already mentioned [L33].

Twistor lift allows several variants of this basic duality [L31, L32]. M8
H duality predicts that

space-time surfaces form a hierarchy induced by the hierarchy of EQs defining an evolutionary
hierarchy. This forms the basics for the number theoretical vision about TGD.

As already noticed, X4 ⊂M8 would satisfy an infinite number of additional conditions stating
vanishing of Noether charges for a sub-algebra SSAn ⊂ SSA of super-symplectic algebra SSA
actings as isometries of WCW.

M8 −H duality makes sense under 2 additional assumptions to be considered in the following
more explicitly than in earlier discussions [L26].
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Figure 8: Number theoretic view about evolution

1. Associativity condition for tangent-/normal space is the first essential condition for the exis-
tence of M8−H duality and means that tangent - or normal space is associative/quaternionic.

2. Each tangent space of X4 at x must contain a preferred M2
c (x) ⊂ M4

c such that M2
c (x)

define an integrable distribution and therefore complexified string world sheet in M4
c . This

gives similar distribution for their orthogonal complements E2c(x). The string world sheet
like entity defined by this distribution is 2-D surface X2

c ⊂ X4
c in Rc sense. E2

c (x) would
correspond to partonic 2-surface. This condition generalizes for X4 with quaternionic normal
space.

One can imagine two realizations for this condition.

Option I: Global option states that the distributions M2
c (x) and E2

c (x) define a slicing of X4
c .

Option II: Only discrete set of 2-surfaces satisfying the conditions exist, they are mapped to
H, and strong form of holography (SH) applied in H allows to deduce X4 ⊂ H. This would be
the minimal option.

It seems that only Option II can be realized.

1. The basic observation is that X2
c can be fixed by posing to the non-vanishing Hc-valued part

of octonionic polynomial P condition that the Cc valued “real” or “imaginary” part in Cc
sense for P vanishes. M2

c would be the simplest solution but also more general complex
sub-manifolds X2

c ⊂M4
c are possible. This condition allows only a discrete set of 2-surfaces

as its solutions so that it works only for Option II.

These surfaces would be like the families of curves in complex plane defined by u = 0 an v = 0
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curves of analytic function f(z) = u + iv. One should have family of polynomials differing
by a constant term, which should be real so that v = 0 surfaces would form a discrete set.

2. SH makes possible M8 −H duality assuming that associativity conditions hold true only at
2-surfaces including partonic 2-surfaces or string world sheets or perhaps both. Thus one can
give up the conjecture that the polynomial ansatz implies the additional condition globally.

SH indeed states that PEs are determined by data at 2-D surfaces of X4. Even if the
conditions defining X2

c have only a discrete set of solutions, SH at the level of H could allow
to deduce the PEs from the data provided by the images of these 2-surfaces under M8 −H
duality. The existence of M2(x) would be required only at the 2-D surfaces.

3. There is however a delicacy involved: the X2 might be only metrically 2-D but not topo-
logically. The partonic orbits are 3-D light-like surfaces with metric dimension D = 2. The
4-metric degenerates to 2-D metric at them. Therefore their pre-images would be natural
candidates for the singularities at which the dimension of the quaternionic tangent or normal
space reduces to 2 [L27] . If this happens, SH would not be quite so strong as expected. The
study of fermionic variant of M8 −H correspondence indeed leads to this conclusion.

One can generalize the condition selecting X2
c so that it selects 1-D surface inside X2

c . By
assuming that Rc-valued “real” or “imaginary” part of complex part of P at this 2-surface van-
ishes. One obtains preferred M1

c or E1
c containing octonionic real and preferred imaginary unit or

distribution of the imaginary unit having interpretation as a complexified string. Together these
kind 1-D surfaces in Rc sense would define local quantization axis of energy and spin. The outcome
would be a realization of the hierarchy Rc → Cc → Hc → Oc realized as surfaces.

3.2.3 What about M8 −H duality in the fermionic sector?

During the preparation of this article I became aware of the fact that the realization M8−H duality
in the fermionic sector has remained poorly understood. This led to a considerable integration of
the ideas about M8 − H duality also in the bosonic sector and the existing phenomenological
picture follows now from M8 −H duality. There are powerful mathematical guidelines available.

1. Octonionic spinors

By supersymmetry, octonionicity should have also a fermionic counterpart.

1. The interpretation of M8
c as complexified octonions suggests that one should use complexified

octonionic spinors in M8
c . This is also suggested by SO(1,7) triality unique for dimension

d = 8 and stating that the dimensions of vector representation, spinor representation and its
conjugate are same and equal to D = 8. I have already earlier considered the possibility to
interpret M8 spinors as octonionic [L10]. Both octonionic gamma matrices and spinors have
interpretation as octonions and gamma matrices satisfy the usual anti-commutation rules.
The product for gamma matrices and spinors is replaced with the non-associative octonionic
product.

2. Octonionic spinors allow only one M8-chirality, which conforms with the assumption of TGD
inspired SUSY that only quarks are fundamental fermions and leptons are their local com-
posites [L30, L29].

3. The decomposition of X2 ⊂ X4 ⊂ M8 corresponding to R ⊂ C ⊂ Q ⊂ O should have an
analog for the Oc spinors as a tensor product decomposition. The special feature of dimension
D = 8 is that the dimensions of spinor spaces associated with these factors are indeed 1, 2,
4, and 8 and correspond to dimensions for the surfaces!

One can define for the octonionic spinors associative/co-associative sub-spaces as quaternionic/co-
quaternionic spinors by posing chirality conditions. For X4 ⊂ M8

c one could define the
analogs of projection operators P± = (1 ± γ5)/2 as projection operators to either factor of
the spinor space as tensor product of spinor space associated with the tangent and normal
spaces of X4: the analog of γ5 would correspond to tangent or normal space depending on
whether tangent or normal space is associative. For the spinors with definite chirality there
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would be no entanglement between the tensor factors. The condition would generalize the
chirality condition for massless M4 spinors to a condition holding for the local M4 appearing
as tangent/normal space of X4.

4. The chirality condition makes sense also for X2 ⊂ X4 identified as a complex/co-complex
surface of X4. Now γ5 is replaced with γ3 and states that the spinor has well-defined spin
in the direction of axis defined by the decomposition of X2 tangent space to M1 × E1 with
M1 defining real octonion axis and selecting rest frame. Interpretation in terms of quantum
measurement theory is suggestive.

What about the sigma matrices associated with the octonionic gamma matrices? The surprise
is that the commutators of M4 sigma matrices and those of E4 sigma matrices close to the same
SO(3) algebra allowing interpretation as representation for quaternionic automorphisms. Lorentz
boosts are represented trivially, which conforms with the fact that octonion structure fixes unique
rest system. Analogous result holds in E4 degrees of freedom. Besides this one has unit ma-
trix assignable to the generalized spinor structure of CP2 so that also electroweak U(1) factor is
obtained.

One can understand this result by noticing that octonionic spinors correspond to 2 copies
of a tensor products of the spinor doublets associated with spin and weak isospin. One has
2 ⊗ 2 = 3 ⊕ 1 so that one must have 1 ⊕ 3 ⊕ 1 ⊕ 3. The octonionic spinors indeed decompose
like 1 + 1 + 3 + 3 under SU(3) representing automorphisms of the octonions. SO(3) could be
interpreted as SO(3) ⊂ SU(3). SU(3) would be represented as tangent space rotations.

2. Dirac equation as partial differential equation must be replaced by an algebraic equation

Algebraization of the dynamics should be supersymmetric. The modified Dirac equation in H
is linear partial differential equation and should correspond to a linear algebraic equation in M8.

1. The key observation is that for the ordinary Dirac equation the momentum space variant of
Dirac equation for momentum eigenstates is algebraic! Could the interpretation for M8−H
duality as an analog of momentum-position duality of wave mechanics considered already
earlier make sense! This could also have something to do with the dual descriptions of
twistorial scattering amplitudes in terms of either twistor and momentum twistors. Already
the earlier work excludes the interpretation of the octonionic coordinate o as 8-momentum.
Rather, P (o) has this interpretation and o corresponds to the embedding space coordinates.

2. The first guess for the counterpart of the modified Dirac equation at the level of X4 ⊂ M8

is PΨ = 0, where Ψ is octonionic spinor and the octonionic polynomial P defining X4 can
be seen as a generalization of momentum space Dirac operator with octonion units repre-
senting gamma matrices. If associativity/co-associativity holds true, the equation becomes
quaternionic/co-quaternionic and reduces to the 4-D analog of massless Dirac equation and
of modified Dirac equation in H. Associativity holds true if also Ψ satisfies associativity/co-
associativity condition as proposed above.

3. What about the square of the Dirac operator? There are 3 conjugations involved: quater-
nionic conjugation assumed in the earlier work, conjugation with respect to i, and their
combination. The analog of octonionic norm squared defined as the product oco

∗
c with con-

jugation with respect to i only, gives Minkowskian metric mklo
kol as its real part. The

imaginary part of the norm squared is vanishing for the projection Oc →M8 →M4 so that
time coordinate is real and spatial coordinates imaginary. Therefore Dirac equation allows
solutions only for the M4 projection X4 and M4 (M8) signature of the metric can be said
to be an outcome of quaternionicity (octonionicity) alone in accordance with the duality
between metric and algebraic pictures.

Both P †P and PP should annihilate Ψ. P †PΨ = 0 gives mklP
kP

l
= 0 as the analog

of vanishing mass squared in M4 signature in both associative and co-associative cases.
PPΨ = 0 reduces to PΨ = 0 by masslessness condition. One could perhaps interpret the
projection X4

c →M8 →M4 in terms of Uncertainty Principle.

There is a U(1) symmetry involved: instead of the plane M8 one can choose any plane
obtained by a rotation exp(iφ) from it. Could it realize quark number conservation in the
M8 picture?
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For P = o having only o = 0 as root Po = 0 reduces to o†o = 0 and o takes the role of
momentum, which is however vanishing. 6-D brane like solutions S6 having t = rn balls
B3 ⊂ CD4 as M4 projections one has P = 0 so that the Dirac equation trivializes and does
not pose conditions on Ψ. o would have interpretation as space-time coordinates and P (o)
as position dependent momentum components P k.

The variation of P at the mass shell of M8
c (to be precise) could be interpreted in terms of

the width of the wave packet associated with a particle. Since the light-like curve at partonic
2-surface for fermion at X3

L is not a geodesic, mass squared in M4 sense is not vanishing.
Could one understand mass squared and the decay width of the particle geometrically? Note
that mass squared is predicted also by p-adic thermodynamics [K6].

4. The masslessness condition restricts the spinors at 3-D light-cone boundary in P (M8). M8−
H duality [L26] suggests that this boundary is mapped to X3

L ⊂ H defining the light-like
orbit of the partonic 2-surface in H. The identification of the images of PkP

k = 0 surfaces
as X3

L gives a very powerful constraint on SH and M8 −H duality.

5. The masslessness condition restricts the spinors at 3-D light-cone boundary in P (M8). M8−
H duality [L26] suggests that this boundary is mapped to X3

L ⊂ H defining the light-like
orbit of the partonic 2-surface in H. The identification of the images of PkP

k = 0 surfaces
as X3

L gives a very powerful constraint on SH and M8 −H duality.

6. The variant Dirac equation would hold true also at 2-surfaces X2 ⊂ X4 and should commute
with the corresponding chirality condition. Now D†DΨ = 0 defines a 2-D variant of massless-
ness condition with 2-momentum components represented by those of P . 2-D masslessness
locates the spinor to a 1-D curve X1

L. Its H-image would naturally contain the boundary
of the string word sheet at X3

L assumed to carry fermion quantum numbers and also the
boundary of string world sheet at the light-like boundary of CD4. The interior of the string
world sheet in H would not carry an induced spinor field.

7. The general solution for both 4-D and 2-D cases can be written as Ψ = PΨ0, Ψ0 a constant
spinor - this is in a complete analogy with the solution of modified Dirac equation in H. P
depends on position: the WKB approximation using plane waves with position dependent
momentum seems to be nearer to reality than one might expect.

3. The phenomenological picture at H-level follows from the M8-picture

Remarkably, the partly phenomenological picture developed at the level of H is reproduced at
the level of M8. Whether the induced spinor fields in the interior of X4 are present or not, has
been a long standing question since they do not seem to have any role in the physical picture. The
proposed picture answers this question.

Consider now the explicit realization of M8 −H-duality for fermions.

1. SH and the expected analogy with the bosonic variant of M8 − H duality lead to the first
guess. The spinor modes in X4 ⊂ M8 restricted to X2 can be mapped by M8 −H-duality
to those at their images X2 ⊂ H, and define boundary conditions allowing to deduce the
solution of the modified Dirac equation at X4 ⊂ H. X2 would correspond to string world
sheets having boundaries X1

L at X3
L.

The guess is not quite correct. Algebraic Dirac equation requires that the solutions are
restricted to the 3-D and 1-D mass shells PkP

k = 0 in M8. This should remain true also in
H and X3

L and their 1-D intersections X1
L with string world sheets remain. Fermions would

live at boundaries. This is just the picture proposed for the TGD counterparts of the twistor
amplitudes and corresponds to that used in the twistor Grassmann approach!

For 2-D case constant octonionic spinors Ψ0 and gamma matrix algebra are equivalent with
the ordinary Weyl spinors and gamma matrix algebra and can be mapped as such to H. This
gives one additional reason for why SH must be involved.

2. At the level of H the first guess is that the modified Dirac equation DΨ = 0 is true for
D based on the modified gamma matrices associated with both volume action and Kähler
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action. This would select preferred solutions of modified Dirac equation and conform with
the vanishing of super-symplectic Noether charges for SSAn for the spinor modes. The guess
is not quite correct. The restriction of the induced spinors to X3

L requires that Chern-Simons
action at X3

L defines the modified Drac action.

3. The question has been whether the 2-D modified Dirac action emerges as a singular part of 4-
D modified Dirac action assignable to singular 2-surface or can one assign an independent 2-D
Dirac action assignable to 2-surfaces selected by some other criterion. For singular surfaces
M8−H duality fails since tangent space would reduce to 2-D space so that only their images
can appear in SH at the level of H.

This supports the view that singular surfaces are actually 3-D mass shells M8 mapped to X3
L

for which 4-D tangent space is 2-D by the vanishing of
√
g4 and light-likeness. String world

sheets would correspond to non-singular X2 ⊂ M8 mapped to H and defining data for SH
and their boundaries X1

L ⊂ X3
L and X1

L ⊂ CD4 would define fermionic variant of SH.

What about the modified Dirac operator D in H?

1. For X3
L modified Dirac equation DΨ = 0 based on 4-D action S containing volume and

Kähler term is problematic since the induced metric fails to have inverse at X3
L. The only

possible action is Chern-Simons action SCS used in topological quantum field theories and
now defined as sum of C-S terms for Kähler actions in M4 and CP2 degrees of freedom. The
presence of M4 part of Kähler form of M8 is forced by the twistor lift, and would give rise to
small CP breaking effects explaining matter antimatter asymmetry [L30, L29]. SC−S could
emerge as a limit of 4-D action.

The modified Dirac operator DC−S uses modified gamma matrices identified as contractions
ΓαCS = Tαkγk, where Tαk = ∂LCS/∂(∂αh

k) are canonical momentum currents for SC−S
defined by a standard formula.

2. CP2 part would give conserved Noether currents for color in and M4 part Poincare quantum
numbers: the apparently small CP breaking term would give masses for quarks and leptons!
The bosonic Noether current JB,A for Killing vector jkA would be proportional to JαB,A =

Tαk jAk and given by JB,A = εαβγ [JβγAk +AβJγk]jkA.

Fermionic Noether current would be JF,A = ΨJαΨ 3-D Riemann spaces allow coordinates in
which the metric tensor is a direct sum of 1-D and 2-D contributions and are analogous to
expectation values of bosonic Noether currents. One can also identify also finite number of
Noether super currents by replacing Ψ or Ψ by its modes.

3. In the case of X3
L the 1-D part light-like part would vanish. If also induced Kähler form

is non-vanishing only in 2-D degrees of freedom, the Noether charge densities J t reduce to
J t = JAkj

k
A, J = εαβγJβγ defining magnetic flux. The modified Dirac operator would reduce

to D = JAkγ
kDt and 3-D solutions would be covariantly constant spinors along the light-like

geodesics parameterized by the points 2-D cross section. One could say that the number of
solutions is finite and corresponds to covariantly constant modes continued from X1

L to X3
L.

This picture is just what the twistor Grassmannian approach led to [L19, L20].

4 Could Kähler metric of state space replace S-matrix?

In the sequel a more detailed view about the reduction of S-matrix to a non-flat Kähler geometry
of Hilbert space consisting of WCW spinor fields is considered. The proposal is novel in the sense
that the state space would codes interactions to its geometry just like space-time geometry codes
gravitational interaction in general relativity.

4.1 About WCW spinor fields

4.1.1 Induction of second quantized spinor fields from H

There are two approaches to the quantization of induced spinors at space-time surfaces, and these
approaches are equivalent.
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1. Induction means that gamma matrices are determined by Kähler action as analogs for pro-
jections of embedding space gamma matrices and space-time spinor field χ is simply the
restriction of H spinor field Ψ. For a given action determining X4, supersymmetry allows
the identification of the modified Dirac operator D and finding of the modes of the induced H
spinor field as solutions of the modified Dirac equation (MDE) Dχ = 0. Second quantization
would replace their coefficients with oscillator operators. However, it is not clear what the
anti-commutation relations for the oscillator operators are.

2. One can generalize the classical induction of spinors Ψ to an induction of second quantized
spinor fields in H as a restriction of the second quantized Ψ in H to the X4. One must
however get rid of normal ordering diverges due the fact that the anti-commutators for
coinciding points give 7-D delta functions. One gets rid of them, if the Ψ and Ψ are assigned
to disjoin space-time regions. This leads to bi-local modified Dirac action (MDA), implying
automatically the classical field equations for the action determining D.

What does DΨ = 0 really mean when Ψ is quantum field? One can develop the restrictions of
the c-valued modes of Ψ in terms of modes of χ satisfying Dχ = 0, and obtain an expression
for Ψ at X4 in terms of these modes each satisfying MDE. The operator valued coefficients
of Ψ modes contributing to a given mode of χ would define the corresponding oscillator value
fermionic oscillator operators at X4.

Also the generalizations of the variants of MDE restricted to sub-manifolds of X4 make sense
and are needed. The beauty is that there is no need to introduce spinor fields at lower-D
surfaces as independent dynamical degrees of freedom. For instance, one only a variant of
a modified Dirac action defined by Cherns-Simons analog of Kähler action makes sense at
light-like partonic orbits so that one has an analog of a topological quantum field theory
(TQFT).

4.1.2 How to avoid normal ordering divergences from fermionic oscillator operators?

The normal ordering divergences due to the anti-commutators of fermionic fields at the same
point are really serious since induce spinor fields of 8-D H = M4 × CP2 so that normal ordering
singularities are proportional to 7-D delta function δ7(0). They are encountered already for the
ordinary MDA giving rise to bosonic SCA charges as Noether charges, which also are plagued by
these divergences. Normal ordering for the oscillators in the Noether charges associated with MDA
would allow to get rid of the divergences but is a mere trick. The proposal considered in [L35] is
to make MDA bi-local at the space-time level.

Consider the general constraints on bi-locality coming from the cancellation of the normal
ordering divergences.

1. Consider first 4-D variant of MDA. The most general option for MDA is that there is an
integral over the entire X4 for both Ψ and Ψ separately sothat one has 2 4-D integrations.
One obtains potential normal ordering divergences proportional to δ7(0)d8x. If one has two
space-time sheets which in the generic case intersect transversally at discrete set of points,
one obtains a vanishing result. However, the self-pairing of a given space-time sheet gives a
divergence as a 4-D volume integral of δ3(0). The definition of the self-pairing as a limit of
separate space-time sheets approaching each other to get rid of the divergences looks like a
trick.

This suggests that the pairing can occur only between disjoint space-time regions, most
naturally space-time sheets. For instance, parallel space-time sheets with overlapping M4

projections. Allowing pairing only between disjoint regions eliminates also the divergences
associated with the bosonic Noether charges deduced from MDA and involving 3+4-D integral
instead of 3-D integral.

What could be the precise definition for these disjoint regions? M8−H duality suggests that
they correspond to different roots of the octonionic polynomial defined by real polynomials.
When 2 roots coincide, one obtains a term of type δ7(0)d7x giving a finite result. What if
the number of coinciding roots is higher than 2? This case will be discussed later in number
theoretic context.
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What about space-like regions, in particular the wormhole contacts expected to be small
deformations of a warped embedding of CP2 having light-like M4 projection but having same
Kähler metric and Kähler form as CP2 [K1]? There is no pairing with a parallel space-time
sheet now. It seems that the pairing must be between different wormhole contacts. This
pairing could be essential for the understanding of string like entities as paired wormhole
contacts providing a model for elementary particles.

2. For the bilinear MDA, the variation of the 4+4-D modified Dirac action with respect to
Ψ and Ψ yields both the modified Dirac equation DΨ = 0 plus the field equations for the
preferred extremal. This gives the modes of the induced spinor field. In the standard picture
the hermiticity condition for the Dirac action yields the same outcome and has interpretation
as a supersymmetry between classical and fermionic degrees of freedom.

3. Both the phenomenological picture developed during years and M8 − H duality strongly
suggest that spinors can be restricted also to lower-D surfaces. For the lower-D variants
of MDA the normal ordering divergences appear already for tranversal intersections. For
instance, for 3-D variant of MDA one has δ7(0)d7x type divergences. The only possible
manner to avoid them is to require that paired regions are disjoint. For the 3-D Chern-
Simons-Kähler action associated with the light-like partonic orbits the paired space-time
sheets are very naturally the opposite wormhole throats so that fermions and antifermions
would reside at opposite wormhole throats.

Physical picture also suggests the assignment of actions to 2-D string world sheets and 1-D
light-boundaries defining their intersections with partonic orbits.

4. Also 6-D brane-like solutions having the topology of S6 and t = rn hyper-plane as inter-
section with M4 are of physical interest. Different 4-D space-time surfaces could be glued
together along 3-surfaces or 2-D partonic 2-surfaces at S6. Arguments similar to those already
discussed exclude the pairing of various objects with these 6-branes as also their self-pairing.

Also M4 and CP2 define special solutions to the algebraic equations in M8. MDA reduces
to ordinary massless Dirac equation in M4. In the case of CP2 one has a massless Dirac
equation in CP2 and only the right-handed neutrino νR is possible as a solution. If only
quarks are allowed, this solution is excluded. What happens for the deformations of CP2?
Could it be that quarks cannot reside inside wormhole contacts as 4-D entities? Or could
one allow solutions of DΨ = 0 as analytic functions of CP2 coordinates finite in the region
in which they are defined - wormhole contact does not span the entire CP2?

Cognitive representations provide additional insights to the problem of normal ordering diver-
gences, and it could be even argued that they are the only possible manner to define scattering
amplitudes as a sequences of improving approximation natural in the approach based on hyper-
finite factors of type II1 (HFFs).

1. For a given extension of rationals determined by the polynomial defining the space-time region
in M8, the space-time surfaces inside CD are replaced with their discretizations consisting
of points of M8 in the extension considered. This surface and cognitive representation are
mapped to H by M8 − H correspondence [L22]. For cognitive representations one can
perform discretization by replacing the integrals defining SCA generators with discrete sums
over points of the cognitive representation. This replacement is very natural since in the
p-adic context the counterpart of the Riemann integral does not exist.

2. The Galois group of extension serves as a symmetry group and one can form analogs of
group algebra elements - wave functions in discrete Galois group - acting on the cognitive
representation and giving rise to discrete representation of quantum states. This state space
has as its dimension the dimension n of the Galois group which for Galois extensions coincides
with the dimension of extension [L13, L37]. This group algebra-like structure can be given
Kähler metric and also spinor structure and this spinor structure could discretize the spinor
structure of WCW if gamma matrices are identified as fermionic oscillator operators.

3. Also now one can avoid divergences if the paired space-time regions, say space-time sheets,
in MDA are disjoint. It can however happen that n separate points at the orbit of the Galois
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group approach each other and coincide: this would correspond to the touching of space-time
sheets meaning coinciding roots of the octonionic polynomial. In this situation a subgroup
of the Galois group would leave the intersection point invariant.

The possible normal ordering divergence comes from different pairs of the m points, which
coincide. In 4-D case, the situation corresponds to transversal space-time sheets so that the
divergence vanishes. For lower-dimensional surfaces, say partonic orbits, the intersections do
not occur in the generic situation but if they occur, the divergence is multiplied by a sum
over the values of wave function at coinciding branches and vanishes if the representation is
non-singlet. It would thus seem that the non-singlet character of Galois representations must
be posed as an additional condition.

4. This cancellation mechanism works even without discretization since the notions of Galois
group and its representations make sense for arbitrary polynomial surfaces without a re-
striction to rational or algebraic polynomial coefficients so that the cancellation occurs for
non-singlet representations when the space-time sheets intersect.

4.1.3 Are fermions 4-D in H but 3-D in M8?

M8−H duality suggests the restriction of the induced spinor fields to light-like 3-surfaces having 2-
D partonic surfaces as ends. M8−H duality reduces space-time surfaces in M8 to algebraic surfaces
defined by polynomials of real variable. The coefficients can be complex. Concerning p-adicization
real rationals defines the most attractive option. This leads to a picture in which a hierarchy
of extensions of rationals defines evolutionary and cognitive hierarchies. The extensions provide
cognitive representations as unique discretizations of the X4 with embedding space coordinates in
extension of rationals and the one can formulate quantum TGD in finite measurement resolution
at least using these representations.

The fermionic variant of M8−H duality [L36] leads to the conclusion that spinor modes in M8

are restricted at 3-D light-like surfaces obeying an algebraic equations analogs to the momentum
space variant of massless Dirac equation. Are H fermions also always restricted to the 3-D light-like
orbits of the partonic 2-surfaces at which the signature of the induced metric changes?

On the other hand, the picture deduced at the level of H from the cancellation of the normal
ordering divergences allows 4-D fermions, and also implies field equations for X4 itself. Can one say
that free fermions can reside in 4-D space-time but reside only at the 3-D mass shell in momentum
space. M8 − H duality would be analogous to the duality between space-time and momentum
space descriptions of particles.

Even more, string world sheets have light-like boundaries at the parton orbits. Also fermions
in H would be naturally located at string boundaries and behave like point-like particles. One
would obtain a picture resembling that provided by twistor Grassmannian approach. Also the
cancellation of normal ordering divergences supports this picture and leads to a detailed form of
bi-linear modified Dirac action. Also strong form of holography (SH) stating that 2-surfaces carry
all information needed to construct the X4 supports this view. This is actually the same as the
phenomenological picture that has been applied.

M8 − H duality predicts also ”very special moments in the life self” to have as correlates 6-
branes with M4 time defining in M8 octonionic real axis (unique rest system) having as values roots
of the polynomial defining the space-time surfaces. These surfaces should contain the partonic 2-
surfaces defining the reaction vertices. If there is a non-determinism associated with these surfaces
it should preserve classical charges and also SSA charge.

4.1.4 Is the proposed counterpart of QFT supersymmetry only an approximate sym-
metry?

The proposal for the cancellation of the normal ordering divergences allows overviewing leptons
as three quark composites with 3 quarks at the same wormhole throat. This option is strongly
suggested by the conceptual economy since quarks are enough for WCW spinor structure.

An interesting question is whether TGD allows a counterpart of QFT supersymmetry (SUSY).
This was proposed in [L24]. The idea was that both embedding space coordinates and spinors can
be expanded as polynomials in the local compositesof quark and antiquark oscillator operators -
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rather than anticommuting hermitian theta parameters leading to problems with fermion number
conservation - with a well-defined quark number.

The proposal was that leptons are purely local 3-quark-composite analogous to a superpartner
of quark: note however that quark superspinor would have quark number one so that precise
spartner interpretation fails. This option and only its slightly local variant is possible only for the
TGD view about color as angular momentum rather than spin-like quantum number.

This proposal was based on discrete cognitive representations as unique discretizations of the
X4 and on the crucial assumption that fermionic oscillator operators obey Kronecker delta type
anticommutations rather than the 8-D anticommutations giving δ7(0) anti-commutator singulari-
ties for the induced second quantized quark field in H. Can the notion of super-field based on local
composites of quarks and antiquarks with a definite fermion number avoid normal ordering diver-
gences for the induced anticommutation relations? One can of course think of a normal ordering
of monomials but one expects problems with vertices.

This suggests that the super coordinates of H and superspinors can be only approximate no-
tions. Superfield components would correspond to states with a fixed quark number but quarks
and antiquarks would reside at opposite wormhole throats rather than forming exactly local com-
posites. Since the throat is expected to have CP2 size, these states would be for all practical
purposes strictly local composites.

4.2 Kähler metric as the analog of S-matrix

Kähler metric defines a complex inner product. Complex inner products also define scattering
amplitudes. Usually metric is regarded as defining length and angle measurement. Could the
Kähler metric define unitary S-matrix? Under simple additional conditions this is true!

4.2.1 The analogs of unitarity conditions

The following little arguments show that given Kähler metric defines an analog of unitary S-matrix
giving rise positive transition probabilities, and under additional conditions also a unitary S-matrix
between states with quantum numbers labeling basis of complex vectors or of complexified gamma
matrices. This defines an S-matrix like entity and under some additional conditions even an unitary
S-matrix.

1. The defining conditions for unitary S-matrix and Kähler metric are very similar. S and S†

would correspond to the covariant metric gmn and contravariant metric gmn. Unitary for
S-matrix corresponds to the conditions

SmrS
†
rn = SmrSnr = δm,n .

(there is summation over repeated indices). The rows of S-matrix are orthonormalized. The
definition of the contravariant metriccorresponds the conditions

gmrg
rn = δm,n .

The complex rows of metric tensor and contravariant metric are orthonormalized also now
and rows are orthonormal

2. For S-matrix the probabilities are given by pmn = SmnS
†
nm = SmnSmn∗ and are real and

non-negative and their sum is equal to one. Also for the Kähler metric the complex analogs
of probabilities defined by

pcmn = gmrg
rn

sum up to unity. Hence the real parts Re(pcmn) of pcmn sum up to unity whereas the imaginary
parts sum up to zero.
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3. pcmn are not however automatically real and non-negative and it is not clear how to interpret
complex or even real but negative probabilities physically. One can however pose the positiv-
ity of the real parts of pcmn as an additional condition on the phase factors Umn = exp(Φmn)
and Vmn = exp(Ψmn) associated with gmn = RmnUmn and gnm = SnmVnm. The condition
for positivity is

UmnVnm = cos(Φnm −Ψnm ≥ 0

and is rather mild requiring the angle difference to be in the range (−π/2, π/2). This is
true of the angles are in the range (π/4, π/4). The condition Re(pcmn) ≥ 0 is equivalent
with the condition Im(ipcmn) ≥ 0, and characterizes the coefficients of Teichmueller matrices
[A3, A6, A4] [K2]: the meaning of this condition will be discussed below.

4. Under what conditions pcmn reduce to non-negative real numbers? One can express the
probabilities as pmn = gmn × cof(gmn)/det(g). Note that Z = det(g) is constant depending
only on the point of the Kähler manifold. One can express gmn as gmn = AmnUmn and
cof(gmn) as cof(gmn) = BmnVmn. The reality condition implies

Umn = Vmn .

The phases of gmn and cof(gmn) are opposite.

This gives additional conditions. Kähler metric involves Ntot = 2N2 real parameters There
are (N2−N)/2 elements in say upper diagonal and by hermiticity they are complex conjugates
of the lower diagonal. This is the number Ncond of conditions coming from the reality. There
is also one additional condition due to the fact that the probabilities do not depend on the
normalization of g. The total number of real parameters is

Nparam = Ntot −Ncond − 1 = N(N − 1)− 1 .

For instance, for N ∈ {2, 3, 4} one has Nparam =∈ {1, 5, 11}. Unitary matrix allows Nunit =
N2 real parameters and the ratio Nparam/Nunit = (N(N − 1)− 1)/N2 approaches unity for
large values of N . Note that a unitary matrix with real diagonals has N2−N parameters so
that the number of parameters is the same as for a hermitian metric with unit determinant.

5. Could one transform the metric defining non-negative probabilities to a unitary matrix by a
suitable scaling? One can indeed define a matrix S as a matrix Smn =

√
AmnBmn/ZUmn.

One has SmnSmn∗ = AmnBmn/Z given also by the product of gmng
nm so that the probabil-

ities are the same. The unitarity conditions reduce to gmrg
rn = δnm.

In infinite dimensional case problems might be produced by the appearance of the square root
of determinant expected to be infinite. However, also the cofactors are expected to diverge,
and one can express them as partial derivatives of the metric determinant with respect to the
corresponding element of the metric. This is expected to give a finite value for the elements
of the contravariant metric. Note that the ratios of the probabilities do not depend on the
metric determinant.

4.2.2 Can one distinguish between the descriptions based on Kähler metric and S-
matrix?

For the Teichmueller option the proposed analog for S-matrix involves imaginary part. Does it
have some physically observable consequences?

Could one imagine a physical situation allowing to test whether the S-matrix description or
its TGD variant is nearer to truth? One can indeed imagine an analog of a Markov process
characterized by a matrix p of transition probabilities pmn at a given step. For a two-step process
the transition matrix would be p2mn.

In the TGD context one would have pmn = Re(pcmn). What happens in a two-step process?
Should one use use p2mn or Re((pc)2)mn = Re((pc)2)mn − Im(pc)2mn? If both options are possible,
what could distinguish physically between them?
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Could the correct interpretation be that p2mn describes the process when the outcome is mea-
sured in both steps, and Re((pc)2)mn the process in which only initial and final states are mea-
sured? This picture would generalize to n-step processes and predict a deviations from the ordinary
Markov process and perhaps allow to compare the predictions of the TGD view and standard view
and deduce Im(pc).

S-matrix and its Hermitian conjugate correspond in standard physics to situations related by
CPT symmetry defined as the product of charge conjugation C, spatial reflection P and time
reversal T. The transition probabilities would remain invariant in this transformation although
transition amplitudes are replaced with their complex conjugates.

What happens to CPT in TGD framework? In TGD framework CPT induces a hermitian
conjugation gmn → gnm =

5 The role of fermions

In this section the role of fermions (quarks as it seems) is discussed in more detail. In particular,
the conditions on the scattering amplitudes from the cancellation of normal ordering divergences
and co-associative octonionic spinors at the level of M8 are discussed. Also the formulation of
scattering amplitudes the level of M8 is briefly considered.

5.1 Some observations about Feynman propagator for fundamental quark
field

In the sequel the divergence cancellation mechanism and the properties of Dirac propagator are
discussed in detail. The surprise is that the massive propagators with CP2 mass scale reduce
essentially to massless propagators for light-like separations. This allows understanding of why
quarks can give rise to light elementary particles.

The second quantized free quark field Ψ in H defines fundamental fermions appearing as a
building brick of elementary particles. The Feynman propagator for Ψ appears in the analogs of
Feynman diagrams. Apart from the right handed neutrino (present only as a 3 quark composite at
partonic 2-surface if only quarks are involved) the modes of Ψ are extremely massive. Elementary
particles are light. How can one understand this?

In p-adic thermodynamics the generation of small mass was assumed to involve a generation
of a negative, ”tachyonic”, ground state conformal weight encountered also in string models.
M8−H correspondence allows a more sophisticated description based on the choice of M4 ⊂M8

mapped to M4 ⊂ H. By 8-D Lorentz invariance the 4-D mass squared of ground state massless
in 8-D sense, depends on the choice of M4 ⊂ H, and with a proper re-choice of M4 the particle
having large M4 mass becomes massless.

The action of the generators of super-conformal algebra creates states with a well-defined
conformal weight, which are massless for a proper choice of M4 ⊂M8. In p-adic thermodynamics
the choice of M4 ⊂ M8 would correspond to a generation of negative ground state conformal
weight.

The states can however mix slightly with states having higher value of conformal weight, and
since one cannot choose M4 separately for these states, a small mass is generated and described by
p-adic thermodynamics. The classical space-time correlate for the almost masslessness is minimal
surface property, which provides a non-linear geometrization for massless fields as surfaces. The
non-linearity at the classical level leads to a generation of small mass in 4-D sense for which
p-adic thermodynamics provides a model.

The propagators for the fundamental quarks in H correspond to CP2 mass scale. Can this be
consistent with the proposed picture? The following simple observations about the properties of
predicted fermion propagator and anticommutator for the induced spinor fields lead to a result,
which was a surprise to me. The propagators and anti-commutators of massive quarks at light cone
boundary are in excellent approximation massless for light-like distances. This makes it possible
to understand why elementary fermions are light.

This mechanism does not work in QFT defined in M4 since inverse propagator is γkpk +m so
that M4 chiralities mix for massive states. In TGD picture H-chirality is fixed by 8-D masslessnes
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and the product of M4 and CP2 chiralities for spinors equals to the H chirality. The inverse
progator is proportional to the operator pkγ +DCP2 , where DCP2 is CP2 part of Dirac operator.

5.1.1 General form of the Dirac propagator in H

Second quantized quark field Ψ restricted to the space-time surface determines the Feynman
propagator fundamental quark. The propagator can be expressed as a sum of left- and right-
handed propagators as

SF = SF,L + SF,R = DLGF,L +DRGF,R .

Here DL and DR are the left- and right-handed parts of a massless (in 8-D sense) Dirac operator
D in H involving couplings to CP2 spinor connection depending on CP2 chirality in accordance
with electroweak parity breaking. GF,L resp. GF,R is the propagator for a massless (in 8-D sense)
scalar Laplacian in H coupling to the spinor connection assignable to left resp. right handed modes.
GF can be expressed by generalizing the formula from 4-D case

GF,I
∑
n

∫
d4p

1

p2 −M2
n,I

exp(ip · (m1 −m2))Φ∗n,I(s1)Φn,I(s2) .

Here one has I ∈ {L,R} and the mass spectra are different for these modes. Here mi denote
points of M4 and si points of CP2. n, I, I ∈ {L,R}, labels the modes Φn,I of a scalar field in
CP2 associated with right and left handed modes having mass squared Mn,R. Since H-chirality is
fixed to be quark chirality, there is a correlation between M4 - and CP2 chiralities. Apart from
νR all modes are massive (νR is need not be present as a fundamental fermion) and the mass Mn,
which is of order CP2 mass about 10−4 Planck masses, is determined by the CP2 length scale
and depends on CP2 chirality.

GF,I reduces to a superposition over massive propagators with mass Mn,I :

GF,I =
∑
n

GF (m1 −m2|Mn)Φ∗n,I(s1)Φn,I(s2)PI .

Here PI , I ∈ {L,R} is a projector to the left/right handed spinors. One can express SF,I as a sum
of the free M4 part and interaction term proportional to the left - or right-handed part of CP2

spinor connection:

SF,I = D(M4)GF,I +AIGF,I .

AI , I inf{L,R} acts either on s1 or s2 but the outcome should be the same. The first term gives
sum over terms proportional to massive free Dirac propagator in M4 allowing to get a good idea
about the behavior of the propagator.

5.1.2 About the behavior of the quark propagator

The quark propagator reduces to left- and right-handed contributions corresponding to various
mass values Mn,I . To get view about the behaviour of the quark propagator it is useful to study
the behavior of GF (x, y|M) for a given mass as well as the behaviors of free and interacting parts
of SF its free part

From the explicit expression of GF (m1 − m2|Mn) one can deduce the behavior of the cor-
responding contribution to the Feynman propagator. Only νR could give a massless contribu-
tion to the progator. Explicit formula for GF can be found from Wikipedia [A2] (https:
//en.wikipedia.org/wiki/Propagator#Feynman_propagator):

GF (x, y|m) =

{
− 1

4π δ(s) + m
8π
√
s
H

(1)
1 (m

√
s), s ≥ 0

− im
4π2
√
−sK

(1)
1 (m

√
−s), s ≤ 0 .

Here H
(1)
1 (x) is Hankel function of first kind and K

(1)
1 is modified Bessel function [A1](https:

//en.wikipedia.org/wiki/Bessel_function). Note that for massless case the Hankel term van-
ishes.

Consider first Hankel function.

https://en.wikipedia.org/wiki/Propagator#Feynman_propagator
https://en.wikipedia.org/wiki/Propagator#Feynman_propagator
https://en.wikipedia.org/wiki/Bessel_function
https://en.wikipedia.org/wiki/Bessel_function
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1. Hankel function H
(1)
α (x) [A1, A2] obeys the defining formula

H
(1)
α (x) = J−α(x)−exp(iαπi)Jα(x)

isin(απ) .

For integer values of α one has J−n(x) = (−1)nJn(x) so that α = n case gives formally 0/0
and the limit must be obtained using Hospital’s rule.

2. Hankel function H
(1)
1 (x) can be expressed as sum of Bessel functions of first and second kind

H
(1)
1 (x) = J1(x) + iY1(x) .

J1 vanishes at origin whereas Y1 diverges like 1/x at origin.

3. The behaviors of Bessel functions and their variants near origin and asymptotically are easy
to understand by utilizing Schrödinger equation inside a cylinder as a physical analogy. The
asymptotic behaviour of Hankel function for large values of x is

H
(1)
α (x) = 2

πxexp(i(x− 3π/4)) ,

4. The asymptotic behavior of Hankel function implies that the massive Feynman propagator
an oscillatory behavior as a function of m

√
s. Modulus decreases like 1/

√
m
√
s. The

asymptotic behavior for the real and imaginary parts corresponds to that for Bessel functions

of first kind (J1) and second kind (Y1). At origin H
(1)
α (x) diverges like Y1(x) ∼ (x/2)−n

π

near origin. For large values of x K1(x) decreases exponentially like exp(−x)
√
π

2x . At origin
K1(x) diverges.

5. In the recent case the quark propagator would oscillate extremely rapidly leaving only the
δ(s) part so that the propagator behaves like massless propagator!

The localization of quarks to the partonic surfaces with a size scale of CP2 radius implies
that that the oscillation does not lead to a vanishing of the Hankel contribution to the scat-
tering amplitudes. For induced spinor fields in the interior of space-time surfaces destructive
interference is however expected to occur so that behavior is like that for a massless particle.
This should explain why the observed particles are light although the fundamental fermions
are extremely massive. The classical propagation would be essentially along light-like rays.

The long range correlations between quarks would come from the δ(s) part of the propagator,
and would not depend on quark mass so that it would effectively behave like a massless
particle. Also the action of Dirac operator on GF (x, y) in M4 degrees of freedom is that of a
massless Dirac propagator coupling to induced gauge potentials. The quarks inside hadrons
and also elementary particles associated with the wormhole throats of flux tubes could be
understood as quarks at different partonic 2-surfaces at the boundary of CD having light-like
distance in an excellent approximation.

6. The above argument is for the Feynman propagator but should generalize also for anti-
commutator. The anticommutator for Dirac operator D in M4 can be expressed as
D∆(x, y), where D is a scalar field propagator.

∆(x, y|m) ∝

{
m

8π
√
s
H

(1)
1 (m

√
s), s ≥ 0

− m√
−sK

(1)
1 (m

√
−s), s ≤ 0 .

Apart from possible proportionality constants the behavior is very similar to that for Feynman
propagator except that the crucial δ(s) term making possible effectively massless propagation
is absent. At light-cone boundary however

√
s is zero along light rays, and this gives long

range correlations between fermions at different partonic 2-surfaces intersected by light rays
from the origin. Hence one could have a non-vanishing Hermitian inner product for 3-D
states at boundaries of CD.

Rather remarkably, these results provide a justification for twistor-diagrams identified as
polygons consisting of light-like segments.



6. Conclusions 32

5.1.3 Possible normal ordering divergences

Concerning the cancellation of normal ordering divergences the singularities of the propagators
GF are crucial. The bi-linearity of the modified Dirac action forcing anticommuting quark and
antiquark oscillator operators at different throats of wormhole contacts but this need not guarantee
the absence of the divergence since the free quark propagator in M4 contains mass independent
δ(s) part plus the divergent part from Hankel function behaving like 1/

√
sm. For the massless

propagator assignable to νR the propagator would reduce to M4 propagator and only the δ(s)
would contribute.

s = 0 condition tells that the distance between fermion and anti-fermion is light-like and is
possible to satisfy at the light-like boundary of CD. Paired quark and antiquark at the wormhole
throats must reside at the same light-like radial ray from the tip of cd (cd corresponds to causal
diamond in M4). Since partonic surfaces are 2-D this condition selects discrete pairs of points at
the pair of the partonic surfaces. The integration over the position of the end of the propagator
line over paired partonic 2-surfaces should smooth out the divergences and yield a finite result.
This would be crucial for having an inner product for states at the boundary of the light-cone.

This applies also to the point pairs at opposite throats of wormhole contact. Time-ordered
product vanishing for t1 = t2 so that the points must have different values of t and this is possible.
The two 2-D integrations are expected to smooth out the singularities and eliminate divergences
also now.

6 Conclusions

TGD predicts revolution in quantum theory based on three new principles.

1. ZEO solving the basic paradox of quantum measurement theory. Ordinary (”big”) state func-
tion reduction involves time reversal forcing a generalization of thermodynamics and leading
to a theory of quantum self-organization and self-organized quantum criticality (homeostasis
in living matter).

2. Phases of ordinary matter labelled by effective Planck constant heff = nh0 identified as dark
matter and explaining the coherence of living matter in terms of dark matter at magnetic
body serving as a master, and predicting quantum coherence in all scales at the level of
magnetic bodies. heff/h0 = n has interpretation as the dimension for an extension of
rationals and is a measure of algebraic complexity. Evolution corresponds to the increase of
n.

Extensions of rationals are associated with adelic physics providing description of sensory
experience in terms of real physics and of cognition in terms of p-adic physics. Central
notion is cognition representation providing unique discretization of X4 in terms of points
with embedding space coordinates in the extension of rationals considered M8 −H duality
realizes the hierarchy of rational extensions and assigns them to polynomials defining space-
time regions at the level of M8 and mapped to minimal surfaces in H by M8−H duality.

3. The replacement of the unitary S-matrix with the Kähler metric of the Kähler space defined
by WCW spinor fields satisfying the analog of unitarity and predicting positive definite
transition probabilities defining matrix in Teichmueller space. Einstein’s geometrization of
classical physics extends to the level of state space, Equivalence Principle generalizes, and
interactions are coded by the geometry of the state space rather than by an ad hoc unitary
matrix. Kähler geometry for the spinor bundle of WCW has Riemann connection only for a
maximal group of isometries identified as super-symplectic transformations (SS). This makes
the theory unique and leads to explicit analogs of Feynman rules and to a proof that theory
is free of divergences.

In this work the third principle, which is new, is formulated and some of its consequences are
discussed. The detailed formulation allows understanding of how normal ordering divergences and
other divergences cancel. The key idea is to induce the second quantized free spinor field from
H to space-time surface. This determines the propagators at the space-time level. The condition
that creation and annihilation operators are at different space-time sheets - say at throats of
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wormhole contacts is enough. An alternative but not exclusive option suggested by ZEO is that
the annihilation operators correspond to creation operators for conjugated Dirac vacuum associated
with the opposite half-cone of CD or sub-CD.

A further observation is that the Dirac propagators for particles reduce in a good approximation
to massless propagators when the propagation takes place along light-like distances: this provides
a considerable insight to why physical particles are so light although the spinor harmonics for CP2

correspond to CP2 mass scale.
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of the manuscript.
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[A5] Freed DS. The Geometry of Loop Groups, 1985.

[A6] Kra I Farkas HM. Riemann Surfaces. Springer Verlag, 1980.

[A7] N. Hitchin. Kählerian twistor spaces. Proc London Math Soc, 8(43):133–151, 1981.. Available
at: https://tinyurl.com/pb8zpqo.

Theoretical Physics

[B1] He S Yan G Arkani-Hamed N, Bai Y. Scattering Forms and the Positive Geometry of Kine-
matics, Color and the Worldsheet, 2017. Available at:https://arxiv.org/abs/1711.09102.

[B2] Feng B Witten E Britto R, Cachazo F. Direct Proof of Tree-Level Recursion Relation in Yang-
Mills Theory. Phys Rev, 94:181602, 2005. Available at: https://arxiv.org/abs/hep-th/

0501052.

[B3] Witten E. Perturbative Gauge Theory As A String Theory In Twistor Space. Communications
in Mathematical Physics, 252:189–258, 2003. Available at: https://arxiv.org/abs/hep-th/
0312171.

[B4] Huang Y-T Elvang H. Scattering amplitudes, 2013. Available at: https://arxiv.org/pdf/
1308.1697v1.pdf.

[B5] Arkani-Hamed N et al. The S-Matrix in Twistor Space, 2009. Available at:https://arxiv.
org/abs/0903.2110.

[B6] Arkani-Hamed N et al. On-Shell Structures of MHV Amplitudes Beyond the Planar Limit,
2014. Available at:https://arxiv.org/abs/1412.8475.

[B7] Minev ZK et al. To catch and reverse a quantum jump mid-flight, 2019. Available at: https:
//arxiv.org/abs/1803.00545.

[B8] Preskill J et al. Holographic quantum error-correcting codes: Toy models for the
bulk/boundary correspondence, 2015. Available at: https://arxiv.org/pdf/1503.06237.

pdf.

https://en.wikipedia.org/wiki/Bessel_function
https://en.wikipedia.org/wiki/Propagator
https://tinyurl.com/pb8zpqo
https://arxiv.org/abs/1711.09102
https://arxiv.org/abs/hep-th/0501052
https://arxiv.org/abs/hep-th/0501052
https://arxiv.org/abs/hep-th/0312171
https://arxiv.org/abs/hep-th/0312171
https://arxiv.org/pdf/1308.1697v1.pdf
https://arxiv.org/pdf/1308.1697v1.pdf
https://arxiv.org/abs/0903.2110
https://arxiv.org/abs/0903.2110
https://arxiv.org/abs/1412. 8475
https://arxiv.org/abs/1803.00545
https://arxiv.org/abs/1803.00545
https://arxiv.org/pdf/1503.06237.pdf
https://arxiv.org/pdf/1503.06237.pdf


BIOLOGY 34

[B9] Witten E Green MB, Schartz JH. Cambridge University Press, Cambridge, 1987.

[B10] Maldacena JM. The Large N Limit of Superconformal Field Theories and Supergravity. Adv
Theor Math Phys, 2:231–252, 1995. Available at:https://arxiv.org/abs/hep-th/9711200.

[B11] Susskind L. The World as a Hologram. Journal of Mathematical Physics, 362(11):6377–6396,
1995. Available at:https://arxiv.org/abs/hep-th/9409089.

[B12] Penrose R. The Central Programme of Twistor Theory. Chaos, Solitons & Fractals, 10,
1999.

Biology

[I1] Fiaxat JD. A hypothesis on the rhythm of becoming. World Futures, 36:31–36, 1993.

[I2] Fiaxat JD. The hidden rhythm of evolution, 2014. Available at: https://byebyedarwin.

blogspot.fi/p/english-version_01.html.

Books related to TGD

[K1] Pitkänen M. About Preferred Extremals of Kähler Action. In Physics in Many-Sheeted Space-
Time: Part I. https: // tgdtheory. fi/ tgdhtml/ Btgdclass1. html . Available at: https:

//tgdtheory.fi/pdfpool/prext.pdf, 2023.

[K2] Pitkänen M. Construction of elementary particle vacuum functionals. In p-Adic Physics.
https: // tgdtheory. fi/ tgdhtml/ Bpadphys. html . Available at: https://tgdtheory.fi/
pdfpool/elvafu.pdf, 2023.

[K3] Pitkänen M. Construction of WCW Kähler Geometry from Symmetry Principles. In
Quantum Physics as Infinite-Dimensional Geometry. https: // tgdtheory. fi/ tgdhtml/

Btgdgeom. html . Available at: https://tgdtheory.fi/pdfpool/compl1.pdf, 2023.

[K4] Pitkänen M. Evolution of Ideas about Hyper-finite Factors in TGD. In Topological Ge-
ometrodynamics: Overview: Part II. https: // tgdtheory. fi/ tgdhtml/ Btgdoverview2 .
Available at: https://tgdtheory.fi/pdfpool/vNeumannnew, 2023.

[K5] Pitkänen M. Identification of the WCW Kähler Function. In Quantum Physics as Infinite-
Dimensional Geometry. https: // tgdtheory. fi/ tgdhtml/ Btgdgeom. html . Available at:
https://tgdtheory.fi/pdfpool/kahler.pdf., 2023.

[K6] Pitkänen M. Massless states and particle massivation. In p-Adic Physics. https: //

tgdtheory. fi/ tgdhtml/ Bpadphys. html . Available at: https://tgdtheory.fi/pdfpool/

mless.pdf, 2023.

[K7] Pitkänen M. TGD as a Generalized Number Theory: Infinite Primes. In TGD as a General-
ized Number Theory: Part I. https: // tgdtheory. fi/ tgdhtml/ Btgdnumber1. html . Avail-
able at: https://tgdtheory.fi/pdfpool/visionc.pdf, 2023.

[K8] Pitkänen M. Was von Neumann Right After All? In TGD and Hyper-finite Fac-
tors. https: // tgdtheory. fi/ tgdhtml/ BHFF. html . Available at: https://tgdtheory.

fi/pdfpool/vNeumann.pdf, 2023.

Articles about TGD

[L1] Pitkänen M. Quantum Mind, Magnetic Body, and Biological Body. Journal of Consciousness
Exploration and Research, 1(8), 2010.

[L2] Pitkänen M. TGD Inspired Theory of Consciousness. Journal of Consciousness Exploration
and Research, 1(2), 2010.

https://arxiv.org/abs/hep-th/9711200
https://arxiv.org/abs/hep-th/9409089
https://byebyedarwin.blogspot.fi/p/english-version_01.html
https://byebyedarwin.blogspot.fi/p/english-version_01.html
https://tgdtheory.fi/tgdhtml/Btgdclass1.html
https://tgdtheory.fi/pdfpool/prext.pdf
https://tgdtheory.fi/pdfpool/prext.pdf
https://tgdtheory.fi/tgdhtml/Bpadphys.html
https://tgdtheory.fi/pdfpool/elvafu.pdf
https://tgdtheory.fi/pdfpool/elvafu.pdf
https://tgdtheory.fi/tgdhtml/Btgdgeom.html
https://tgdtheory.fi/tgdhtml/Btgdgeom.html
https://tgdtheory.fi/pdfpool/compl1.pdf
https://tgdtheory.fi/tgdhtml/Btgdoverview2
https://tgdtheory.fi/pdfpool/vNeumannnew
https://tgdtheory.fi/tgdhtml/Btgdgeom.html
https://tgdtheory.fi/pdfpool/kahler.pdf
https://tgdtheory.fi/tgdhtml/Bpadphys.html
https://tgdtheory.fi/tgdhtml/Bpadphys.html
https://tgdtheory.fi/pdfpool/mless.pdf
https://tgdtheory.fi/pdfpool/mless.pdf
https://tgdtheory.fi/tgdhtml/Btgdnumber1.html
https://tgdtheory.fi/pdfpool/visionc.pdf
https://tgdtheory.fi/tgdhtml/BHFF.html
https://tgdtheory.fi/pdfpool/vNeumann.pdf
https://tgdtheory.fi/pdfpool/vNeumann.pdf


ARTICLES ABOUT TGD 35

[L3] Pitkänen M. The Geometry of CP2 and its Relationship to Standard Model. Pre-Space-Time
Journal, 1(4), 2010.

[L4] Pitkänen M. Physics as Infinite-dimensional Geometry II: Configuration Space Kähler Ge-
ometry from Symmetry Principles. Pre-Space-Time Journal, 1(4), 2010. See also https:

//tgdtheory.fi/pdfpool/compl1.pdf.

[L5] Pitkänen M. Physics as Infinite-dimensional Geometry I: Identification of the Configuration
Space Kähler Function. Pre-Space-Time Journal, 1(4), 2010. See also https://tgdtheory.

fi/pdfpool/kahler.pdf.

[L6] Pitkänen M. Physics as Generalized Number Theory I: p-Adic Physics and Number Theoretic
Universality. Pre-Space-Time Journal, 1(4), 2010. See also https://tgdtheory.fi/pdfpool/

visiona.pdf.

[L7] Pitkänen M. Physics as Generalized Number Theory II: Classical Number Fields. Pre-Space-
Time Journal, 1(4), 2010. See also https://tgdtheory.fi/pdfpool/visionb.pdf.

[L8] Pitkänen M. Physics as Generalized Number Theory III: Infinite Primes. Pre-Space-Time
Journal, 1(4), 2010. See also https://tgdtheory.fi/pdfpool/visionc.pdf.

[L9] Pitkänen M. Recent View about Kähler Geometry and Spinor Structure of WCW. Pre-Space-
Time Journal, 6(4), 2015. See also https://tgtheory.fi/pdfpool/wcwnew.pdf.

[L10] Pitkänen M. General Ideas about Octonions, Quaternions and Twistors. Pre-Space-Time
Journal, 6(4), 2015. See also https://tinyurl.com/ycg34whc.

[L11] Pitkänen M. Twistorial Lift of Kahler Action. Pre-Space-Time Journal, 7(7), 2016. See also
https://tgtheory.fi/public_html/articles/twistquestions.pdf.

[L12] Pitkänen M. Why Mersenne Primes Are So Special? Pre-Space-Time Journal, 7(7), 2016.
See also https://tgtheory.fi/public_html/articles/whymersennes.pdf.

[L13] Pitkänen M. About heff/h = n as the number of sheets of space-time surface as Galois
covering. Available at: https://tgdtheory.fi/public_html/articles/Galoisext.pdf.,
2017.

[L14] Pitkänen M. Does M8−H duality reduce classical TGD to octonionic algebraic geometry?:
part I. Available at: https://tgdtheory.fi/public_html/articles/ratpoints1.pdf.,
2017.

[L15] Pitkänen M. Does M8−H duality reduce classical TGD to octonionic algebraic geometry?:
part II. Available at: https://tgdtheory.fi/public_html/articles/ratpoints2.pdf.,
2017.

[L16] Pitkänen M. Does M8−H duality reduce classical TGD to octonionic algebraic geometry?:
part III. Available at: https://tgdtheory.fi/public_html/articles/ratpoints3.pdf.,
2017.

[L17] Pitkänen M. Philosophy of Adelic Physics. In Trends and Mathematical Methods in In-
terdisciplinary Mathematical Sciences, pages 241–319. Springer.Available at: https://link.
springer.com/chapter/10.1007/978-3-319-55612-3_11, 2017.

[L18] Pitkänen M. p-Adicization and Adelic Physics. Pre-Space-Time Journal., 8(3), 2017. See
also https://tgtheory.fi/public_html/articles/adelicphysics.pdf.

[L19] Pitkänen M. Recent Views About Twistorialization in TGD Framework (Part I). Pre-Space-
Time Journal, 9(3), 2018. See also https://tgtheory.fi/public_html/articles/smatrix.

pdf.

[L20] Pitkänen M. Recent Views About Twistorialization in TGD Framework (Part II). Pre-Space-
Time Journal, 9(3), 2018. See also https://tgtheory.fi/public_html/articles/smatrix.

pdf.

https://tgdtheory.fi/pdfpool/compl1.pdf
https://tgdtheory.fi/pdfpool/compl1.pdf
https://tgdtheory.fi/pdfpool/kahler.pdf
https://tgdtheory.fi/pdfpool/kahler.pdf
https://tgdtheory.fi/pdfpool/visiona.pdf
https://tgdtheory.fi/pdfpool/visiona.pdf
https://tgdtheory.fi/pdfpool/visionb.pdf
https://tgdtheory.fi/pdfpool/visionc.pdf
https://tgtheory.fi/pdfpool/wcwnew.pdf
https://tinyurl.com/ycg34whc
https://tgtheory.fi/public_html/articles/twistquestions.pdf
https://tgtheory.fi/public_html/articles/whymersennes.pdf
https://tgdtheory.fi/public_html/articles/Galoisext.pdf
https://tgdtheory.fi/public_html/articles/ratpoints1.pdf
https://tgdtheory.fi/public_html/articles/ratpoints2. pdf
https://tgdtheory.fi/public_html/articles/ratpoints3.pdf
https://link.springer.com/chapter/10.1007/978-3-319-55612-3_11
https://link.springer.com/chapter/10.1007/978-3-319-55612-3_11
https://tgtheory.fi/public_html/articles/adelicphysics.pdf
https://tgtheory.fi/public_html/articles/smatrix.pdf
https://tgtheory.fi/public_html/articles/smatrix.pdf
https://tgtheory.fi/public_html/articles/smatrix.pdf
https://tgtheory.fi/public_html/articles/smatrix.pdf


ARTICLES ABOUT TGD 36

[L21] Pitkänen M. Copenhagen interpretation dead: long live ZEO based quantum measurement
theory! Available at: https://tgdtheory.fi/public_html/articles/Bohrdead.pdf.,
2019.

[L22] Pitkänen M. New results related to M8 − H duality. Available at: https://tgdtheory.

fi/public_html/articles/M8Hduality.pdf., 2019.

[L23] Pitkänen M. Some comments related to Zero Energy Ontology (ZEO). Available at: https:
//tgdtheory.fi/public_html/articles/zeoquestions.pdf., 2019.

[L24] Pitkänen M. SUSY in TGD Universe. Available at: https://tgdtheory.fi/public_html/
articles/susyTGD.pdf., 2019.

[L25] Pitkänen M. Twistors in TGD. Available at: https://tgdtheory.fi/public_html/

articles/twistorTGD.pdf., 2019.

[L26] Pitkänen M. New Aspects of M8 − H Duality. Pre-Space-Time Journal, 10(6), 2019. See
also https://tgtheory.fi/public_html/articles/M8Hduality.pdf.

[L27] Pitkänen M. Comparison of the Perspectives of Mathematician & Physicist on Minimal Sur-
faces. Pre-Space-Time Journal, 10(3), 2019. See also https://tgtheory.fi/public_html/

articles/minimalsurfaces.pdf.

[L28] Pitkänen M. Why Ramified Primes Are So Special Physically. Pre-Space-Time Journal,
10(7), 2019. See also https://tgtheory.fi/public_html/articles/ramified.pdf.

[L29] Pitkänen M. SUSY in TGD Universe (Part II). Pre-Space-Time Journal, 10(7), 2019. See
also https://tgtheory.fi/public_html/articles/susyTGD.pdf.

[L30] Pitkänen M. SUSY in TGD Universe (Part I). Pre-Space-Time Journal, 10(4), 2019. See
also https://tgtheory.fi/public_html/articles/susyTGD.pdf.

[L31] Pitkänen M. Twistors in TGD (Part I). Pre-Space-Time Journal, 10(7), 2019. See also
https://tgtheory.fi/public_html/articles/twistorTGD.pdf.

[L32] Pitkänen M. Twistors in TGD (Part II) . Pre-Space-Time Journal, 10(7), 2019. See also
https://tgtheory.fi/public_html/articles/twistorTGD.pdf.

[L33] Pitkänen M. Twistor Lift of TGD & WCW Geometry. Pre-Space-Time Journal, 10(4), 2019.
See also https://tgtheory.fi/public_html/articles/wcwnew.pdf.

[L34] Pitkänen M. About M8 −H-duality, p-adic length scale hypothesis and dark matter hier-
archy. Available at: https://tgdtheory.fi/public_html/articles/paddarkscales.pdf.,
2020.

[L35] Pitkänen M. Could ZEO provide a new approach to the quantization of fermions? Available
at: https://tgdtheory.fi/public_html/articles/secondquant.pdf., 2020.

[L36] Pitkänen M. Fermionic variant of M8 −H duality. Available at: https://tgdtheory.fi/

public_html/articles/M8Hfermion.pdf., 2020.

[L37] Pitkänen M. The dynamics of SSFRs as quantum measurement cascades in the group
algebra of Galois group. Available at: https://tgdtheory.fi/public_html/articles/

SSFRGalois.pdf., 2020.

[L38] Pitkänen M. Zero Energy Ontology & Consciousness. Journal of Consciousness Explo-
ration & Research, 11(1), 2020. See also https://tgtheory.fi/public_html/articles/

zeoquestions.pdf.

[L39] Pitkänen M. Exotic smooth structures at space-time surfaces and master formula for scatter-
ing amplitudes in TGD. https://tgdtheory.fi/public_html/articles/masterformula.

pdf., 2023.

https://tgdtheory.fi/public_html/articles/Bohrdead.pdf
https://tgdtheory.fi/public_html/articles/M8Hduality.pdf
https://tgdtheory.fi/public_html/articles/M8Hduality.pdf
https://tgdtheory.fi/public_html/articles/zeoquestions.pdf
https://tgdtheory.fi/public_html/articles/zeoquestions.pdf
https://tgdtheory.fi/public_html/articles/susyTGD.pdf
https://tgdtheory.fi/public_html/articles/susyTGD.pdf
https://tgdtheory.fi/public_html/articles/twistorTGD.pdf
https://tgdtheory.fi/public_html/articles/twistorTGD.pdf
https://tgtheory.fi/public_html/articles/M8Hduality.pdf
https://tgtheory.fi/public_html/articles/minimalsurfaces.pdf
https://tgtheory.fi/public_html/articles/minimalsurfaces.pdf
https://tgtheory.fi/public_html/articles/ramified.pdf
https://tgtheory.fi/public_html/articles/susyTGD.pdf
https://tgtheory.fi/public_html/articles/susyTGD.pdf
https://tgtheory.fi/public_html/articles/twistorTGD.pdf
https://tgtheory.fi/public_html/articles/twistorTGD.pdf
https://tgtheory.fi/public_html/articles/wcwnew.pdf
https://tgdtheory.fi/public_html/articles/paddarkscales.pdf
https://tgdtheory.fi/public_html/articles/secondquant.pdf
https://tgdtheory.fi/public_html/articles/M8Hfermion.pdf
https://tgdtheory.fi/public_html/articles/M8Hfermion.pdf
https://tgdtheory.fi/public_html/articles/SSFRGalois.pdf
https://tgdtheory.fi/public_html/articles/SSFRGalois.pdf
https://tgtheory.fi/public_html/articles/zeoquestions.pdf
https://tgtheory.fi/public_html/articles/zeoquestions.pdf
https://tgdtheory.fi/public_html/articles/masterformula.pdf
https://tgdtheory.fi/public_html/articles/masterformula.pdf

	Introduction
	How to construct the TGD counterpart of unitary S-matrix?

	Physics as geometry
	Classical physics as sub-manifold geometry
	Induction procedure
	Spacetime is topologically complex
	Twistor lift

	Quantum physics as WCW geometry
	WCW as an analog of Wheeler's superspace

	Super-symplectic group as isometries of WCW
	Holography from GCI
	Strong form of holography
	Further generalizations


	Physics as number theory
	p-Adic and adelic physics and extensions of rationals (EQs)
	Classical number fields
	Space-time as 4-surface in M8c=Oc
	How to realize M8-H duality?
	What about M8-H duality in the fermionic sector?


	Could Kähler metric of state space replace S-matrix?
	About WCW spinor fields
	Induction of second quantized spinor fields from H
	How to avoid normal ordering divergences from fermionic oscillator operators?
	Are fermions 4-D in H but 3-D in M8?
	Is the proposed counterpart of QFT supersymmetry only an approximate symmetry?

	Kähler metric as the analog of S-matrix
	The analogs of unitarity conditions
	Can one distinguish between the descriptions based on Kähler metric and S-matrix?


	The role of fermions
	Some observations about Feynman propagator for fundamental quark field
	General form of the Dirac propagator in H
	About the behavior of the quark propagator
	Possible normal ordering divergences


	Conclusions

