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Abstract

In this chapter the goal is to find whether the general mathematical structures associated
with twistor approach, superstring models and M-theory could have a generalization or a
modification in TGD framework. The contents of the chapter is an outcome of a rather
spontaneous process, and represents rather unexpected new insights about TGD resulting as
outcome of the comparisons.

1. Infinite primes, Galois groups, algebraic geometry, and TGD

In algebraic geometry the notion of variety defined by algebraic equation is very general:
all number fields are allowed. One of the challenges is to define the counterparts of homology
and cohomology groups for them. The notion of cohomology giving rise also to homology if
Poincare duality holds true is central. The number of various cohomology theories has inflated
and one of the basic challenges to find a sufficiently general approach allowing to interpret
various cohomology theories as variations of the same motive as Grothendieck, who is the
pioneer of the field responsible for many of the basic notions and visions, expressed it.

Cohomology requires a definition of integral for forms for all number fields. In p-adic
context the lack of well-ordering of p-adic numbers implies difficulties both in homology and
cohomology since the notion of boundary does not exist in topological sense. The notion of
definite integral is problematic for the same reason. This has led to a proposal of reducing
integration to Fourier analysis working for symmetric spaces but requiring algebraic extensions
of p-adic numbers and an appropriate definition of the p-adic symmetric space. The definition
is not unique and the interpretation is in terms of the varying measurement resolution.

The notion of infinite has gradually turned out to be more and more important for quan-
tum TGD. Infinite primes, integers, and rationals form a hierarchy completely analogous to
a hierarchy of second quantization for a super-symmetric arithmetic quantum field theory.
The simplest infinite primes representing elementary particles at given level are in one-one
correspondence with many-particle states of the previous level. More complex infinite primes
have interpretation in terms of bound states.

1. What makes infinite primes interesting from the point of view of algebraic geometry
is that infinite primes, integers and rationals at the n:th level of the hierarchy are in
1-1 correspondence with rational functions of n arguments. One can solve the roots of
associated polynomials and perform a root decomposition of infinite primes at various
levels of the hierarchy and assign to them Galois groups acting as automorphisms of the
field extensions of polynomials defined by the roots coming as restrictions of the basic
polynomial to planes x,, =0, , = x,—1 = 0, etc...

2. These Galois groups are suggested to define non-commutative generalization of homo-
topy and homology theories and non-linear boundary operation for which a geometric
interpretation in terms of the restriction to lower-dimensional plane is proposed. The
Galois group G would be analogous to the relative homology group relative to the plane
zr—1 = 0 representing boundary and makes sense for all number fields also geometrically.
One can ask whether the invariance of the complex of groups under the permutations
of the orders of variables in the reduction process is necessary. Physical interpretation
suggests that this is not the case and that all the groups obtained by the permutations
are needed for a full description.

3. The algebraic counterpart of boundary map would map the elements of G}, identified as
analog of homotopy group to the commutator group [Gx—2, Gx—2] and therefore to the
unit element of the abelianized group defining cohomology group. In order to obtains
something analogous to the ordinary homology and cohomology groups one must however
replaces Galois groups by their group algebras with values in some field or ring. This
allows to define the analogs of homotopy and homology groups as their abelianizations.
Cohomotopy, and cohomology would emerge as duals of homotopy and homology in the
dual of the group algebra.

4. That the algebraic representation of the boundary operation is not expected to be unique
turns into blessing when on keeps the TGD as almost topological QFT vision as the guide
line. One can include all boundary homomorphisms subject to the condition that the
anticommutator 5,@5%71 —+ 6%52,1 maps to the group algebra of the commutator group
[Gik—2, Gk—2]. By adding dual generators one obtains what looks like a generalization of
anticommutative fermionic algebra and what comes in mind is the spectrum of quantum
states of a SUSY algebra spanned by bosonic states realized as group algebra elements
and fermionic states realized in terms of homotopy and cohomotopy and in abelianized
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version in terms of homology and cohomology. Galois group action allows to organize
quantum states into multiplets of Galois groups acting as symmetry groups of physics.
Poincare duality would map the analogs of fermionic creation operators to annihilation
operators and vice versa and the counterpart of pairing of k:th and n — k:th homology
groups would be inner product analogous to that given by Grassmann integration. The
interpretation in terms of fermions turns however to be wrong and the more appropriate
interpretation is in terms of Dolbeault cohomology applying to forms with homomorphic
and antiholomorphic indices.

5. The intuitive idea that the Galois group is analogous to 1-D homotopy group which is
the only non-commutative homotopy group, the structure of infinite primes analogous to
the braids of braids of braids of ... structure, the fact that Galois group is a subgroup of
permutation group, and the possibility to lift permutation group to a braid group suggests
a representation as flows of 2-D plane with punctures giving a direct connection with
topological quantum field theories for braids, knots and links. The natural assumption
is that the flows are induced from transformations of the symplectic group acting on
M3 x CP» representing quantum fluctuating degrees of freedom associated with WCW
(“world of classical worlds”). Discretization of WCW and cutoff in the number of modes
would be due to the finite measurement resolution. The outcome would be rather far
reaching: finite measurement resolution would allow to construct WCW spinor fields
explicitly using the machinery of number theory and algebraic geometry.

6. A connection with operads is highly suggestive. What is nice from TGD perspective is
that the non-commutative generalization homology and homotopy has direct connection
to the basic structure of quantum TGD almost topological quantum theory where braids
are basic objects and also to hyper-finite factors of type Il;. This notion of Galois
group makes sense only for the algebraic varieties for which coefficient field is algebraic
extension of some number field. Braid group approach however allows to generalize the
approach to completely general polynomials since the braid group make sense also when
the ends points for the braid are not algebraic points (roots of the polynomial).

This construction would realize the number theoretical, algebraic geometrical, and topolog-
ical content in the construction of quantum states in TGD framework in accordance with TGD
as almost TQFT philosophy, TGD as infinite-D geometry, and TGD as generalized number
theory visions.

2. p-Adic integration and cohomology

This picture leads also to a proposal how p-adic integrals could be defined in TGD frame-
work.

1. The calculation of twistorial amplitudes reduces to multi-dimensional residue calculus.
Motivic integration gives excellent hopes for the p-adic existence of this calculus and
braid representation would give space-time representation for the residue integrals in
terms of the braid points representing poles of the integrand: this would conform with
quantum classical correspondence. The power of 27 appearing in multiple residue integral
is problematic unless it disappears from scattering amplitudes. Otherwise one must allow
an extension of p-adic numbers to a ring containing powers of 2.

2. Weak form of electric-magnetic duality and the general solution ansatz for preferred
extremals reduce the Kéahler action defining the Kahler function for WCW to the integral
of Chern-Simons 3-form. Hence the reduction to cohomology takes places at space-time
level and since p-adic cohomology exists there are excellent hopes about the existence of
p-adic variant of Kahler action. The existence of the exponent of Kéhler gives additional
powerful constraints on the value of the Ké&hler fuction in the intersection of real and
p-adic worlds consisting of algebraic partonic 2-surfaces and allows to guess the general
form of the Kéhler action in p-adic context.

3. One also should define p-adic integration for vacuum functional at the level of WCW. p-
Adic thermodynamics serves as a guideline leading to the condition that in p-adic sector
exponent of Kahler action is of form (m/n)", where m/n is divisible by a positive power
of p-adic prime p. This implies that one has sum over contributions coming as powers
of p and the challenge is to calculate the integral for K= constant surfaces using the
integration measure defined by an infinite power of Kéhler form of WCW reducing the
integral to cohomology which should make sense also p-adically. The p-adicization of the
WCW integrals has been discussed already earlier using an approach based on harmonic
analysis in symmetric spaces and these two approaches should be equivalent. One could
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also consider a more general quantization of Kahler action as sum K = K; + K> where
K1 = rlog(m/n) and Ko = n, with n divisible by p since exp(n) exists in this case and
one has exp(K) = (m/n)" X exp(n). Also transcendental extensions of p-adic numbers
involving n + p — 2 powers of e'/™ can be considered.

4. If the Galois group algebras indeed define a representation for WCW spinor fields in
finite measurement resolution, also WCW integration would reduce to summations over
the Galois groups involved so that integrals would be well-defined in all number fields.

8. Floer homology, Gromov-Witten invariants, and TGD

Floer homology defines a generalization of Morse theory allowing to deduce symplectic
homology groups by studying Morse theory in loop space of the symplectic manifold. Since
the symplectic transformations of the boundary of § M$ x C'P» define isometry group of WCW,
it is very natural to expect that K&hler action defines a generalization of the Floer homology
allowing to understand the symplectic aspects of quantum TGD. The hierarchy of Planck
constants implied by the one-to-many correspondence between canonical momentum densities
and time derivatives of the embedding space coordinates leads naturally to singular coverings
of the embedding space and the resulting symplectic Morse theory could characterize the
homology of these coverings.

One ends up to a more precise definition of vacuum functional: Ké&hler action reduces
Chern-Simons terms (imaginary in Minkowskian regions and real in Euclidian regions) so that
it has both phase and real exponent which makes the functional integral well-defined. Both
the phase factor and its conjugate must be allowed and the resulting degeneracy of ground
state could allow to understand qualitatively the delicacies of CP breaking and its sensitivity
to the parameters of the system. The critical points with respect to zero modes correspond to
those for Kéahler function. The critical points with respect to complex coordinates associated
with quantum fluctuating degrees of freedom are not allowed by the positive definiteness of
Kahler metric of WCW. One can say that Kahler and Morse functions define the real and
imaginary parts of the exponent of vacuum functional.

The generalization of Floer homology inspires several new insights. In particular, space-
time surface as hyper-quaternionic surface could define the 4-D counterpart for pseudo-holomorphic
2-surfaces in Floer homology. Holomorphic partonic 2-surfaces could in turn correspond to the
extrema of K&hler function with respect to zero modes and holomorphy would be accompanied
by super-symmetry.

Gromov-Witten invariants appear in Floer homology and topological string theories and
this inspires the attempt to build an overall view about their role in TGD. Generalization
of topological string theories of type A and B to TGD framework is proposed. The TGD
counterpart of the mirror symmetry would be the equivalence of formulations of TGD in
H = M* x CP; and in C'P3 x C' P3 with space-time surfaces replaced with 6-D sphere bundles.

4. K-theory, branes, and TGD

K-theory and its generalizations play a fundamental role in super-string models and M-
theory since they allow a topological classification of branes. After representing some physical
objections against the notion of brane more technical problems of this approach are discussed
briefly and it is proposed how TGD allows to overcome these problems. A more precise
formulation of the weak form of electric-magnetic duality emerges: the original formulation
was not quite correct for space-time regions with Euclidian signature of the induced metric.
The question about possible TGD counterparts of R-R and NS-NS fields and S, T, and U
dualities is discussed.

5. p-Adic space-time sheets as correlates for Boolean cognition

p-Adic physics is interpreted as physical correlate for cognition. The so called Stone spaces
are in one-one correspondence with Boolean algebras and have typically 2-adic topologies. A
generalization to p-adic case with the interpretation of p pinary digits as physically repre-
sentable Boolean statements of a Boolean algebra with 2" > p > p"~ ' statements is encour-
aged by p-adic length scale hypothesis. Stone spaces are synonymous with profinite spaces
about which both finite and infinite Galois groups represent basic examples. This provides a
strong support for the connection between Boolean cognition and p-adic space-time physics.
The Stone space character of Galois groups suggests also a deep connection between number
theory and cognition and some arguments providing support for this vision are discussed.
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1 Introduction

The construction of twistor amplitudes has led to the realization that the work of Grothendieck (see
http://tinyurl.com/dbojps) related to motivic cohomology simplifies enormously the calculation
of the integrals of holomorphic forms over sub-varieties of the projective spaces involved. What one
obtains are integrals of multi-valued functions known as Grassmannian poly-logarithms generalizing
the notion of poly-logarithm [B12] and Goncharov has given a simple formula for these integrals [B4]
using methods of motivic cohomology (see http://tinyurl.com/yb9b2zme) [A23] in terms of
classical polylogarithms Lig(z), k = 1,2, 3, .... This suggests that motivic cohomology might have
applications in quantum physics also as a a conceptual tool. One could even hope that quantum
physics could provide fresh insights algebraic geometry and topology.

Ordinary theoretical physicist probably does not encounter the notions of homotopy, homology,
and cohomology in his daily work and Grothendieck’s work looks to him (or at least mel!) like a
horrible abstraction going completely over the head. Perhaps it is after all good to at least try
to understand what this all is about. The association of new ideas with TGD is for me the most
effective way to gain at least the impression that I have managed to understand something and I
will apply this method also now. If anything else, this strategy makes the learning of new concepts
an intellectual adventure producing genuine surprises, reckless speculations, and in some cases
perhaps even genuine output. I do not pretend of being a real mathematician and I present my
humble apologies for all misunderstandings unavoidable in this kind enterprise. One should take
the summary about the basics of cohomology theory just as a summary of a journalist. I still hope
that these scribblings could stimulate mathematical imagination of a real mathematician.

While trying to understand Wikipedia summaries about the notions related to the motivic
cohomology I was surprised in discovering how similar the goals and basic ideas about how to
achieve them of quantum TGD and motive theory are despite the fact that we work at totally
different levels of mathematical abstraction and technicality. I am however convinced that TGD
as a physical theory represents similar high level of abstraction and therefore dare hope that the
interaction of the these ideas might produce something useful. As a matter fact, I was also surprised
that TGD indeed provides a radically new approach to the problem of constructing topological
invariants for algebraic and even more general surfaces.

1.1 What Are The Deep Problems?

In motivic cohomology one wants to relate and unify various cohomologies defined for a given
number field and its extensions and even for different number fields if I have understood correctly.
In TGD one would like to fuse together real and various p-adic physics and this would suggest
that one must relate also the cohomology theories defined in different number fields. Number
theoretical universality [K20] allowing to relate physics in different number fields is one of the key
ideas involved.

Why the generalization of homology (see http://tinyurl.com/y9443vaq) [A16] and cohomol-
ogy (see http://tinyurl.com/3yvnqz8)) [AH] to p-adic context is so non-trivial? Is it the failure
of the notion of boundary does not allow to define homology in geometric sense in p-adic context
using geometric approach. The lack of definite integral in turn does not allow to define p-adic
counterparts of forms except as a purely local notion so that one cannot speak about values of
forms for sub-varieties. Residue calculus provides one way out and various cohomology theories
defined in finite and p-adic number fields actually define integration for forms over closed surfaces
(so that the troublesome boundaries are not needed), which is however much less than genuine
integration. In twistor approach to scattering amplitudes one indeed encounters integrals of forms
for varieties in projective spaces.

Galois group (see http://tinyurl.com/ydgmpudx) [A13] is defined as the group leaving in-
variant the rational functions of roots of polynomial having values in the original field. A modern
definition is as the automorphism group of the algebraic extension of number field generated by
roots with the property that it acts trivially in the original field.

1. Some examples Galois group in the field or rationals are in order. The simplest example is
second order polynomial in the field of rationals for which the group is Zs if roots are not
rational numbers. Second example is P(x) = 2™ — 1 for which the group is cyclic group S(n)
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permuting the roots of unity which appear in the elementary symmetric functions of the roots
which are rational. When the roots are such that all their products except the product of all
roots are irrational numbers, the situation is same since all symmetric functions appearing
in the polynomial must be rational valued. Group is smaller if the product for two or more
subsets of roots is real. Galois group generalizes to the situation when one has a polynomial of
many variables: in this case one obtains for the first variable ordinary roots but polynomials
appearing as arguments. Now one must consider algebraic functions as extension of the
algebra of polynomial functions with rational coefficients.

2. Galois group permutes branches of the graph z = (P, 1)(y,...) of the inverse function of the
polynomial analogous to the group permuting sheets of the covering space. Galois group is
therefore analogous to first homotopy group. Since Galois group is subgroup of permutation
group, since permutation group can be lifted to braid group acting as the first homotopy
group on plane with punctures, and since the homotopies of plane can be induced by flows,
this analogy can be made more precise and leads to a connection with topological quantum
field theories for braid groups.

3. Galois group makes sense also in padic context and for finite fields and its abelianization
by mapping commutator group to unit element gives rise to the analog of homology group
and by Poincare duality to cohomology group. One can also construct p-adic and finite field
representations of Galois groups.

These observations motivate the following questions. Could Galois group be generalized to so
that they would give rise to the analogs of homotopy groups and homology and cohomology groups
as their abelianizations? Could one find a geometric representation for boundary operation making
sense also in p-adic context?

1.2 TGD Background

The visions about physics as geometry and physics as generalized number theory suggest that
number theoretical formulation of homotopy-, homology-, and cohomology groups might be possible
in terms of a generalization of the notion of Galois group, which is the unifying notion of number
theory. Already the observations of Andre Weil suggesting a deep connection between topological
characteristics of a variety and its number theoretic properties indicate this kind of connection
and this is what seems to emerge and led to Weil cohomology formulated. The notion of motivic
Galois group (see http://tinyurl.com/yb9b2zme) is an attempt to realize this idea.
Physics as a generalized number theory involves three threads.

1. The fusion of real and p-adic number fields to a larger structure requires number theoretical
universality in some sense and leads to a generalization of the notion of number by fusion
reals and p-adic number fields together along common rationals (roughly) [K20].

2. There are good hopes that the classical number fields could allow to understand standard
model symmetries and there are good hopes of understanding M* x C'P, and the classical
dynamics of space-time number theoretically [K21].

3. The construction of infinite primes having interpretation as a repeated second quantization
of an supersymmetric arithmetic QFT having very direct connections with physics is the
third thread [K19]. The hierarchy has many interpretations: as a hierarchy of space-time
sheets for many-sheeted space with each level of hierarchy giving rise to elementary fermions
and bosons as bound states of lower level bosons and fermions, hierarchy of logics of various
orders realized as statements about statements about..., or a hierarchy of polynomials of
several variables with a natural ordering of the arguments.

This approach leads also to a generalization of the notion of number by giving it an infinitely
complex number theoretical anatomy implied by the existence of real units defined by the
ratios of infinite primes reducing to real units in real topology. Depending one one’s tastes one
can speak about number theoretic Brahman=Atman identity or algebraic holography. This
picture generalizes to the level of quaternionic and octonionic primes and leads to the proposal
that standard model quantum numbers could be understand number theoretically. The
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proposal is that the number theoretic anatomy could allow to represent the “world of classical
worlds” (WCW) as sub-manifolds of the infinite-dimensional space of units assignable to
single point of space-time and also WCW spinor fields as quantum superpositions of the
units. One also ends up with he idea that there is an evolution associated with the points
of the embedding space as an increase of number theoretical complexity. One could perhaps
say that this space represents “Platonia”.

1.3 Homology And Cohomology Theories Based On Groups Algebras
For A Hierarchy Of Galois Groups Assigned To Polynomials Defined
By Infinite Primes

The basic philosophy is that the elements of homology and cohomology should have interpretation
as states of supersymmetric quantum field theory just as the infinite primes do have. Even more,
TGD as almost topological QFT requires that these groups should define quantum states in the
Universe predicted by quantum TGD. The basic ideas of the proposal are simple.

1. One can assign to infinite prime at n:th level of hierarchy of second quantizations a rational
function and solve its polynomial roots by restricting the rational function to the planes
Ty, .-Tp = 0. At the lowest level one obtains ordinary roots as algebraic number. At each
level one can assign Galois group and to this hierarchy of Galois groups one wants to assign
homology and cohomology theories. Geometrically boundary operation would correspond to
the restriction to the plane z; = 0. Different permutations for the restrictions would define
non-equivalent sequences of Galois groups and the physical picture suggests that all these
are needed to characterize the algebraic variety in question.

2. The boundary operation applied to Gy, gives element in the commutator subgroup [Gj—2, Gi—2].
In abelianization this element goes to zero and one obtains ordinary homology theory. There-
fore one has the algebraic analog of homotopy theory,

3. In order to obtain both homotopy and cohomotopy and cohomology and homology as their
abelizations plus a resemblance with ordinary cohomology one must replace Galois groups
by their group algebras. The elements of the group algebras have a natural interpretation
as bosonic wave functions. The dual of group algebra defines naturally cohomotopy and
cohomology theories. One expects that there is a large number of boundary homomor-
phisms and the assumption is that these homomorphisms satisfy anti-commutation relations
with anti-commutator equal to an element of commutator subgroup [Gi—_2, Gi—2,] so that in
abelianization one obtains ordinary anti-commutation relations. The interpretation for the
boundary and coboundary operators would be in terms of fermionic annihilation (creation)
operators is suggestive so that homology and cohomology would represent quantum states
of super-symmetric QFT. Poincare duality would correspond to hermitian conjugation map-
ping fermionic creation operators to annihilation operators and vice versa. It however turns
out that the analogy with Dolbeault cohomology with several exterior derivatives is more
appropriate.

4. In quantum TGD states are realized as many-fermion states assignable to intersections of
braids with partonic 2-surfaces. Braid picture is implied by the finite measurement resolution
implying discretization at space-time level. Symplectic transformations in turn act as fun-
damental symmetries of quantum TGD and given sector of WCW corresponds to symplectic
group as far as quantum fluctuating degrees of freedom are considered. This encourages the
hypothesis that the hierarchy of Galois groups assignable to infinite prime (integer /rational)
having interpretation in terms of repeated second quantization can be mapped to a braid of
braids of.... The Galois group elements lifted to braid group elements would be realized as
symplectic flows and boundary homomorphism would correspond to symplectic flow induced
at given level in the interior of sub-braids and inducing action of braid group. In this frame-
work the braided Galois group cohhomology would correspond to the states of WCW spinor
fields in “orbital” degrees of freedom in finite measurement resolution realized in terms of
number theoretical discretization.
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If this vision is correct, the construction of quantum states in finite measurement resolution
would have purely number theoretic interpretation and would conform with the interpretation of
quantum TGD as almost topological QFT. That the groups characterize algebraic geometry than
mere topology would give a concrete content to the overall important “almost” and would be in
accordance with physics as infinite-dimensional geometry vision.

1.4 P-Adic Integration And Cohomology

This picture leads also to a proposal how p-adic integrals could be defined in TGD framework.

1. The calculation of twistorial amplitudes reduces to multi-dimensional residue calculus. Mo-
tivic integration gives excellent hopes for the p-adic existence of this calculus and braid
representation would give space-time representation for the residue integrals in terms of the
braid points representing poles of the integrand: this would conform with quantum classical
correspondence. The power of 27 appearing in multiple residue integral is problematic unless
it disappears from scattering amplitudes. Otherwise one must allow an extension of p-adic
numbers to a ring containing powers of 27.

2. Weak form of electric-magnetic duality and the general solution ansatz for preferred extremals
reduce the Kéhler action defining the Kéahler function for WCW to the integral of Chern-
Simons 3-form. Hence the reduction to cohomology takes places at space-time level and since
p-adic cohomology exists there are excellent hopes about the existence of p-adic variant of
Kahler action. The existence of the exponent of Kéhler gives additional powerful constraints
on the value of the Kahler fuction in the intersection of real and p-adic worlds consisting of
algebraic partonic 2-surfaces and allows to guess the general form of the Kéahler action in
p-adic context.

3. One also should define p-adic integration for vacuum functional at the level of WCW. p-Adic
thermodynamics serves as a guideline leading to the condition that in p-adic sector exponent
of Kahler action is of form (m/n)", where m/n is divisible by a positive power of p-adic
prime p. This implies that one has sum over contributions coming as powers of p and the
challenge is to calculate the integral for K= constant surfaces using the integration measure
defined by an infinite power of Kahler form of WCW reducing the integral to cohomology
which should make sense also p-adically. The p-adicization of the WCW integrals has been
discussed already earlier using an approach based on harmonic analysis in symmetric spaces
and these two approaches should be equivalent. One could also consider a more general
quantization of Kahler action as sum K = K; + Ky where K; = rlog(m/n) and Ky = n,
with n divisible by p since exp(n) exists in this case and one has exp(K) = (m/n)" X exp(n).
Also transcendental extensions of p-adic numbers involving n + p — 2 powers of e!/” can be
considered.

4. If the Galois group algebras indeed define a representation for WCW spinor fields in finite
measurement resolution, also WCW integration would reduce to summations over the Galois
groups involved so that integrals would be well-defined in all number fields.

1.5 Topics Related To TGD-String Theory Correspondence

Although M-theory has not been successful as a physical theory it has led to a creation of enor-
mously powerful mathematics and there are all reasons to expect that this mathematics applies
also in TGD framework.

1.5.1 Floer homology, Gromov-Witten invariants, and TGD

Floer homology defines a generalization of Morse theory allowing to deduce symplectic homology
groups by studying Morse theory in loop space of the symplectic manifold. Since the symplectic
transformations of the boundary of M3 x C' P, define isometry group of WCW, it is very natural to
expect that Kahler action defines a generalization of the Floer homology allowing to understand the
symplectic aspects of quantum TGD. The hierarchy of Planck constants implied by the one-to-many
correspondence between canonical momentum densities and time derivatives of the embedding
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space coordinates leads naturally to singular coverings of the embedding space and the resulting
symplectic Morse theory could characterize the homology of these coverings.

One ends up to a more precise definition of vacuum functional: Kéahler action reduces Chern-
Simons terms (imaginary in Minkowskian regions and real in Euclidian regions) so that it has both
phase and real exponent which makes the functional integral well-defined. Both the phase factor
and its conjugate must be allowed and the resulting degeneracy of ground state could allow to
understand qualitatively the delicacies of CP breaking and its sensitivity to the parameters of the
system. The critical points with respect to zero modes correspond to those for Kéhler function. The
critical points with respect to complex coordinates associated with quantum fluctuating degrees
of freedom are not allowed by the positive definiteness of Kéhler metric of WCW. One can say
that Kahler and Morse functions define the real and imaginary parts of the exponent of vacuum
functional.

The generalization of Floer homology inspires several new insights. In particular, space-time
surface as hyper-quaternionic surface could define the 4-D counterpart for pseudo-holomorphic
2-surfaces in Floer homology. Holomorphic partonic 2-surfaces could in turn correspond to the
extrema of Kéahler function with respect to zero modes and holomorphy would be accompanied by
super-symmetry.

Gromov-Witten invariants appear in Floer homology and topological string theories and this
inspires the attempt to build an overall view about their role in TGD. Generalization of topological
string theories of type A and B to TGD framework is proposed. The TGD counterpart of the mirror
symmetry would be the equivalence of formulations of TGD in H = M* x CP; and in CP; x CP;s
with space-time surfaces replaced with 6-D sphere bundles.

1.5.2 K-theory, branes, and TGD

K-theory and its generalizations play a fundamental role in super-string models and M-theory
since they allow a topological classification of branes. After representing some physical objections
against the notion of brane more technical problems of this approach are discussed briefly and
it is proposed how TGD allows to overcome these problems. A more precise formulation of the
weak form of electric-magnetic duality emerges: the original formulation was not quite correct for
space-time regions with Euclidian signature of the induced metric. The question about possible
TGD counterparts of R-R and NS-NS fields and S, T, and U dualities is discussed.

1.6 P-Adic Space-Time Sheets As Correlates For Boolean Cognition

p-Adic physics is interpreted as physical correlate for cognition. The so called Stone spaces are in
one-one correspondence with Boolean algebras and have typically 2-adic topologies. A generaliza-
tion to p-adic case with the interpretation of p pinary digits as physically representable Boolean
statements of a Boolean algebra with 2" > p > p"~! statements is encouraged by p-adic length
scale hypothesis. Stone spaces are synonymous with profinite spaces about which both finite and
infinite Galois groups represent basic examples. This provides a strong support for the connection
between Boolean cognition and p-adic space-time physics. The Stone space character of Galois
groups suggests also a deep connection between number theory and cognition and some arguments
providing support for this vision are discussed.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [7].

2 Some Backgbround About Homology And Cohomology

Before representing layman’s summary about the motivations for the motivic cohomology it is
good to introduce some basic ideas of algebraic geometry [A52].

2.1 Basic Ideas Of Algebraic Geometry

In algebraic geometry one considers surfaces defined as common zero locus for some number m < n
of functions in n-dimensional space and therefore having dimension n — m in the generic case and
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one wants to find homotopy invariants for these surfaces: the notion of variety is more precise
concept in algebraic geometry than surface. The goal is to classify algebraic surfaces represented
as zero loci of collections of polynomials.

The properties of the graph of the map y = P(x) in (x, y)-plane serve as an elementary example.
Physicists is basically interested on the number of roots x for a given value of y. For polynomials
one can solve the roots easily using computer and the resulting numbers are in the generic case
algebraic numbers. Galois group is the basic object and permutes the roots with each other. It is
analogous to the first homotopy group permuting the points of the covering space of graph having
various branches of the many-valued inverse function x = P~1(y) its sheets. Clearly, Galois group
has topological meaning but the topology is that of the embedding or immersion.

There are invariants related to the internal topology of the surface as well as invariants related to
the external topology such as Galois group. The generalization of the Galois group for polynomials
of single variable to polynomials of several variables looks like an attractive idea. This would require
an assignment of sequence of sub-varieties to a given variety. One can assign algebraic extensions
also to polynomials and it would seem that these groups must be involved. For instance, the
absolute Galois group (see http://tinyurl.com/yaffmruw) associated with the algebraic closure
of polynomials in algebraically closed field is free group of rank equal to the cardinality of the field
(rank is the cardinality of the minimal generating set).

Homotopy (see http://tinyurl.com/6xbeur|) [A17], homology (see http://tinyurl.com/
y9443vaq) [A17], and cohomology (see http://tinyurl.com/3yvnqz8) [A17] characterize alge-
braically the shape of the surface as invariant not affected by continuous transformations and by
homotopies. The notion of continuity depends on context and in the most general case there is
no need to restrict the consideration to rational functions or polynomials or make restrictions on
the coefficient field of these functions. For algebraic surfaces one poses restrictions on coefficient
field of polynomials and the ordinary real number based topology is replaced with much rougher
Zariski topology for which algebraic surfaces define closed sets. Physicists might see homology
and cohomology theories as linearizations of nonlinear notions of manifold and surface obtained by
gluing together linear manifolds. This linearization allows to gain information about the topology
of manifolds in terms of linear spaces assignable to surfaces of various dimensions.

In homology one considers formal sums for these surfaces with coefficients in some field and
basically algebraizes the statement that boundary has no boundary. Cohomology is kind of dual
of homology and in differential geometry based cohomology forms having values as their integrals
over surfaces of various dimensions realize this notion.

Betti cohomology (see http://tinyurl.com/ybyurgao) or singular cohomology [AT] defined
in terms of simplicial complexes is probably familiar for physicists and even more so the de Rham
cohomology (see http://tinyurl.com/pndr57e) [AT] defined by n-forms as also the Dolbeault co-
homology (see http://tinyurl.com/y7ggezzu) [A8] using forms characterized by m holomorphic
and n antiholomorphic indices. In this case the role of continuous maps is taken by holomorphic
maps. For instance, the classification of the moduli of 2-D Riemann surfaces involves in an essen-
tial manner the periods of one forms on 2-surfaces and plays important role in the TGD based
explanation of family replication phenomenon [K5|.

In category theoretical framework homology theory can be seen as a http://en.wikipedia.org/wiki/functorfuncto
[A12] that assigns to a variety (or manifold) a sequence of homology groups characterized by the
dimension of corresponding sub-manifolds. One considers formal sums of surfaces. The basic op-
eration is that of taking boundary which has operation ¢ as algebraic counterpart. One identifies
cycles as those sums of surfaces for which algebraic boundary vanishes. This is identically true
for exact cycles defined as a boundaries of cycles since boundary of boundary is empty. Only
those cycles with are not exact matter and the homology group is defines as the coset space of
the kernel at n: th level with respect to the image of the n + 1: th level two spaces. Cohomology
groups can be defined in a formally similar manner and for de Rham cohomology Poincare duality
maps homology group Hj, to H"~*. The correspondence between covariant with vanishing exterior
derivative and contravariant antisymmetric tensors with vanishing divergence is the counterpart of
homology-cohomology correspondence in Riemann manifolds.

The calculation of homology and cohomology groups relies on general theorems which are often
raised to the status of axioms in generalizations of cohomology theory.

1. Exact sequences (see http://tinyurl.com/68ryo2)) [A10] of Abelian groups define an impor-
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tant calculational tool. So called short exact sequence 0 — B — C — 0 of chain complexes
gives rise to long exact sequence H,(A) — H,(B) — H,(C) —» H,_1(A) —» H,_1(B) —
H,_1(C)....

One example of short exact sequence is 0 - H — G — G/H — 0 holding true when
H is normal subgroup so that also G/H is group. This condition allows to express the
homology groups of G as direct sums of those for H and G/H. In relative cohomology
inclusion and ¢ define exact sequences allowing to express relative cohomology groups (see
http://tinyurl.com/y7jsddw7)) [A30] H, (X, A C X) in terms of those for X and A. Mayer-
Vietoris sequence (see http://tinyurl.com/y7jbky8l) relates the cohomologies of sets A, B
and X = AUB.

2. Kiinneth theorem (see http://tinyurl.com/yddruwdw) [A21] allows to calculated homology
groups for Cartesian product as convolution of those for the factors with respect to direct
sum.

Steenrod-Eilenberg axioms (see http://tinyurl.com/ycahsz4u) [A33] axiomatize cohomology
theory in the category of topological spaces: cohomology theory in this category is a functor to
graded abelian groups, satisfying the Eilenberg-Steenrod axioms: functoriality, naturality of the
boundary homomorphism, long exact sequence, homotopy invariance, and excision. In algebraic
cohomology the category is much more restricted: algebraic varieties defined in terms of polynomial
equations and these axioms are not enough. In this case Weil cohomology (see http://tinyurl.
com/y75d95xg) [A40] defines a possible axiomatization consisting of finite generation, vanishing
outside the range [0, dim(X)], Poincare duality, Kiinneth product formula, a cycle class map, and
the weak and strong Lefschetz axioms.

In p-adic context sets do not have boundaries since p-adic numbers are not well-ordered so that
the statement that boundary has vanishing boundary should be formulated using purely algebraic
language. Also cohomology is problematic since definite integral is ill-defined for the same reason.
This forces to question either the notion of cohomology and homology groups or the definition of
geometric boundary operation and inspires the question whether Galois groups might be a more
appropriate notion.

Perhaps it is partially due to the lack of a geometric realization of the boundary operation in
the case of general number field that there are very many cohomology theories: the brief summary
by Andreas Holmstrom (see http://tinyurl.com/ycupslpal) written when he started to work
with his thesis, gives some idea about how many!

2.2 Algebraization Of Intersections And Unions Of Varieties

There are several rather abstract notions involved with cohomology theories: categories, functori-
ality, sheaves, schemes, abelian rings. Abelian ring is essentially the ring of polynomial functions
generated by the coordinates in the open subset of the variety.

1. The spectrum of ring consists of its proper prime ideals of this function algebra. Ideal is
subset of functions s closed under sum and multiplication by any element of the algebra
and proper ideal is subspace of the entire algebra. In the case of the abelian ring defined
on algebraic variety maximal ideals correspond to functions vanishing at some point. Prime
ideals correspond to functions vanishing in some sub-variety, which does not reduce to a union
of sub-varieties (meaning that one has product of two functions of ring which can separately
vanish). Thus the points in spectrum correspond to sub-varieties and product of functions
correspond to a union of sub-varieties.

2. What is extremely nice that the product of functions represents in general union of disjoint
surfaces: for physicist this brings in mind many boson states created by bosonic creation
operators with particles identified as surfaces. Therefore union corresponds to a product of
ideals defining a non-prime ideal. The notion of ideal is needed since there is enormous gauge
invariance involved in the sense that one can multiply the function defining the surface by
any everywhere non-vanishing function.
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3. The intersection of varieties in turn corresponds to the condition that the functions defining
the varieties vanish separately. If one requires that all sums of the functions belonging to
the corresponding ideals vanish one obtains the same condition so that one can say that
intersection corresponds to vanishing condition for the sum for ideals. The product of co-
homology elements corresponds by Poincare duality [A26] the intersection of corresponding
homology elements interpreted as algebraic cycles so that a beautiful geometric interpretation
is possible in real context at least.

Remark: For fermionic statistics the functions would be anti-commutative and this would
prevent automatically the powers of ideals. In fact, the possibility of multiple roots for polynomials
of several variables implying what is known as ramification (see http://tinyurl.com/yatd4za3)
[A29] represents a non-generic situation and one of the technical problems of algebraic geometry.
For ordinary integers ramification means that integer contains in its composition to primes a power
of prime which is higher than one. For the extensions of rationals this means that rational prime
is product of primes of extension with some roots having multiplicity larger than one. One can of
course ask whether higher multiplicity could be interpreted in terms of many-boson state becoming
possible at criticality: in quantum physics bosonic excitations (Goldstone bosons) indeed emerge at
criticality and give rise to long range interactions. In fact, for infinite primes allowing interpretation
in terms of quantum states of arithmetic QF T boson many particle states corresponds to powers
of primes so that the analogy is precise.

2.3 DMotivations For Motives

In the following I try to clarify for myself the motivations for the motivic cohomology which as a
general theory is still only partially existent. There is of course no attempt to say anything about
the horrible technicalities involved. I just try to translate the general ideas as I have understood
(or misunderstood) them to the simple language of mathematically simple minded physicist.

Grothendieck has carried out a monumental work in algebraizing cohomology which only mathe-
matician can appreciate enough. The outcome is a powerful vision and mathematical tools allowing
to develop among other things the algebraic variant of de Rham cohomology, etale cohomology
having values in p-adic fields different from the p-adic field defining the values of cohomology, and
crystalline cohomology (see http://tinyurl.com/y8nmg486) [AG].

As the grand unifier of mathematics Grothendieck posed the question whether there good exists
a more general theory allowing to deduce various cohomologies from single grand cohomology.
These cohomology theories would be like variations of the same them having some fundamental
core element -motive- in common.

Category theory (see http://tinyurl.com/24s2hj) [A4] and the notion of scheme (see http:
//tinyurl.com/4dr5vt7) [A32], which assigns to open sets of manifold abelian rings - roughly
algebras of polynomial functions- consistent with the algebra of open sets, provide the backbone
for this approach. To the mind of physicist the notion of scheme brings abelian gauge theory with
non-trivial bundle structure requiring several patches and gauge transformations between them. A
basic challenge is to relate to each other the cohomologies associated with algebraic varieties with
given number field k£ manifolds. Category theory is the basic starting point: cohomology theory
assigns to each category of varieties category of corresponding cohomologies and functors between
these categories allow to map the cohomologies to each other and compare different cohomology
theories.

One of the basic ideas underlying the motivic cohomology seems is that one should be able
perform a local lifting of a scheme from characteristic p (algebraic variety in p-adic number field or
its algebraic extension) to that in characteristic 0 (characteristic is the integer n for which the sum of
n units is zero, for rational numbers, p-adic number fields and their extensions characteristic is zero
and p for finite fields) that is real or complex algebraic variety, to calculate various cohomologies
here as algebraic de Rham cohomology and using the lifting to induce the cohomology to p-adic
context. One expects that the ring in which cohomology has naturally values consists of ordinary
or p-adic integers or extension of p-adic integers. In the case of crystalline cohomology this is
however not enough.

The lifting of the scheme is far from trivial since number fields are different and real cohomology
has naturally Z or Q as coefficient ring whereas p-adic cohomology has p-adic integers as coefficient
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ring. This lift must bring in analytic continuation which is lacking at p-adic side since n particular
in p-adic topology two spheres with same radius are either non-intersecting or identical. Analytical
continuation using a net of overlapping open sets is not possible.

One could even dream of relating the cohomologies associated with different number fields. I do
not know to what extend this challenge is taken or whether it is regarded as sensible at all. In TGD
framework this kind of map is needed and leads ot the generalization of the number field obtained
by glueing together reals and p-adic numbers among rationals and common algebraic numbers.
This glueing together makes sense also for the space of surfaces by identifying the surfaces which
correspond to zero loci of rational functions with rational coefficients. Similar glueing makes sense
for the spaces of polynomials and rational functions.

Remarks: :

1. The possibility of p-adic pseudo-constants in the solutions of p-adic differential and p-adic
differential equations reflects this difficulty. This lifting should remove this non-uniqueness
in analytical continuation. Omne can of course ask whether the idea is good: maybe the
p-adic pseudo constants have some deep meaning. A possible interpretation would be in
terms of non-deterministic character of cognition for which p-adic space-time sheets would be
correlates. The p-adic space-time sheets would represent intentions which can be transformed
to actions in quantum jumps. If one works in the intersection of real and p-adic worlds in
which one allows only rational functions with coefficients in the field or rationals or possibly
in some algebraic extension of rationals situation changes and non-uniqueness disappears
in the intersection of real and p-adic worlds and one might argue that it is here where the
universal cohomology applies or that real and p-adic cohomologies are obtained by some kind
of algebraic continuation from this cohomology.

2. The universal cohomology theory brings in mind the challenge encountered in the construc-
tion of quantum TGD. The goal is to fuse real physics and various p-adic physics to single
coherent whole so that one would have kind of algebraic universality. To achieve this I have
been forced to introduce a heuristic generalization of number field by fusing together reals and
various p-adic number fields among rationals and common algebraic numbers. The notion of
infinite primes is second key notion. The hierarchy of Planck constants involving extensions
of p-adic numbers by roots of unity is closely related to p-adic length scale hierarchy and
seems to be an essential part of the number theoretical vision.

3 Examples Of Cohomologies

In the following some examples of cohomologies are briefly discussed in hope of giving some idea
about the problems involved. Probably the discussion reflects the gaps in my understanding rather
than my understanding.

3.1 Etale Cohomology And L-Adic Cohomology

Etale cohomology (see http://tinyurl.com/meyupuc) [A9] is defined for algebraic varieties as
analogues of ordinary cohomology groups of topological space. They are defined purely alge-
braically and make sense also for finite fields. The notion of definite integral fails in p-adic context
so that also the notion of form makes sense only locally but not as a map assigning numbers to
surfaces. This is cohomological counterpart for the non-existence of boundaries in p-adic realm.
Etale cohomology allows to define cohomology groups also in p-adic context as l-adic cohomology
groups.

In Zariski topology closed sets correspond to surfaces defined as zero loci for polynomials in
given field. The number of functions is restricted only by the dimension of the space. In the real
case this topology is much rougher than real topology. In etale cohomology Zariski topology is too
rough. One needs more open sets but one does not want to give up Zariski topology.

The category of etale maps is the structure needed and actually generalizes the notion of
topology. Instead of open sets one considers maps to the space and effectively replaces the open
sets with their inverse images in another space. Etale maps -idempotent are essentially projections
from coverings of the variety to variety. One can say that open sets are replaced with open sets for
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the covering of the space and mapping is replaced with a correspondence (for algebraic surfaces X
and Y the correspondence is given by algebraic equations in X xY) which in general is multi-valued
and this leads to the notion of etale topology. The etale condition is formulated in the Wikipedia
article in a rather tricky manner telling not much to a physicist trying to assign some meaning to
this word. Etale requirement is the condition that would allow one to apply the implicit function
theorem if it were true in algebraic geometry: it is not true since the inverse of rational map is
not in general rational map except in the ase of birational maps to which one assigns birational
geometry (see http://tinyurl.com/ya6yeo3t) [A2].
Remarks:

1. In TGD framework field as a map from M* to some target space is replaced with a surface
in space M* x C'P, and the roles of fields and space are permuted for the regions of space-
time representing lines of generalized Feynman diagrams. Therefore the relation between
M* and CP, coordinates is given by correspondence. Many-sheeted space-time is locally a
many-sheeted covering of Minkowski space.

2. Also the hierarchy of Planck constant involving hierarchy of coverings defined by same values
of canonical momentum densities but different values of time derivatives of embedding space
coordinates. The enormous vacuum degeneracy of Kéhler action is responsible for this many-
valuedness.

3. Implicit function theorem indeed gives several values for time derivatives of embedding space
coordinates as roots to the conditions fixing the values of canonical momentum densities.

The second heuristic idea is that certain basic cases corresponding to dimensions 0 and 1 and
abelian varieties which are also algebraic groups obeying group law defined by regular (analytic
and single valued) functions are special and same results should follow in these cases.

Etale cohomologies satisfy Poincare duality and Kiinneth formula stating that homology groups
for Cartesian product are convolutions of homology groups with respect to tensor product. l-adic
cohomology groups have values in the ring of l-adic integers and are acted on by the absolute
Galois group of rational numbers for which no direct description is known.

3.2 Crystalline Cohomology

Crystalline cohomology represents such level of technicality that it is very difficult for physicists
without the needed background to understand what is in question. I however make a brave at-
tempt by comparing with analogous problems encountered in the realization of number theoretic
universality in TGD framework. The problem is however something like follows.

1. For an algebraically closed field with characteristic p it is not possible to have a cohomology
in the ring Z,, of p-adic integers. This relates to the fact that the equation for ™ = z in finite
field has only complex roots of unity as its solutions when n is not divisible by p whereas
for he integers n divisible by p are exceptional due to the fact that z? = x holds true for all
elements of finite field G(p). This implies that ? = = has p solutions which are ordinary
p-adic numbers rather than numbers in an algebraic extension by a root of unity. p-Adic
numbers indeed contain n: th cyclotomic field only if n divides p — 1. On the other hand,
any finite field (see http://tinyurl.com/376w58) has order ¢ = p™ and can be obtained as
an algebraic extension of finite field G(p) with p elements. Its elements satisfy the Frobenius
condition z9=P" = z. This condition cannot be satisfied if the extension contains p: th root
of unity satisgying u? = 1 since one would have (zu)?" = 2 # zu. Therefore finite fields
do not allow an algebraic extensions allowing p :th root of unity so the extension of p-adic
numbers containing p: th root of unity cannot be not induced by the extension of G(p). As
a consequence one cannot lift cohomology in finite field G(p™) to p-adic cohomology.

2. Also in TGD inspired vision about integration p — 1: th and possibly also p: th roots are
problematic. p-Adic cohomology is about integration of forms and the reason why integration
necessitates various roots of unity can be understood as follows in TGD framework. The idea
is to reduce integration to Fourier analysis which makes sense even for the p-adic variant of
the space in the case that it is symmetric space. The only reasonable definition of Fourier
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analysis is in terms of discrete plane waves which come as powers of n: th root of unity. This
notion makes sense if n is not divisible by p. This leads to a construction of p-adic variants of
symmetric spaces G/H obtained by discretizing the groups to some algebraic subgroup and
replacing the discretized points by p-adic continuum. Certainly the n: th roots of unity with
n dividing p — 1 are problematic since they do not corresponds to phase factors. It seems
however clear that one can construct an extension of p-adic numbers containing p: th roots of
unity. If it is however necesssary to assume that the extension of p-adic numbers is induced
by that for a finite field, situation changes. Only roots of unity for n not divisible by factors
of p — 1 and possibly also by p can appear in the discretizations. There is infinite number
extensions and the interpretation is in terms of a varying finite measurement resolution.

3. In TGD framework one ends up with roots of unity also when one wants to realize p-adic
variants of various finite group representations. The simplest case is p-adic representations
of angular momentum eigenstates and plane waves. In the construction of p-adic variants of
symmetric spaces one is also forced to introduce roots of unity. One obtains a hierarchy of
extensions involving increasing number of roots of unity and the interpretation is in terms
of number theoretic evolution of cognition involving both the increase of maximal value of n
and the largest prime involved. Witt ring could be seen as an idealization in which all roots
of unity possible are present.

For | = p l-adic cohomology fails for characteristic p. Crystalline cohomology (see http:
//tinyurl.com/y8nmg486) fills in this gap. Roughly speaking crystalline cohomology is de Rham
cohomology of a smooth lift of X over a field k with with characteristic p to a variety so called ring
of Witt vectors with characteristic 0 consisting of infinite sequences of the elements of k£ while de
Rham cohomology of X is the crystalline cohomology reduced modulo p.

The ring of Witt vectors for characteristic p is particular example of ring of Witt vectors (see
http://tinyurl.com/ybnp7xd8)) [A41] assignable to any ring as infinite sequences of elements
of ring. For finite field G, the Witt vectors define the ring of p-adic integers. For extensions
of finite field one has extensions of p-adic numbres. The algebraically closed extension of finite
field contains n: th roots of unity for all n not divisible by p so that one has algebraic closure
of finite field with p elements. For maximal extension of the finite field G, the Witt ring is thus
a completion of the maximal unramified extension of p-adic integers and contains n: th roots of
unity for n not divisible by p. “Unramified” [A29] means that p defining prime for p-adic integers
splits in extension to primes in such a way that each prime of extension occurs only once: the
analogy is a polynomial whose roots have multiplicity one. This ring is much larger than the ring
of p-adic integers. The algebraic variety is lifted to a variety in Witt ring with characteristic 0 and
one calculates de Rham cohomology using Witt ring as a coefficient field.

3.3 Motivic Cohomology

Motivic cohomology is a attempt to unify various cohomologies as variations of the same motive
common to all of them. In motivic cohomology (see http://tinyurl.com/yb9b2zme) [A23] one
encounters pure motives and mixed motives. Pure motives is a category associated with algebraic
varieties in a given number field £ with a contravariant functor from varieties to the category
assigning to the variety its cohomology groups. Only smooth projective varieties are considered.
For mixed motives more general varieties are allowed. For instance, the condition that projective
variety meaning that one considers only homogenous polynomials is given up.

Chow motives (see http://tinyurl.com/yav3ju2o) [A24] is an example of this kind of co-
homology theory and relies on very geometric notion of Chow ring (see http://tinyurl.com/
ybcbmkgm) with equivalence of algebraic varieties understood as rational equivalence. One can
replace rational equivalence with many variants: birational, algebraic, homological, numerical,
etc...

The vision about rationals as common points of reals and p-adic number fields leads to ask
whether the intersection of these cohomologies corresponds to the cohomology associated with
varieties defined by rational functions with rational coefficients. In both p-adic and real cases the
number of varieties is larger but the equivalences are stronger than in the intersection. For a non-
professional it is impossible to say whether the idea about rational cohomology in the intersection
of these cohomologies makes sense.
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Homology and cohomology theories rely in an essential manner to the idea of regarding varieties
with same shape equivalent. This inspires the idea that the polynomials or rational functions with
rational coefficients could correspond to something analogous to a gauge choice without losing
relevant information or bringing in information which is irrelevant. If this gauge choice is correct
then real and p-adic cohomologies and homologies would be equivalent apart from modifications
coming from the different topology for the real and p-adic integers.

4 Infinite Rationals Define Rational Functions Of Several
Variables: A Possible Number Theoretic Generalization
For The Notions Of Homotopy, Homology, And Cohomol-

ogy

This section represents my modest proposal for how the generalization of number theory based on
infinite integers might contribute to the construction of topological and number theoretic invariants
of varieties. I can represent only the primitive formulation using the language of second year math
student. The construction is motivated by the notion of infinite prime but applies to ordinary
polynomials in which case however the motivation is not so obvious. The visions about TGD as
almost topological QFT, about TGD as generalized number theory, and about TGD as infinite-
dimensional geometry serve as the main guidelines and allow to resolve the problems that plagued
the first version of the theory.

4.1 Infinite Rationals And Rational Functions Of Several Variables

Infinite rationals correspond in natural manner to rational functions of several variables.

1. If the number of variables is 1 one has infinite primes at the first level of the hierarchy as
formal rational functions of variable X having as its value as product of all finite primes and
one can decompose the polynomial to prime polynomial factors. This amounts to solving
the roots of the polynomial by obtained by replacing X with formal variable x which is real
variable for ordinary rationals. For Gaussian rationals one can use complex variable.

2. If the roots are not rationals one has infinite prime. Physically this state is the analog
of bound state whereas first order polynomials correspond to free many-particle states of
supersymmetric arithmetic QFT.

3. Galois group permuting the roots has geometric interpretation as the analog of the group
of deck transformations permuting the roots of the covering of the graph of the polynomial
y=f(x) at origin. Galois group is analogous to fundamental group whose abelianization
obtained as a coset group by dividing with the commutator group gives first homology group.
The finiteness of the Galois group does not conform with the view about cohomology and
homology, which suggests that it is the group algebra of Galois group which is the correct
mathematical structure to consider.

One can find the roots also at the higher levels of the hierarchy of infinite primes. One proceeds
by finding the roots at the highest level as roots which are algebraic functions. In other words
finds the decomposition

P(zy,...) = [[(#n — Ri(n_1,...)
k
with Ry expanded in powers series with respect to x,_;. This expansion is the only manner
to make sense about the root if x,,_; corresponds to infinite prime. At the next step one puts
z, = 0 and obtains a product of R and performs the same procedure for x,_; and continues
down to n = 1 giving ordinary algebraic numbers as roots. One therefore obtains a sequence of
sub-varieties by restricting the polynomial to various planes z; = 0, ¢ = k,....,n of dimension
k — 1. The invariants associated with the intersections with these planes define the Galois groups
characterizing the polynomial and therefore also infinite prime itself.
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. The process takes place in a sequential manner. One interprets first the infinite primes at

level n+1 as as polynomial function in the variable X,, 1 with coefficients depending on Xj,
k < n+ 1. One expands the roots R in power series in the variable X,. In p-adic topology
this series converges for all primes of the previous levels and the deviation from the value at
X, = 0 is infinitesimal in infinite-P p-adic topology.

What is new as compared to the ordinary situation is that the necessity of Taylor expansion,
which might not even make sense for ordinary polynomials. One can find the roots and one
can assign a Galois group to them.

One obtains a hierarchy of Galois groups permuting the roots and at the lowest level on
obtains roots as ordinary algebraic numbers and can assign ordinary Galois group to them.
The Galois group assigned to the collection of roots is direct sum of the Galois groups
associated with the individual roots. The roots can be regarded as a power series in the
variables X and the deviation from algebraic number is infinitesimal in infinite-p p-adic
topology.

The interesting possibility is that the infinitesimal deformations of algebraic numbers could
be interpreted as a generalization of real numbers. In the construction of motivic cohomology
the idea is to lift varieties defined for surfaces in field of characteristic p (finite fields and their
extensions) to surfaces in characteristic 0 field (p-adic numbers) in some sense to infinitesimal
thickenings of their characteristic 0 counterparts. Something analogous is encountered in the
proposed scenario since the roots of the polynomials are algebraic numbers plus multi-p p-
adic expansion in terms of infinite-p p-adic numbers representing infinitesimal in infinite-p
p-adic topology.

4.2 Galois Groups As Non-Commutative Analogs Of Homotopy Groups

What one obtains is a hierarchy of Galois groups and varieties of n 4+ 1-dimensional space with
dimensions n,n — 1,...,1,0.

1. A suggestive geometric interpretation would be as an analog of first homotopy group per-

muting the roots which are now surfaces of given dimension £ on one hand and as a higher
homotopy group 7 on the on the other hand. This and the analogy with ordinary homology
groups suggests the replacement of Galois group with their group algebras. Homology groups
would be obtained by abelianization of the analogs of homotopy groups with the square of
the boundary homomorphism mapping the group element to commutator sub-group. Group
algebra allows also definition of cohomotopy and cohomology groups by assigning them to
the dual of the group algebra.

The boundary operation is very probably not unique and the natural proposal inspired by
physical intuition is that the boundary operations form an anti-commutative algebra having
interpretation in terms of fermionic creation (say) operators. Cohomology would in turn
correspond to annilation operators. Poincare duality would be hermitian conjugation map-
ping fermionic creation operators to annihilation operators and vice versa. Number theoretic
vision combined with the braid representation of the infinite primes in turn suggests that the
construction actually reduces the construction of quantum TGD to the construction of these
homology and cohomology theories.

The Galois analogs of homotopy groups and their duals up to the dimension of the algebraic
surface would be obtained but not the higher ones. Note that for ordinary homotopy groups
all homotopy group m,, n > 1 are Abelian so that the analogy is not complete. The abelian-
izations of these Galois groups could in turn give rise to higher homology groups. Since
the rational functions involved make sense in all number fields this could provide a possible
solution to the challenge of constructing universal cohomology theory.

The hierarchy of infinite primes and the hierarchy of Galois groups associated with the corre-

sponding polynomials have as an obvious analogy the hierarchy of loop groups and corresponding
homotopy groups.
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. The construction brings in mind the reduction of n-dimensional homotopy to a 1-D homotopy

of n-1-D homotopy. Intuitively n-dimensional homotopy indeed looks like a 1-D homotopy of
n-1-D homotopy so that everything should reduce to iterated 1-dimensional homotopies by
replacing the original space with the space of maps to it.

The hierarchical ordering of the variables plays an essential role. The ordering brings strongly
in mind loop groups. Loop group L(X™, @) defined by the maps from space X™ to group G
can be also regarded as a loop group from space X™ to the loop group L(X™ ™ G) and one
obtains L(X™, G) = L(X*!, L(X"1).

The homotopy equivalence classes of these maps define homotopy groups using the spaces
X™ instead of spheres. Infinite primes at level n would correspond to L(X"™,G). Locally the
fundamental loop group is defined by X = S' which would suggest that homotopy theory
using tori might be more natural then the one using spheres. naively one might hope that

this kind of groups could code for all homotopic information about space. As a matter fact,
even more general identity L(X x Y, G) = L(X, L(Y, G)) seems to hold true.

Note that one can consider also many variants of homotopy theories since one can replace the
image of the sphere in manifold with the image of any manyfold and construct corresponding
homotopy theory. Sphere and tori define only the simplest homotopy theories.

4.3 Generalization Of The Boundary Operation

The algebraic realization of boundary operation should have a geometric counterpart at least in
real case and it would be even better if this were the case also p-adically and even for finite fields.

1. The geometric analog of the boundary operation would replace the k-dimensional variety with

its intersection with x; = 0 hyperplane producing a union of k£ — 1-dimensional varieties.
This operation would make sense in all number fields. The components in the union of
the surface would be very much analogous to the lower-dimensional edges of k-simplex so
that boundary operation might make sense. What comes in mind is relative homology (see
http://tinyurl.com/y7jsddw7) H(X,A) in which the intersection of X with A C X is
equivalent with boundary so that its boundary vanishes. Maybe one should interpret the
homology groups as being associated with the sequence of relative homologies defined by the
sequence of varieties involved as Ag C A; C .. and relativizing for each pair in the sequence.
The ordinary geometric boundary operation is ill-defined in p-adic context but its analog
defined in this manner would be number theoretically universal notion making sense also for
finite fields.

The geometric idea about boundary of boundary as empty set should be realized somehow- at
least in the real context. If the boundary operation is consistent with the ordinary homology,
it should give rise to a surface which as an element of H, 5 is homologically trivial. In
relative homology interpretation this is indeed the case. In real context the condition is
satisfied if the intersection of the n-dimensional surface with the z, 1 = 0 hyper-plane
consists of closed surface so that the boundary indeed vanishes. This is indeed the case as
simplest visualizations in 3-D case demonstrate. Therefore the key geometric idea would be
that the intersection of the surface defined by zeros of polynomial with lower dimensional
plane is a closed surface in real context and that this generalizes to p-adic context as algebraic
statement at the level of homology.

The sequence of slicings could be defined by any permutation of coordinates. The question
is whether the permutations lead to identical homologies and cohomologies. The physical
interpretation does not encourage this expection so that different permutation would all be
needed to characterize the variety using the proposed homology groups.

4.4 Could Galois Groups Lead To Number TheoreticalGeneralizations

Of Homology And Cohomology Groups?

My own humble proposal for a number theoretic approach to algebraic topology is motivated by
the above questions. The notion of infinite primes leads to a proposal of how one might assign to a
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variety a sequence of Galois group [A13] algebras defining analogs of homotopy groups assignable
to the algebraic extensions of polynomials of many variables obtained by putting the variables of
a polynomial of n-variable polynomial one by one to zero and finding the Galois groups of the
resulting lower dimensional varieties as Galois groups of corresponding extensions of polynomial
fields. The construction of the roots is discussed in detail [K16], where infinite primes are compared
with non-standard numbers. The earlier idea about the possibility to lift Galois groups to braid
groups is also essential and implies a connection with several key notions of quantum TGD.

1. One can assign to infinite primes at the n: th level of hierarchy (n is the number of second
quantizations) polynomials of n variables with variables ordered according to the level of
the hierarchy by replacing the products X = m; P; of all primes at k: th level with formal
variables x,, to obtain polynomial in x, with coefficients which are rational functions of xy,
k < n. Note that X}, is finite in p-adic topologies and infinitesimal in their infinite-P variants.

2. One can construct the root decomposition of infinite prime at n: th level as the decomposition
of the corresponding polynomial to a product of roots which are algebraic functions in the
extensions of polynomials. One starts from highest level and derives the decomposition by
expanding the roots as powers series with respect to x,. The process can be done without ever
mentioning infinite primes. After this one puts z,, = 0 to obtain a product of roots at x,, = 0
expressible as rational functions of remaining variables. One performs the decomposition with
respect to x,,_1 for all the roots and continues down to n = 1 to obtain ordinary algebraic
numbers.

3. One obtains a collection of varieties in n-dimensional space. At the highest level one obtains
n — 1-D variety referred to as divisor in the standard terminology, n — 2-D variety in =, =0
hyperplane, n — 3-D surface in (z,,z,-1) = (0,0) plane and so on. To each root at given
level one can assign polynomial Galois group permuting the polynomial roots at various
levels of the hierarchy of infinite primes in correspondence with the branches of surfaces
of a many-valued map. At the lowest level one obtains ordinary Galois group relating the
roots of an ordinary polynomial. The outcome is a collection of sequences of Galois groups
{(Gn,Ghn,i,Gn,ij-..)} corresponding to all sequences of roots from k =n to k = 1.

One can also say that at given level one has just one Galois group which is Cartesian product
of the Galois groups associated with the roots. Similar situation is encountered when one
has a product of irreducible polynomials so that one has two independent sets of roots.

The next question is how to induce the boundary operation. The boundary operation for the
analogs of homology groups should be induced in some sense by the projection map putting one
of the coordinates xj to zero. This suggests a geometric interpretation in terms of a hierarchy of
relative homologies Hy(Sk, Sk—1) defined by the hierarchy of surfaces Sy. Boundary map would
map Sy, to is intersection at (z,, =0, ...,xx = 0) plane. This map makes sense also p-adically. The
square of boundary operation would produce an intersection of this surface in z_; = 0 plane and
this should correspond to boundary sense for Galois groups.

4.4.1 Algebraic representation of boundary operations in terms of group homomor-
phisms

The challenge is to find algebraic realizations for the boundary operation or operations in terms of
group homomorphisms Gy — Gk_1. One can end up with the final proposal through heuristic ideas
and counter arguments and relying on the idea that algebraic geometry should have interpretation
in terms of quantum physics as it is described by TGD as almost topological QFT.

1. n-dimensional Galois group is somewhat like a fundamental group acting in the space of n-1-
dimensional homotopies so that Grothendieck’s intuition that 1-D homotopies are somehow
fundamental is realized. The abelianizations of these Galois groups would define excellent
candidates for homology groups and Poincare duality would give cohomology groups. The
homotopy aspects becomes clearer if one interprets Galois group for n: th order polynomials
as subgroup of permutation group and lifts the Galois group to a subgroup of corresponding
braid group. Galois groups are also stable againt small changes of the coefficients of the
polynomial so that topological invariance is guaranteed.
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2. Non-abelian boundary operations G — Gj_1 must reduce to their abelian counterparts in
abelianization so that they their squares defining homomorphisms from level & to k — 2 must
be maps of Gy, to the commutator subgroup [Gj—2, Gi—2).

3. There is however a grave objection. Finite abelianized Galois groups contain only elements
with finite order so that in this sense the analogy with ordinary homotopy and homology
groups fails. On the other hand, if Galois group is replaced with its group algebra and group
algebra is defined by (say) integer valued maps, one obtains something very much analo-
gous to homotopy and homology groups. Also group algebras in other rings or fields can
be considered. This replacement would provide the basis of the homotopy and homology
groups with an additional multiplicative structure induced by group operation allowing the
interpretation as representations of Galois group acting as symmetry groups. The tenta-
tive physical interpretation would in terms of quantum states defined by wave functions in
groups. Coboundary operation in the dual of group algebra would be induced by the action
of boundary operation in group algebra. Homotopy and homology would be associated with
the group algebraandcohomotopy and cohomology with its dual.

4. A further grave objection against the analog of homology theory is there is no reason to expect
that the boundary homomorphism is unique. For instance, one can always have a trivial
solution mapping Gy, to unit element of Gj_1. Isomorphism theorem (see http://tinyurl.
com/mn6nol) [A20] implies that the image of the group Gy, in Gi_1 under homomorphism hy,
is Gy /ker(hy), where ker(hy) is a normal subgroup of Gy as is easy to see. One must have
hi—1(Gr/ker(hg)) C [Gr—2, Gx—2], which is also a normal subgroup.

The only reasonable option is to accept all boundary homomorphisms. This collection of
boundary homomorphisms would satisfy anti-commutation relations inducing similar anti-
commutation relations in cohomology. Putting all together, one would would obtain the
analog of fermionic oscillator algebra. In particular, Poincare duality would correspond to
the mapping exchanging fermionic creation and annihilation operators. It however turns out
that tis interpretation fails. Rather, braided Galois homology could represent the states of
WCW spinor fields in “orbital” degrees of freedom of WCW in finite measurement resolution.
A better analogy for braided Galois cohomology is provided by Dolbeault cohomology which
also allows complex conjugation.

If this picture makes sense, one would clearly have what category theorist would have suggested
from the beginning. TGD as almost topological QFT indeed suggests strongly the interpretation
of quantum states in terms of homology and cohomology theories.

4.4.2 Lift of Galois groups to braid groups and induction of braidings by symplectic
flows

One can build a tighter connection with quantum TGD by developing the idea about the analogy
between homotopy groups and Galois groups.

1. The only homotopy groups (see http://tinyurl. com/6xbeur|) [A17], which are non-commutative
are first homotopy groups 7, and plane with punctures provides the minimal realization for
them. The lift of permutation groups to braid groups (see http://tinyurl.com/3yusbn3)
[A3] by giving up the condition that the squares of generating permutations satisfy s? = 1
defines a projective representation for them and should apply also now. There is also analogy
with Wilson loops. This leads to topological QFTs for knots and braids [A58] [A50].

2. In TGD framework light-like 3-surfaces (and also space-like at the ends of causal diamonds)
carry braids beginning at partonic 2-surfaces and ending at partonic 2-surfaces at the bound-
aries of causal diamonds. This realization is highly suggestive now. This also conforms with
the general TGD inspired vision about absolute Galois group of rationals as permutation
group S lifted to braiding groups such that its representation always reduce to finite-
dimensional ones [K12]. This also conforms with the view about the role of hyper-finite
factors of type II; and the idea about finite measurement resolution and one would obtain a
new connection between various mathematical structure of TGD.
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3. The physical interpretation of infinite primes represented by polynomials as bound states
suggests that infinite prime at level n corresponds to a braid of braids of... braids such that
at given level of hierarchy braid group acting on the physical states is associated with covering
group realized as subgroup of the permutation group for the objects whose number is the
number of roots. This gives also a connection with the notion of operad [A25, [A57, [A45]
which involves also a hierarchy of discrete structures with the action of permutation group
inside each and appears also in quantum TGD as a natural notion [K4l [K6].

4. The assumption that the braidings are induced by flows of the partonic 2-surface could glue
the actions of different Galois groups to single coherent whole was originally motivated by the
hope that boundary homomorphism could be made unique in this manner. This restriction
is however un-necessary and the physical picture does not support it. The basic motivation
for the braid representation indeed comes from TGD as an almost topological QFT vision.

5. The role of symplectic transformations in TGD suggests the identification of flows as sym-
plectic flows induced by those of §M? x CP,. These flows should map the area enclosed by
the sub-braid (of braids) to itself and corresponding Hamiltonian should be constant at the
boundary of the area and induce a flow horizontal to the boundary and also continuous at the
boundary. The flow would in general be non-trivial inside the area and induce the braiding of
the sub-braid of braids. One could assign “Galois spin” to the sub-braids with respect to the
higher Galois group and boundary homomorphism would realize unitary action of Gy as spin
rotation at ki: th level. At ko: th level the “Galois spin” rotation would reduce to that in
commutator subgroup and in homology theory would become trivial. The interpretation of
the commutator group as the analog of gauge group might make sense. This would conform
with an old idea of quantum TGD that the commutator subgroup of symplectic group acts
as gauge transformations.

6. It is not necessary to assign the braids at various level of the hierarchy to the same partonic
2-surface. Since the symplectic transformations act on §M${ x C' Py, one can consider also the
projections of the braids to the homologically non-trivial 2-sphere of C'P; or to the 2-sphere
at light-cone boundary: both of these spheres play important part in the formulation of
quantum TGD and I have indeed assigned the braidings to these surfaces [K11].

7. The representation of the hierarchy of Galois groups acting on the braid of braids of... can
be understood in terms of the replacement of symplectic group of 6M} x C'P, -call it G-
permuting the points of the braids with its discrete subgroup obtained as a factor group
G/H, where H is a normal subgroup of G leaving the endpoints of braids fixed. One must
also consider subgroups of the permutation group for the points of the triangulation since
Galois group for n: th order polynomial is in general subgroup of S,, One can also consider
flows with these properties to get braided variant of G/H.

The braid group representation works also for ordinary polynomials with continuous coefficients
in all number fields as also finite fields. One therefore achieves number theoretical universality.
The values of the variables x; appearing in the polynomials can belong to any numer field and
the representation spaces of the Galois groups correspond to any number field. Since the Galois
groups are stable against small perturbations of coefficients one obtains topological invariance in
both real and p-adic sense. Also the representation in all number fields are possible for the Galois
groups.

The construction is universal but infinite primes provide the motivation for it and can be
regarded as a representation of the generalized cohomology group for surfaces which belong to
the intersection of real and p-adic worlds (rational coefficients). In particular, the expansion of
the roots in powers series is the only manner to make sense about the roots when x,, is identified
with X,, so that convergence takes place if some of the lower level infinite primes appearing in the
product defining X, is interpreted as infinite p-adic prime. All higher powers are infinitesimal in
infinite-P p-adic norm. At the lowest level one obtains expansion in X for which X7 has norm
p~™ with respect to any prime p. The value of the product of primes different from p is however not
well-defined for given p-adic topology. If it makes sense to speak about multi-p p-adic expansion
all powers X", n > 0 would be infinitesimal.
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4.4.3 What can one say about the lifting to braid groups?

The generators of symmetry group are given by permutations s; permuting é: th and ¢ 4+ 1: th
element of n-element set. The permutations s; and s; obviously commute for |i — j| > 2. It is
also easy to see that the identity s;s,415; = Si4+1;5;4+1 holds true. Besides this the identity sf =1
holds true.

Braid group B, [A3] is obtained by dropping the condition s? = 1 and can be regarded as
an infinite covering group of the permutation group. For instance, for the simplest non-trivial
case n = 3 the braid group is universal central extrension of the modular group PSL(2,Z). In
the general case the braid group is isomorphic to the mapping class group of a punctured disk
with n punctures and the realization of the braidings as a symplectic transformations would mean
additional restriction to the allowed isotopies inducing the braid group action.

One can decompose any element of braid group B,, to a product of element of symmetric group
S, and of pure braid group P, consisting of braidings which correspond to trivial permutations.
P, is a normal subgroup of braid group and the following short exact sequence 1 — F,,_1 — P, —
P,_1 — 1 allows to decompose P, to a product of image of free group F,_1 and of the image
of P, in P,_1. This leads to a decomposition to a representation of P, as an iterated semidirect
product of free groups.

Concerning the lifting of Galois groups to subgroups of braid groups following observations are
relevant.

1. For n: th order polynomial of single variable Galois group can be regarded as a subgroup of
permutation group S,. The identification is probably not completely unique (at least inner
automorphisms make the identification non-unique) but I am unable to say whether this has
significance in the recent context.

2. The natural lifting of Galois group to its braided version is as a product of corresponding
subgroup of S, with with pure braid group of n braids so that pure braidings would allow also
braidings of all permutations as intermediate stages. Pure braid group is normal subgroup
trivially. Whether also more restricted braidings are possible is not clear to me. Braid
group has a subgroup obtained by coloring braid strands with a finite number of colors and
allowing only the braidings which induce permutations of braids of same color. Clearly this
group is a good candidate for the minimal group decomposable to a product of subgroups of
symmetric subgroups containing braided Galois group. Different colors would correspond to
the decomposition of S, to a product of permutation groups. Note that one can have cyclic
subgroups of permutation sub-groups.

One might hope that it is enough to lift the boundary homomorphisms between Galois groups
G and Gi_1 to homomorphisms between corresponding braided groups. Life does not look so
simple.

1. The group algebra of Galois group is replaced with an infinite-dimensional group algebra of
braid groups so that the number of physical states is expected to become much larger and
the interpretation could be in terms of many-boson states.

2. The square of the boundary homomorphism must map braided Galois group B(Gj) to
[B(Gr—2), B(Gk—_2)]. The obvious question is whether this conditions reduces to correspond-
ing conditions for Galois group and pure braided groups. In other words, does the braiding
commute with the formation of commutator sub-group: [B(Gk), B(Gk)] = B(|Gk,Gg])? In
this case the decomposition of the braided Galois group to a product of Galois group and
pure braid group would allow to realize the braided counterpart of boundary homomorphism
as a product of Galois group homomorphism and homomorphism acting on the pure braid
group. Direct calculation however shows that this is not the case so that the problem is
considerably more complicated.

4.4.4 More detailed view about braided Galois homology

Consider next a more detailed view about the braided Galois homology.
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1. One can wonder whether the application of only single boundary operator creates a state
which represents gauge degree of freedom or whether boundaries correspond to “full” bound-
aries obtained by applying maximum number of boundary operations, which k: th level is
k. “Full boundary” would correspond to what one obtains by applying at most k bound-
ary operators to the state, and many combinations are possible if the number of boundary
homomorphisms is larger than k. The physical states as elements of homology group would
be analogous many-fermion states bu would differ from them in the sense that they would
be annihilated by all fermionic creation operators. In particular, full Fermi spheres at k: th
level would represent gauge degrees of freedom.

Homologically non-trivial states are expected to be rather rare, especially so if already single
boundary operation creates gauge degree of freedom. Certainly the existence of constraints
is natural since infinite primes corresponding to irreducible polynomials of degree higher are
interpreted as bound states. Homological non-triviality would most naturally express bound
state property in bosonic degrees of freedom. In any case, one can argue that fermionic
analogy is not complete and that a more natural interpretation is as an analog of cohomology
with several exterior derivatives.

2. The analogy with fermionic oscillator algebra makes also the realization of bosonic oscillator
operator algebra suggestive. Pointwise multiplication of group algebra elements regarded
as functions in group looks the most plausible option since for continuous groups like U (1)
this implies additivity of quantum numbers. Many boson states for given mode would cor-
respond to powers of group algebra element with respect to pointwise multiplication. If the
commutator for the analogs of the bosonic oscillator operators is defined as

[B1, Ba| = Z Bi(g1)Ba(92)[91: 92] +[91,92) = 919297 '05 "

91,92

it is automatically in the commutator sub-group. This condition is not consistent with
fermionic anti-commutation relations. The consistency requires that the commutator is de-
fined as

[B1, Bs| = Z (B1(g1)B2(92)ll91, 92] 191, 92] = 9192 — g291 - (4.1)

91,92

The commutator must belong to the group algebra of the commutator subgroup. In this
case the commutativity conditions are non-trivial. Bosonic commutation relations would put
further constraints on the homology.

A delicacy related to commutation and anti-commutation relations should be noticed. One
could fermionic creation (annihilation) operators as elements in the dual of group algebra.
If group algebra and its dual are not identified (this might not be possible) then the anti-
commutator is element of the field of ring in which group algebra elements have values. In
the bosonic case the conjugate of the bosonic group algebra element should be treated in
the same manner as a pointwise multiplication operator instead of an exterior derivative like
operator.

3. Onme could perhaps interpret the commutation and anti-commutation relations modulo com-
mutator subgroup in terms of finite measurement resolution realized by the transition to
homology implying that observables commute in the standard sense. The connection of fi-
nite measurement resolution with inclusions of hyper-finite factors of type II; implying a
connection with quantum groups and non-commutative geometry conforms also with the
vision that finite measurement resolution means commutativity modulo commutator group.

4. The alert reader has probably already asked why one could not define also diagonal homology
for G via diagonal boundary operators dy : Gy — Hj, where Hy is subgroup of Gi. The
above argument would suggest interpretation for this cohomology in terms of finite measure-
ment resolution. If one allows this the Galois cohomology groups would be labelled by two
integers. Similar situation is encountered in (see http://tinyurl.com/yb9b2zme)) [A23].
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4.4.5 Some remarks
Some remarks about the proposal are in order.

1. The proposal makes as such sense if the polynomials with rational coefficients define a subset
of more general function space able to catch the non-commutative homotopy and homology
and their duals terms of Galois groups associated with rational functions with coefficients.
One could however abstract the construction so that it applies to polynomials with coeffi-
cients in real and p-adic fields and forget infinite primes altogether. One can even consider the
replacement of algebraic surfaces with more general surfaces as along as the notion of Galois
group makes sense since braiding makes sense also in more general situation. This picture
would conform with the idea of number theoretical universality based on algebraic continu-
ation from rationals to various number fields. In this case infinite primes would characterize
the rational sector in the intersection of real and p-adic worlds.

2. The above discussion is for the rational primes only. Each algebraic extension of rationals
however gives rise to its own primes. In particular, one obtains also complex integers and
Gaussian primes. Each algebraic extension gives to its own notion of infinite prime. One
can also consider quaternionic and octonionic primes and their generalization to infinite
primes and this generalization is indeed one of the key ideas of the number theoretic vision
[K19]. Note that already for quaternions Galois group defined by the automorphisms of the
arithmetics is continuous Lie group.

3. The decomposition of infinite primes to primes in extension of rational or polynomials is
analogous to the decomposition of hadron to quarks in higher resolution and suggests that
reduction of the quantum system to its basic building bricks could correspond number theo-
retically to the introduction of higher algebraic extensions of various kinds of number fields.
The emergence of higher extensions would mean emergence of algebraic complexity and have
interpretation as evolution of cognition in TGD inspired theory of consciousness.

This picture conforms with the basic visions of quantum TGD about physics as infinite-
dimensional geometry on one hand and physics as generalized number theory on one hand im-
plying that algebraic geometry reduces in some sense to number theory and one can also regard
quantum states as representations of algebraic geometric invariants in accordance with the vision
about TGD as almost topological QFT.

Infinite primes form a discrete set since all the coefficients are rational (unless one allows even
algebraic extensions of infinite rationals). Physically infinite primes correspond to elementary par-
ticle like states so that elementary particle property corresponds to number theoretic primeness.
Infinite integers define unions of sub-varieties identifiable physically as many particle states. Ra-
tional functions are in turn interpreted in zero energy ontology as surfaces assignable to initial
and final states of physical event such that positive energy states correspond to the numerator
and negative energy states to the denominator of the polynomial. One also poses the additional
condition that the ratio equals to real unit in real sense so that real units in this sense are able to
represent zero energy state and the number theoretic anatomy of single space-time point might be
able to represent arbitrary complex quantum states.

The generalization of the notion of real point has been already mentioned as also the fact
that the number theoretic anatomy could in principle allow to code for zero energy states if they
correspond to infinite rationals reducing to unit in real sense. Also space-time surfaces could by
quantum classical correspondence represent in terms of this anatomy as I have proposed. Single
space-time point could code in its structure not only the basic algebraic structure of topology
as proposed but represent Platonia. If the above arguments really maks sense then this number
theoretic Brahman=Atman identify would not be a mere beautiful philosophical vision but would
have also practical consequences for mathematics.

4.5 What Is The Physical Interpretation Of The Braided Galois Homol-
ogy

The resulting cohomology suggests either the interpretation in terms of many-fermion states or as
a generalization of de Rham cohomology involving several exterior derivative operators. The argu-
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ments below show that fermionic interpretation does not make sense and that the more plausible
interpretation in concordance with finite measurement resolution is in terms of “orbital” WCW
degrees of freedom represented by the symplectic group assignable to the product of light-cone
boundary and C'Ps.

4.5.1 What the restriction to the plane z; = 0 could correspond physically?

The best manner to gain a more detailed connection between physics and homology is through an
attempt to understand what operation putting x; = 0 could mean physically.

1. Given infinite prime at level n corresponds to single particle state characterized by Galois
group G,. The fermionic part of the state corresponds to its small part and purely bosonic
part multiplies X,,_1 factors as powers of primes not dividing the fermionic part of the state.
Therefore the finite part of the state contains information about fermions and bosons labelled
by fermionic primes. When one puts x, = 0, the information about the bosonic part is lost.

One can of course divide the polynomial by a suitable infinite integer of previous level so that
its highest term is just power of X,, with a unit coefficient. Bosonic part appears in this case
in the denominator of the finite part of the infinite prime and does not contribute to zeros of
the resulting rational function at n — 1: th level: it of course affects the zeros at n: th level.
Hence the information about bosons at n — 1: th level is lost also now unless one considers
also the Galois groups assignable to the poles of the resulting rational function at n — 1: th
level.

2. What could this loss of information about bosons correspond geometrically and physically?
To answer this question must understand how the polynomial of many variables can be
represented physically in TGD Universe.

The proposal has been that a union of hierarchically ordered partonic 2-surfaces gives rise to
a local representation of n-fold Cartesian power for a piece of complex plane. A more concrete
realization would be in terms of wormhole throats at the end of causal diamond at 3-surfaces
topologically condensed at each other. The operation z, = 0 would corresponding to the
basic reductionistic step destroying the bound state by removing the largest space-time sheets
so that one would have many-particle state rather than elementary particle at the lower level
of the hierarchy of space-time sheet. This loss of information would be unavoidable outcome
of the reductionistic analysis.

One can consider two alternative geometric interpretations depending on whether one identifies
to infinite primes connected 3-surfaces or connected 2-surfaces.

1. If infinite primes correspond to connected 3-surfaces having hierarchical structure of topologi-
cal condensate the disappearing bosons could correspond to the wormhole throats connecting
smaller space-time sheet to the largest space-time sheet involved. Wormhole throats would
carry bosonic quantum numbers and would be removed when the largest space-time sheet
disappears. Many-fermion state at highest level represented by the “finite” part of the infinite
prime would correspond to “half” wormhole throats- C' P, type vacuum extremals topological
condensed at smaller space-time sheets but not at the highest one.

2. If elementary particles/infinite primes correspond to connected partonic 2-surfaces (this is
not quite not the case since tangent space data about partonic 2-surfaces matters), one must
replace 3-D topological condensation by its 2-dimensional version. Infinite prime would cor-
respond to single wormhole throat asa partonic 2-surface at which smaller wormhole throats
would have suffered topological condensation. Topological condensation would correspond
to a formation of a connection by flux tube like structure between the 2-surfaces consid-
ered. The disappearance of this highest level would mean decay to a many particle state
containing several wormhole contacts. The formation of anyonic many-particle states could
be interpreted in terms of build-up of higher level infinite primes.

3. What ever the interpretation is, it should be consistent with the idea that braiding as induced
by symplectic flow. If the symplectic flow is defined by the inherent symplectic structure of
the partonic 2-surface only the latter option works. If the symplectic flow acts at the level
of the embedding space - as is natural to assume- both interpretations make sense.
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4.5.2 The restriction to z; = 0 plane cannot correspond to homological boundary
operation

Can one model the restriction to x; = 0 plane as boundary operation in the sense of generalized
homology? There are several objections.

1. There are probably several homological boundary operations §; at given level whereas the
restriction xy = 0 is a unique operation (recall however the possibility to permute the argu-
ments in the case of polynomial).

2. The homology is expected to contain large number of generators whereas the state defined
by infinite prime is unique as are also the states resulting via restriction operations.

3. It is not possible to assign fermion number to x; = 0 operation since fermion number is
not affected: this would not allow to assign fermion number to the homological boundary
operators.

Although the interpretation as many-fermion states does not make sense, one must notice that
the structure of homology is highly analogous to the space of states of super-symmetric QFT and
of the set of infinite primes. Only the infinite primes X,, £+ 1, where X, is the product of all primes
at level n, correspond to states containing no fermions and have interpretation as Dirac sea and
vacuum state. In the same manner the elements of braided Galois homology in general are obtained
by applying the analogs of fermionic annihilation (creation) operators to a full Fermi sphere (Fock
vacuum). Also the identification of all physical states as many-fermion states in quantum TGD
where all known elementary bosons are identified as fermion pairs conforms with this picture.

A more natural interpretation of the restriction operation is as an operation making possible to
assign to a given state in fermionic sector the space of possible states in WCW degrees of freedom
characterized in terms of Galois cohomology represented in terms of the symplectic group of acting
as isometries of WCW . The transition from Lie algebra description natural for continuum situation
to discrete subgroup is natural due to the discretization realizing the finite measurement resolution.

One cannot however avoid a nasty question. What about the lower level bosonic primes asso-
ciated with the infinite prime? What is their interpretation if they do not correspond to WCW
degrees of freedom? Maybe one could identify the bosonic parts of infinite prime as super-partners
of fermions behaving like bosons. The addition of a right handed neutrino to a given quantum
state could represent this supersymmetry.

4.5.3 Braided Galois group homology and construction of quantum states in WCW
degrees of freedom in finite measurement resolution

The above arguments fix the physical interpretation of infinite primes and corresponding group
cohomology to quite high degree.

1. From above it is clear that the restriction operation cannot correspond directly to homological
boundary operation. Single infinite prime corresponds to an entire spectrum of states. Hence
the assignment of fermion number to the boundary operators is not correct thing to do and
one must interpret the coboundary operations as analogs of exterior derivatives and various
states as bosonic excitations of a given state analogous to states assignable to closed forms
of various degrees in topological or conformal quantum field theories.

2. The natural interpretation of Galois homology is as a homology assignable to a discrete
sub-group hierarchy of the symplectic group acting as isometries of WCW and therefore as
the space of wave functions in WCW degrees of freedom in finite measurement resolution.
Infinite primes would code for fermionic degrees of freedom identifiable as spinor degrees of
freedom at the level of WCW .

3. The connection between infinite primes and braided Galois homology would basically reflect
the supersymmetry relating these degrees of freedom at the level of WCW geometry where
WCW Hamiltonians correspond to bosonic generators and contractions of WCW gamma
matrices with symplectic currents to the fermionic generators of the super-symmetry algebra.
If this identification is correct, it would solve the problem of constructing the modes of WCW
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spinor fields in finite measurement resolution. An especially well-come feature would be the
reduction of WCW integration to summations in braided Galois group algebra allowing an
easy realization of number theoretical universality. If the picture is correct it should also
have connections to the realization of finite measurement resolution in terms of inclusions of
hyper-finite factors of type I1; [K9] for which fermionic oscillator algebra provides the basic
realization.

4. Of course, it is far from clear whether it is really possible to reduce spin, color and electroweak
quantum numbers to number theoretic characteristics of infinite primes and it might well be
that the proposed construction does not apply to center of mass degrees of freedom of the
partonic 2-surface. I have considered these questions for the octonionic generalization of
infinite primes and suggested how standard model quantum numbers could be understood in
terms of subset of infinite octonionic primes [K19].

4.6 Is There A Connection With The Motivic Galois Group?

The proposed generalized of Galois group brings in mind he notion of motivic Galois group (see
http://tinyurl.com/yav3ju2o|), which is one possible generalization for the notion of zero-
dimensional Galois group associated with algebraic extensions of number fields to the level of
algebraic varieties.

One of the many technical challenges of the motivic cohomology theory is the non-uniqueness of
the embedding of the algebraic extension as a subfield in the algebraic closure of k. The number of
these embeddings is however finite and absolute Galois group associated with the algebraic closure
of k acts in the set of the embeddings. Which of them one should choose?

Quantum physicist would solve this problem by saying that there is no need to choose: one could
introduce quantum superpositions of different choices and “Galois spin” regarding the different
embeddings as analogs of different spin components. Absolute Galois group would act on the
quantum states regarded as superpositions of different embeddings by permuting them. In TGD
framework this kind of representation could emerge in p-adic context raise Galois group to a role of
symmetry group acting on quantum states: indeed absolute Galois group is very natural notion in
TGD framework. I have proposed this kind of interpretation for some years ago in a chapter [K12]
about Langlands program [A48| [K12] [A49] [A47].

If T have understood correctly, the idea of the motivic Galois theory is to generalize this corre-
spondence so that the varieties in field k are replaced the varieties in the extension of k£ imbedded
to the algebraic closure of k, the number of which is finite. Whether the number of the lifts for
varieties is finite seems to depends on the situation.

1. If the embedding is assumed to be same for all points of the variety the situation seems to
reduce to the embeddings of k to the algebraic completion of rationals and one would have
quantum superposition of varieties in the union of finite number of representatives of the
algebraic extension to which the absolute Galois group acts.

2. Physicist could however ask whether the invariance under the action of Galois group could
be local in some sense. The selection of separable extension could indeed be only pseudo-
constant in p-adic case and thus depend on finite number of pinary digits of the k-valued
coordinates of the point of the algebraic variety. Local gauge invariance would say that any
pseudo constant element of local absolute Galois group acts as a symmetry. This would
suggest that one can introduce Galois connection. Since Lie algebra is not defined now one
should introduce the connection as parallel translations by Galois group element for paths in
the algebraic variety.

One key result (see http://tinyurl.com/yav3ju20) is that pure motives using numerical
equivalence are equivalent with the category of representations of an algebraic group called motivic
Galois group which has Lie algebra and is thus looks like a continuous group.

1. Lie algebra structure for something apparently discrete indeed makes sense for profinite
groups (synonymous to Stone spaces). Spaces with p-adic topology are basic examples of
this kind of spaces. For instance, 2-adic integers is a Stone space obtained as the set of all
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bit sequences allowed to contain infinite number of non-vanishing digits. This implies that
real discreteness transforms to p-adic continuity and the notion of Lie algebra makes sense.
For polynomials this would correspond to polynomials with strictly infinite degree unless
one considers the absolute Galois group associated with the algebraic extension of rationals
associated with an ordinary polynomial. For infinite primes this would correspond to many-
fermion states containing infinite number of fermions kicked out from the Dirac sea and from
the point of view of physics would look like an idealization.

2. Motivic Galois group does not obviously correspond to the Galois groups as they are intro-
duced above. Absolute Galois group for the extension of say rationals however emerges if one
performs the lift to the algebraic completion and this might be how one ends up with motivic
Galois group and also with p-adic physics. One can perhaos say that the Galois groups as
introduced above make sense in the intersection of real and p-adic worlds.

3. The choice of algebraic extension might be encountered also in the construction of roots
for the polynomials associated with infinite primes and since this choice is not unique it
seems that one must use quantum superposition of the different choices and must introduce
the action of an appropriate absolute Galois group. This group would be absolute Galois
group for algebraic extension of polynomials of n variables at n: th level and ordinary Galois
group at the lowest level of hierarchy which should be or less the same as the Galois group
introduced above. This could bring in additional spin like degrees of freedom in which the
absoltey Galois group acts.

The fascinating question is whether one could regard not only the degrees of freedom associ-
ated with the finite Galois groups but even those associated with the absolute Galois group
as physical. Physically the analogs of color quantum numbers whose net values vanish for
confined states would be in question. To sum up, it seems that number theory could contain
implicitly an incredible rich spectrum of physics.

5 Motives And Twistor Approach Applied To TGD

Motivic cohomology has turned out to pop up in the calculations of the twistorial amplitudes
using Grassmannian approach [B12l [B4]. The amplitudes reduce to multiple residue integrals over
smooth projective sub-varieties of projective spaces. Therefore they represent the simplest kind
of algebraic geometry for which cohomology theory exists. Also in Grothendieck’s vision about
motivic cohomology (see http://tinyurl.com/h9bp68p) [A56] projective spaces are fundamental
as spaces to which more general spaces can be mapped in the construction of the cohomology
groups (factorization).

5.1 Number Theoretic Universality, Residue Integrals, AndSymplectic
Symmetry

A key challenge in the realization of the number theoretic universality is the definition of p-adic
definite integral. In twistor approach integration reduces to the calculation of multiple residue
integrals over closed varieties. These could exist also for p-adic number fields. Even more general
integrals identifiable as integrals of forms can be defined in terms of motivic cohomology.

Yangian symmetry [A42], [B6] is the symmetry behind the successes of twistor Grassmannian
approach [BII] and has a very natural realization in zero energy ontology [K22]. Also the basic
prerequisites for twistorialization are satisfied. Even more, it is possible to have massive states as
bound states of massless ones and one can circumvent the IR difficulties of massless gauge theories.
Even UV divergences are tamed since virtual particles consist of massless wormhole throats without
bound state condition on masses. Space-like momentum exchanges correspond to pairs of throats
with opposite sign of energy.

Algebraic universality could be realized if the calculation of the scattering amplitudes reduces
to multiple residue integrals just as in twistor Grassmannian approach. This is because also p-adic
integrals could be defined as residue integrals. For rational functions with rational coeflicients field
the outcome would be an algebraic number apart from power of 27, which in p-adic framework is
a nuisance unless it is possible to get rid of it by a proper normalization or unless one can accepts
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the infinite-dimensional transcendental extension defined by 27. It could also happen that physical
predictions do not contain the power of 2.

Motivic cohomology defines much more general approach allowing to calculate analogs of in-
tegrals of forms over closed varieties for arbitrary number fields. In motivic integration [A59] -
to be discussed below - the basic idea is to replace integrals as real numbers with elements of so
called scissor group whose elements are geometric objects. In the recent case one could consider
the possibility that (27)" is interpreted as torus (S!)" regarded as an element of scissor group
which is free group formed by formal sums of varieties modulo certain natural relations meaning.

Motivic cohomology allows to realize integrals of forms over cycles also in p-adic context. Sym-
plectic transformations are transformation leaving areas invariant. Symplectic form and its exterior
powers define natural volume measures as elements of cohomology and p-adic variant of integrals
over closed and even surfaces with boundary might make sense. In TGD framework symplectic
transformations indeed define a fundamental symmetry and quantum fluctuating degrees of free-
dom reduce to a symplectic group assignable to §M?*+ x C'P, in well-defined sense [K8]. One might
hope that they could allow to define scissor group with very simple canonical representatives- per-
haps even polygons- so that integrals could be defined purely algebraically using elementary area
(volume) formulas and allowing continuation to real and p-adic number fields. The basic argument
could be that varieties with rational symplectic volumes form a dense set of all varieties involved.

5.2 How To Define The P-Adic Variant For The Exponent Of Kahler
Action?

The exponent of Kéihler function defined by the Kéhler action (integral of Maxwell action for
induced Kahler form) is central for quantum at least in the real sector of WCW . The question is
whether this exponent could have p-adic counterpart and if so, how it should be defined.

In the real context the replacement of the exponent with power of p changes nothing but in
the p-adic context the interpretation is affected in a dramatic manner. Physical intuition provided
by p-adic thermodynamics [K13] suggest that the exponent of Kéhler function is analogous to
Bolzmann weight replaced in the p-adic context with non-negative power of p in order to achieve
convergence of the series defining the partition function not possible for the exponent function in
p-adic context.

1. The quantization of Kéahler function as K = rlog(m/n), where r is integer, m > n is divisible
by a positive power of p and n is indivisible by a power of p, implies that the exponent of
Kébhler function is of form (m/n)" and therefore exists also p-adically. This would guarantee
the p-adic existence of the vacuum functional for any prime dividing m and for a given
prime p would select a restricted set of p-adic space-time sheets (or partonic 2-surfaces)
in the intersection of real and p-adic worlds. It would be possible to assign several p-adic
primes to a given space-time sheet (or partonic 2-surface). In elementary particle physics
a possible interpretation is that elementary particle can correspond to several p-adic mass
scales differing by a power of two [K15]. One could also consider a more general quantization
of Kéhler action as sum K = K;+ K3 where K1 = rlog(m/n) and K5 = n, with n divisible by
p since exp(n) exists in this case and one has exp(K) = (m/n)" x exp(n). Also transcendental
extensions of p-adic numbers involving p + n — 2 powers of e!/™ can be considered.

2. The natural continuation to p-adic sector would be the replacement of integer coefficient r
with a p-adic integer. For p-adic integers not reducing to finite integers the p-adic norm
of the vacuum functional would however vanish and their contribution to the transition
amplitude vanish unless the number of these space-time sheets increases with an exponential
rate making the net contribution proportional to a finite positive power of p. This situation
would correspond to a critical situation analogous to that encountered in string models as
the temperature approaches Hagedorn temperature [B9] and the number states with given
energy increases as fast as the Boltzmann weight. Hagedorn temperature is essentially due to
the extended nature of particles identified as strings. Therefore this kind of non-perturbative
situation might be encountered also now.

3. Rational numbers m/n with n not divisible by p are also infinite as real integers. They are
somewhat problematic. Does it make sense to speak about algebraic extensions of p-adic
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numbers generated by p'/™ and giving n — 1 fractional powers of p in the extension or does

this extension reduce to something equivalent with the original p-adic number field when
one redefines the p-adic norm as ||, — |2|*/"? Physically this kind of extension could have
a well defined meaning. If this does not make sense, it seems that one must treat p-adic
rationals as infinite real integers so that the exponent would vanish p-adically.

If one wants that Kéahler action exists p-adically a transcendental extension of rational num-
bers allowing all powers of log(p) and log(k), where k < p is primitive p — 1: th root of
unity in G(p). A weaker condition would be an extension to a ring with containing only
log(p) and log(k) but not their powers. That only single k < p is needed is clear from the
identity log(k™) = rlog(k), from primitive root property, and from the possibility to expand
log(k™ + pn), where n is p-adic integer, to powers series with respect to p. If the exponent
of Kéhler function is the quantity coding for physics and naturally required to be ordinary
p-adic number, one could allow log(p) and log(k) to exists only in symbolic sense or in the
extension of p-adic numbers to a ring with minimal dimension.

Remark: One can get rid of the extension by log(p) and log(k) if one accepts the definition
of p-adic logarithm (see http://tinyurl.com/y97ezkro) as log(z) = log(p~*z/x¢) for x =
p* (w0 + py), yl, < 1. To me this definition looks somewhat artificial since this function is
not strictly speaking the inverse of exponent function but might have a deeper justification.

What happens in the real sector? The quantization of Kéhler action cannot take place for all
real surfaces since a discrete value set for Kahler function would mean that WCW metric is
not defined. Hence the most natural interpretation is that the quantization takes place only
in the intersection of real and p-adic worlds, that is for surfaces which are algebraic surfaces
in some sense. What this actually means is not quite clear. Are partonic 2-surfaces and
their tangent space data algebraic in some preferred coordinates? Can one find a universal
identification for the preferred coordinates- say as subset of embedding space coordinates
selected by isometries?

If this picture inspired by p-adic thermodynamics holds true, p-adic integration at the level of

WCW would give analog of partition function with Boltzmann weight replaced by a power of p
reducing a sum over contributions corresponding to different powers of p with WCW integra.l over
space-time sheets with this value of Kéahler action defining the analog for the degeneracy of states
with a given value of energy. The integral over space-time sheets corresponding to fixed value of
Kahler action should allow definition in terms of a symplectic form defined in the p-adic variant
of WCW . In finite-dimensional case one could worry about odd dimension of this sub-manifold
but in infinite-dimensional case this need not be a problem. Kéhler function could defines one
particular zero mode of WCW Kiéhler metric possessing an infinite number of zero modes.

One should also give a meaning to the p-adic integral of Kéhler action over space-time surface

assumed to be quantized as multiples of log(m/n).

1. The key observation is that Ké&hler action for preferred extremals reduces to 3-D Chern-

Simons form by the weak form of electric-magnetic duality. Therefore the reduction to
cohomology takes place and the existing p-adic cohomology gives excellent hopes about the
existence of the p-adic variant of Kahler action. Therefore the reduction of TGD to almost
topological QFT would be an essential aspect of number theoretical universality.

This integral should have a clear meaning also in the intersection of real and p-adic world.
Why the integrals in the intersection would be quantized as multiple of log(m/n), m/n
divisible by a positive power of p? Could log(m/n) relate to the integral of flp dx/x, which
brings in mind ¢ dz/z in residue calculus. Could the integration range [1,m/n] be analogous
to the integration range [0,27]. Both multiples of 27 and logarithms of rationals indeed
emerge from definite integrals of rational functions with rational coefficients and allowing
rational valued limits and in both cases 1/z is the rational function responsible for this.

log(m/n) would play a role similar to 27 in the approach based on motivic integration where
integral has geometric objects as its values. In the case of 27 the value would be circle. In
the case of log(m/n) the value could be the arc between the points r = m/n > 1 and r =1
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with r identified the radial coordinate of light-cone boundary with conformally invariant
length measures dr/r. One can also consider the idea that log(m/n) is the hyperbolic angle
analogous to 27 so that these two integrals could correspond to hyper-complex and complex
residue calculus respectively.

4. TGD as almost topological QF T means that for preferred extremals the Kahler action reduces
to 3-D Chern-Simons action, which is indeed 3-form as cohomology interpretation requires,
and one could consider the possibility that the integration giving log(m/n) factor to Kéhler
action is associated with the integral of Chern-Simons action density in time direction along
light-like 3-surface and that the integral over the transversal degrees of freedom could be
reduced to the flux of the induced C'P, Kéhler form. The logarithmic quantization of the
effective distance between the braid end points the in metric defined by K&hler-Dirac gamma
matrices has been proposed earlier [K24].

Since p-adic objects do not possess boundaries, one could argue that only the integrals over
closed varieties make sense. Hence the basic premise of cohomology would fail when one has p-adic
integral over braid strand since it does not represent closed curve. The question is whether one
could identify the end points of braid in some sense so that one would have a closed curve effectively
or alternatively relative cohomology. Periodic boundary conditions is certainly one prerequisite for
this kind of identification.

1. In one of the many cohomologies known as quantum cohomology (see http://tinyurl.com/
yaov8g2s) [A28][A43] one indeed assumes that the intersection of varieties is fuzzy in the sense
that two surfaces for which points are connected by what is called pseudo-holomorphic curve
can be said to intersect at these points. As a special case pseudo-holomorphic curve reduce to
holomorphic curve defined by a holomorphic map of 2-D Kéhler manifold to complex manifold
with Kahler structure. The question arises what “pseudoholomorphic curve connects points”
really means. In the recent case a natural analog would be 2-D string world sheets or partonic
2-surfaces so that complex numbers are replaced by hyper-complex numbers effectively. The
boundaries of string world sheets would be 1-D braid strands at wormhole throats and at the
end of space-time sheet at boundaries of CD. In spirit of algebraic geometry one could also
call the 1-D braid strands holomorphic curves connecting points of the partonic 2-surfaces
at the two light-like boundaries of CD. In the similar manner space-like braid strands would
connect points of partonic 2-surface at same end of CD.

2. In the construction of the solutions of the Kéhler-Dirac equation one assumes periodic bound-
ary conditions so that in physical sense these points are identified [K24]. This assumption
actually reduces the locus of solutions of the Kahler-Dirac equation to a union of braids
at light-like 3-surfaces so that finite measurement resolution for which discretization defines
space-time correlates becomes an inherent property of the dynamics. The coordinate varying
along the braid strands is light-like so that the distance in the induced metric vanishes be-
tween its end points (unlike the distance in the effective metric defined by the Kéhler-Dirac
gamma matrices): therefore also in metric sense the end points represent intersection point.
Also the effective 2-dimensionality means are effectively one and same point.

3. The effective metric 2-dimensionality of the light-like 2-surfaces implies the counterpart of
conformal invariance with the light-like coordinate varying along braid strands so that it
might make sense to say that braid strands are pseudo-holomorphic curves. Note also that
the end points of a braid along light-like 3-surface are not causally independent: this is why
M-matrix in zero energy ontology is non-trivial. Maybe the causal dependence together with
periodic boundary conditions, light-likeness, and pseudo-holomorphy could imply a variant
of quantum cohomology and justify the p-adic integration over the braid strands.

5.3 Motivic Integration

While doing web searches related to motivic cohomology I encountered also the notion of motivic
measure (see http://tinyurl.com/y73r7el8) [A59] proposed first by Kontsevich. Motivic inte-
gration is a purely algebraic procedure in the sense that assigns to the symbol defining the variety
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for which one wants to calculate measure. The measure is not real valued but takes values in so
called scissor group, which is a free group with group operation defined by a formal sum of varieties
subject to relations. Motivic measure is number theoretical universal in the sense that it is inde-
pendent of number field but can be given a value in particular number field via a homomorphism
of motivic group to the number field with respect to sum operation.

Some examples are in order.

1.

A simple example about scissor group is scissor group consisting operations needed in the
algorithm transforming plane polygon to a rectangle with unit edge. Polygon is triangulated;
triangles are transformed to rectangle using scissors; long rectangles are folded in one half;
rectangles are rescaled to give an unit edge (say in horizontal direction); finally the resulting
rectangles with unit edge are stacked over each other so that the height of the stack gives
the area of the polygon. Polygons which can be transformed to each other using the basic
area preserving building bricks of this algorithm are said to be congruent.

The basic object is the free abelian group of polygons subject to two relations analogous to
second homology group. If P is polygon which can be cut to two polygons P; and P, one
has [P] = [P1] + [P]. If P and P’ are congruent polygons, one has [P] = [P’]. For plane
polygons the scissor group turns out to be the group of real numbers and the area of polygon
is the area of the resulting rectangle. The value of the integral is obtained by mapping the
element of scissor group to a real number by group homomorphism.

One can also consider symplectic transformations leaving areas invariant as allowed congru-
ences besides the slicing to pieces as congruences appearing as parts of the algorithm leading
to a standard representation. In this framework polygons would be replaced by a much larger
space of varieties so that the outcome of the integral is variety and integration means finding
a simple representative for this variety using the relations of the scissor group. One might
hope that a symplectic transformations singular at the vertices of polygon combined with
with scissor transformations could reduce arbitrary area bounded by a curve into polygon.

One can identify also for discrete sets the analog of scissor group. In this case the integral
could be simply the number of points. Even more abstractly: one can consider algebraic for-
mulas defining algebraic varieties and define scissor operations defining scissor congruences
and scissor group as sums of the formulas modulo scissor relations. This would obviously
abstract the analytic calculation algorithm for integral. Integration would mean that trans-
formation of the formula to a formula stating the outcome of the integral. Free group for
formulas with disjunction of formulas is the additive operation [A56]. Congruence must cor-
respond to equivalence of some kind. For finite fields it could be bijection between solutions
of the formulas. The outcome of the integration is the scissor group element associated with
the formula defining the variety.

. For residue integrals the free group would be generated as formal sums of even-dimensional

complex integration contours. Two contours would be equivalent if they can be deformed to
each other without going through poles. The standard form of variety consists of arbitrary
small circles surrounding the poles of the integrand multiplied by the residues which are
algebraic numbers for rational functions. This generalizes to rational functions with both
real and p-adic coefficients if one accepts the identification of integral as a variety modulo
the described equivalence so that (27)" corresponds to torus (S!)™. One can replace torus
with 27 if one accepts an infinite-dimensional algebraic extension of p-adic numbers by powers
of 2m. A weaker condition is that one allows ring containing only the positive powers of 27.

The Grassmannian twistor approach for two-loop hexagon Wilson gives dilogarithm functions
Li(s) [B4]. General polylogarithm is defined by obey the recursion formula:

Liga(z) = / Lis(t)% .
0

Ordinary logarithm Liq(z) = —log(1 — z) exists p-adically and generates a hierarchy contain-
ing dilogarithm, trilogarithm, and so on, which each exist p-adically for |z| < las is easy to
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see. If one accepts the general definition of logarithhs one finds that the entire function series
exists p-adically for integer values of s. An interesting question is how strong constraints
p-adic existence gives to the twistor loop integrals and to the underlying QFT.

6. The ring having p-adic numbers as coefficients and spanned by transcendentals log(k) and
log(p), where k is primitive root of unity in G(p) emerges in the proposed p-adicization of
vacuum functional as exponent of Kéhler action. The action for the preferred extremals
reducing to 3-D Chern-Simons action for space-time surfaces in the intersection of real and
p-adic worlds would be expressible p-adically as a linear combination of log(p) and log(k).
log(m/n) expressible in this manner p-adically would be the symbolic outcome of p-adic
integral [ dx/x between rational points. z could be identified as a preferred coordinate along
braid strand. A possible identification for = earlier would be as the length in the effective
metric defined by Kahler-Dirac gamma matrices appearing in the Kéhler-Dirac equation
[K24].

5.4 How Could One Calculate P-Adic Integrals Numerically?

Riemann sum gives the simplest numerical approach to the calculation of real integrals. Also p-
adic integrals should allow a numerical approach and very probably such approaches already exist
and “motivic integration” presumably is the proper word to google. The attempts of an average
physicist to dig out this kind of wisdom from the vastness of mathematical literature however lead
to a depression and deep feeling of inferiority. The only manner to avoid the painful question “To
whom should I blame for ever imagining that I could become a real mathematical physicist some
day?” is a humble attempt to extrapolate real common sense to p-adic realm. One must believe
that the almost trivial Riemann integral must have an almost trivial p-adic generalization although
this looks far from obvious.

5.4.1 A proposal for p-adic numerical integration

The physical picture provided by quantum TGD gives strong constraints on the notion of p-adic
integral.

1. The most important integrals should be over partonic 2-surfaces. Also p-adic variants of
3-surfaces and 4-surfaces can be considered. The p-adic variant of Kéahler action would be an
especially interesting integral and reduces to Chern-Simons terms over 3-surfaces for preferred
extremals. One should use this definition also in the p-adic context since the reduction of a
total divergence to boundary term is not expected to take place in numerical approach if one
begins from a 4-dimensional Kéhler action since in p-adic context topological boundaries do
not exist. The reduction to Chern-Simons term means also a reduction to cohomology and
p-adic cohomology indeed exists.

At the first step one could restrict the consideration to algebraic varieties - in other words
zero loci for a set of polynomials P;(z) at the boundary of causal diamond consisting of pieces
of 6M{ x CP,. 5 equations are needed. The simplest integral would be the p-adic volume of
the partonic 2-surface.

2. The numerics must somehow rely on the p-adic topology meaning that very large powers p™
are very small in p-adic sense. In the p-adic context Riemann sum makes no sense since the
sum never has p-adic norm larger than the maximum p-adic norm for summands so that the
limit would give just zero. Finite measurement resolution suggests that the analog for the
limit Az — 0 is pinary cutoff O(p™) = 0, n — oo, for the function f to be integrated. In the
spirit of algebraic geometry one must asume at least power series expansion if not even the
representability as a polynomial or rational function with rational or p-adic coefficients.

3. Number theoretic approach suggests that the calculation of the volume vol(V') of a p-adic
algebraic variety V as integral should reduce to the counting of numbers for the solutions
for the equations f;(x) = 0 defining the variety. Together with the finite pinary cutoff this
would mean counting of numbers for the solutions of equations f;(x) mod p™ = 0. The p-adic
volume Vol(V,n) of the variety in the measurement resolution O(p™) = 0 would be simply



5.4 How Could One Calculate P-Adic Integrals Numerically? 36

the number of p-adic solutions to the equations f;(z) mod p™ = 0. Although this number is
expected to become infinite as a real number at the limit n — oo, its p-adic norm is never
larger than one. In the case that the limit is a well-defined as p-adic integer, one can say
that the variety has a well-defined p-adic valued volume at the limit of infinite measurement
resolution. The volume Vol(V,n) could behave like n;; and exist as a well defined p-adic
number only if n), is divisible by p.

4. The generalization of the formula for the volume to an integral of a function over the volume
is straightforward. Let f be the function to be integrated. One considers solutions to the
conditions f(z) = y, where y is p-adic number in resolution O(p™) = 0, and therefore has only
a finite number of values. The condition f(x)—y = 0 defines a codimension 1 sub-variety Vj,
of the original variety and the integral is defined as the weighted sum Zy y x vol(V,,), where
y denotes the point in the finite set of allowed values of f(x) so that calculation reduces to
the calculation of volumes also now.

5.4.2 General coordinate invariance

From the point of view of physics general coordinate invariance of the volume integral and more
general integrals is of utmost importance.

1. The general coordinate invariance with respect to the internal coordinates of surface is
achieved by using a subset of embedding space-coordinates as preferred coordinates for the
surface. This is of also required if one works in algebraic geometric setting. In the case
of projective spaces and similar standard embedding spaces of algebraic varieties natural
preferred coordinates exist. In TGD framework the isometries of M* x CP, define natural
preferred coordinate systems.

2. The question whether the formula can give rise to a something proportional to the volume
in the induced metric in the intersection of real and rational worlds interesting. One could
argue that one must include the square root of the determinant of the induced metric to the
definition of volume in preferred coordinates but this might not be necessary. In fact, p-adic
integration is genuine summation whereas the determinant of metric corresponds density of
volume and need not make no sense in p-adic context. Could the fact that the preferred
coordinates transform in simple manner under isometries of the embedding space (linearly
under maximal subgroup) alone guarantee that the information about the embedding space
metric is conveyed to the formula?

3. Indeed, since the volume is defined as the number of p-adic points, the proposed formula
should be invariant at least under coordinate transformations mediated by bijections of the
preferred coordinates expressible in terms of rational functions. In fact, even more general
bijections mapping p-adic numbers to p-adic numbers could be allowed since they effectively
mean the introduction of new summation indices. Since the determinant of metric changes
in coordinate transformations this requires that the metric determinant is not present at all.
Thus summation is what allows to achieve the p-adic variant of general coordinate invariance.

4. This definition of volume and more general integrals amounts to solving the remaining co-
ordinates of embedding space as (in general) many-valued functions of these coordinates. In
the integral those branches contribute to the integral for which the solution is p-adic number
or belongs to the extension of p-adic numbers in question. By p-adic continuity the number
of p-adic value solutions is locally constant. In the case that one integrates function over
the surface one obtains effectively many-valued function of the preferred coordinates and can
perform separate integrals over the branches.

5.4.3 Numerical iteration procedure

A convenient iteration procedure is based on the representation of integrand f as sum >, f
of functions associated with different p-adic valued branches zp = zp(z) for the surface in the
coordinates chosen and identified as a subset of preferred embedding space coordinates. The
number of branches z; contributing is by p-adic continuity locally constant.
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The function f; -call it g for simplicity - can in turn be decomposed into a sum of piecewise
constant functions by introducing first the piecewise constant pinary cutoffs g, (z) obtained in the
approximation O(p"*!) = 0. One can write g as

g(x):Zhn(x) ., ho(x) =go(x) , hn=gn(x) = gn_1(z) forn >0 .

Note that hy,(z) is of form g, (x) = a,(2)p", a,(z) € {0, p—1} so that the representation for integral
as a sum of integrals for piecewise constant functions h,, converge rapidly. The technical problem
is the determination of the boundaries of the regions inside which these functions contribute.

The integral reduces to the calculation of the number of points for given value of h,(z) and
by the local constancy for the number of p-adic valued roots zx(x) the number of points for
No> k>0 p¥ = Ny/(1 — p), where Ny is the number of points x with the property that not all
points y = z(1 + O(p)) represent p-adic points z(x). Hence a finite number of calculational steps
is enough to determine completely the contribution of given value to the integral and the only
approximation comes from the cutoff in n for h,(x).

5.4.4 Number theoretical universality

This picture looks nice but it is far from clear whether the resulting integral is that what physicist
wants. It is not clear whether the limit Vol(V,n), n — oo, exists or even should exist always.

1. In TGD Universe a rather natural condition is algebraic universality requiring that the p-adic
integral is proportional to a real integral in the intersection of real and p-adic worlds defined
by varieties identified as loci of polynomials with integer/rational coefficients. Number the-
oretical universality would require that the value of the p-adic integral is p-adic rational (or
algebraic number for extensions of p-adic numbers) equal to the value of the real integral and
in algebraic sense independent of the number field. In the eyes of physicist this condition
looks highly non-trivial. For a mathematician it should be extremely easy to show that this
condition cannot hold true. If true the equality would represent extremely profound number
theoretic truth.

The basic idea of the motivic approach to integration is to generalize integral formulas so
that the same formula applies in any number field: the specialization of the formula to given
number field would give the integral in that particular number field. This is of course nothing
but number theoretical universality. Note that the existence of this kind of formula requires
that in the intersection of the real and p-adic worlds real and p-adic integrals reduce to same
rational or transcendentals (such as log(1 + z) and polylogarithms).

2. If number theoretical universality holds true one can imagine that one just takes the real
integral, expresses it as a function of the rational number valued parameters (continuable
to real numbers) characterizing the integrand and the variety and algebraically continues
this expression to p-adic number fields. This would give the universal formula which can be
specified to any number field. But it is not at all clear whether this definition is consistent
with the proposed numerical definition.

3. There is also an intuitive expectation in an apparent conflict with the number theoretic
universality. The existence of the limit for a finite number p-adic primes could be interpreted
as mathematical realization of the physical intuition suggesting that one can assign to a given
partonic 2-surface only a finite number of p-adic primes [K24]. Indeed, quantum classical
correspondence combined with the p-adic mass calculations suggests that the partonic 2-
surfaces assignable to a given elementary particle in the intersection of real and p-adic worlds
corresponds to a finite number of p-adic primes somehow coded by the geometry of the
partonic 2-surface.

One way out of the difficulty is that the functions - say polynomials - defining the surface
have as coefficients powers of ™. For given prime p only the powers of eP exist p-adically so
that only the primes p dividing n would be allowed. The transcendentals of form log(1 + pz)
and their polylogarithmic generalizations resulting from integrals in the intersection of real
and p-adic worlds would have the same effect. Second way out of the difficulty would be
based on the condition that the functional integral over WCW (“world of classical worlds” )
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converges. There is a good argument stating that the exponent of Kéhler action reduces to
an exponent of integer n and since all powers of n appear the convergence is achieved only
for p-adic primes dividing n.

5.4.5 Can number theoretical universality be consistent with the proposed numerical
definition of the p-adic integral?

The equivalence of the proposed numerical integral with the algebraic definition of p-adic integral
motivated by the algebraic formula in the real context expressed in terms of various parameters
defining the variety and the integrand and continued to all number fields would be such a number
theoretical miracle that it deserves italics around it:

For algebraic surfaces the real volume of the variety equals apart from constant C' to the number
of p-adic points of the variety in the case that the volume is expressible as p-adic integer.

The proportionality constant C' can depend on p-adic number field, and the previous numerical
argument suggests that the constant could be simply the factor 1/(1 — p) resulting from the sum
of p-adic points in p-adic scales so short that the number of the p-adic branches zj(x) is locally
constant. This constant is indeed needed: without it the real integrals in the intersection of real
and p-adic worlds giving integer valued result I = m would correspond to functions for which the
number of p-adic valued points is finite.

The statement generalizes also to the integrals of rational and perhaps even more general
functions. The equivalence should be considered in a weak form by allowing the transcendentals
contained by the formulas have different meanings in real and p-adic number fields. Already the
integrals of rational functions contain this kind of transcendentals.

The basic objection that number of p-adic points without cannot give something proportional
to real volume with an appropriate interpretation cannot hold true since real integral contains the
determinant of the induced metric. As already noticed the preferred coordinates for the embedding
space are fixed by the isometries of the embedding space and therefore the information about metric
is actually present. For constant function the correspondence holds true and since the recipe for
performing of the integral reduce to that for an infinite sum of constant functions, it might be that
the miracle indeed happens.

The proposal can be tested in a very simple manner. The simplest possible algebraic variety is
unit circle defined by the condition 22 + y2? = 1.

1. In the real context the circumference is 27 and p-adic transcendental requiring an infinite-
dimensional algebraic extension defined in terms of powers of 2. Does this mean that the
number of p-adic points of circle at the limit n — oo for the pinary cutoff O(p™) = 0 is ill-
defined? Should one define 27 as this integral and say that the motivic integral calculus based
on manipulation of formulas reduces the integrals to a combination of p-adically existing
numbers and 277 In motivic integration the outcome of the integration is indeed formula
rather than number and only a specialization gives it a value in a particular number field.
Does 27 have a specialization to the original p-adic number field or should one introduce it
via transcendental extension?

2. The rational points (z,y) = (k/m,l/m) of the p-adic unit circle would correspond to Pythagorean

triangles satisfying k2 4+ 1% = m? with the general solution k = 72 — s2, | = 2rs, m = 2 + s2.
Besides this there is an infinite number of p-adic points satisfying the same equation: some
of the integers k, [, m would be however infinite as real integers. These points can be solved
by starting from O(p) = 0 approximation (k,I,m) — (k,l,m) mod p = (ko,lo,mo). One
must assume that the equations are satisfied only modulo p so that Pythagorean triangles
modulo p are the basic objects. Pythagorean triangles can be also degenerate modulo p so
that either kg,lyp or even mg vanishes. Note that for surfaces ™ + y™ = 2" no non-trivial
solutions exists for ™, y", z" < p for n > 2 and all p-adic points are infinite as real integers.

The Pythagorean condition would give a constraint between higher powers in the expressions
for k,l and m. The challenge would be to calculate the number of this kind of points. If one
can choose the integers k — (kK mod p) and | — (I mod p) freely and solve m — (m mod p)
from the quadratic equations uniquely, the number of points of the unit circle consisting
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of p-adic integers must be of form Ny/(1 — p). At the limit n — oo the p-adic length of
the unit circle would be in p-adic topology equal to the number of modulo p Pythagorean
triangles (7, s). The p-adic counterpart of 27 would be ordinary p-adic number depending on
p. This definition of the length of unit circle as number of its modulo p Pythagorean points
also Pythagoras would have agreed with since in the Pythagorean world view only rational
triangles were accepted.

3. One can look the situation also directly solving y as y = ++/1 — 2. The p-adic square
root exists always for z = O(p™), n > 0. The number of these points z is 2/(1 — p). For
x = O(p°) the square root exist for roughly one half of the integers n € {0,p — 1}. The
number of integers (z2)g is therefore roughly (p — 1)/2. The study of p = 5 cae suggests
that the number of integers (1 — (z2)g)o € {0,p — 1} which are squares is about (p — 1)/4.
Taking into account the + sign the number of these points by Ny ~ (p — 1)/2. In this case
the higher O(p) contribution to z is arbitrary and one obtains total contribution Ny/(1—p).
Altogether one would have (Ny + 2)/(1 — p) so that eliminating the proportionality factor
the estimate for the p-adic counterpart of 27 would be (p + 3)/2.

4. One could also try a trick. Express the points of circle as (x,y) = (cos(t), sin(t)) such that ¢
is any p-adic number with norm smaller than one in p-adic case. This unit circle is definitely
not the same object as the one defined as algebraic variety in plane. One can however
calculate the number of p-adic points at the limit n — oco. Besides ¢ = 0, all p-adic numbers
with norm larger than p~™ and smaller than 1 are acceptable and one obtains as a result
N(n) =1+p" !, where “1” comes from overall important point ¢ = 0. One has N(n) — 1 in
p-adic sense. If t = 0 is not allowed the length vanishes p-adically. The circumference of circle
in p-adic context would have length equal to 1 in p-adic topology so that no problems would
be encountered (numbers exp(i27/n) would require algebraic extension of p-adic numbers
and would not exist as power series).

The replacement of the coordinates (x,y) with coordinate ¢ does not respect the rules of
algebraic geometry since trigonometric functions are not algebraic functions. Should one
allow also exponential and trigonometric functions and their inverses besides rational func-
tions and define circle also in terms of these. Note that these functions are exceptional
in that corresponding transcendental extensions -say that containing e and its powers- are
finite-dimensional?

5. To make things more complicated, one could allow algebraic extensions of p-adic numbers
containing roots U,, = exp(i27/n) of unity. This would affect the count too but give a well-
defined answer if one accepts that the points of unit circle correspond to the Pythagorean
points multiplied by the roots of unity.

5.4.6 p-Adic thermodynamics for measurement resolution?

The proposed definition is rather attractive number theoretically since everything would reduce
to the counting of p-adic points of algebraic varieties. The approach generalizes also to algebraic
extensions of p-adic numbers. Mathematicians and also physicists love partition functions, and
one can indeed assign to the volume integral a partition function as p-adic valued power series
in powers Z(t) = > v,t" with the coefficients v,, giving the volume in O(p™) = 0 cutoff. One
can also define partition functions Z;(t) = Y f,t", with f, giving the integral of f in the same
approximation.

Could this kind of partition functions have a physical interpretation as averages over physical
measurements over different pinary cutoffs? p-Adic temperature can be identified as t = p*/7T,
T = 1/k. For p-adically small temperatures the lowest terms corresponding to the worst measure-
ment resolution dominate. At first this sounds counter-intuitive since usually low temperatures
are thought to make possible good measurement resolution. One can however argue that one must
excite p-adic short range degrees of freedom to get information about them. These degrees of free-
dom correspond to the higher pinary digits by p-adic length scale hypothesis and high energies by
Uncertainty Principle. Hence high p-adic temperatures are needed. Also measurement resolution
would be subject to p-adic thermodynamics rather than being freely fixed by the experimentalist.
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5.5 Infinite Rationals And Multiple Residue Integrals As Galois Invari-
ants

In TGD framework one could consider also another kind of cohomological interpretation. The
basic structures are braids at light-like 3-surfaces and space-like 3-surfaces at the ends of space-
time surfaces. Braids intersects have common ends points at the partonic 2-surfaces at the light-like
boundaries of a causal diamond. String world sheets define braid cobordism and in more general
case 2-knot [K11]. Strong form of holography with finite measurement resolution would suggest
that physics is coded by the data associated with the discrete set of points at partonic 2-surfaces.
Cohomological interpretation would in turn would suggest that these points could be identified as
intersections of string world sheets and partonic 2-surface defining dual descriptions of physics and
would represent intersection form for string world sheets and partonic 2-surfaces.

Infinite rationals define rational functions and one can assign to them residue integrals if the
variables x,, are interpreted as complex variables. These rational functions could be replaced with
a hierarchy of sub-varieties defined by their poles of various dimensions. Just as the zeros allow
realization as braids or braids also poles would allow a realization as braids of braids. Hence the
n-fold residue integral could have a representation in terms of braids. Given level of the braid
hierarchy with n levels would correspond to a level in the hierarchy of complex varieties with
decreasing complex dimension.

One can assign also to the poles (zeros of polynomial in the denominator of rational function)
Galois group and obtains a hierarchy of Galois groups in this manner. Also the braid representation
would exists for these Galois groups and define even cohomology and homology if they do so for the
zeros. The intersections of braids with of the partonic 2-surfaces would represent the poles in the
preferred coordinates and various residue integrals would have representation in terms of products
of complex points of partonic 2-surface in preferred coordinates. The interpretation would be in
terms of quantum classical correspondence.

Galois groups transform the poles to each other and one can ask how much information they
give about the residue integral. One would expect that the n-fold residue integral as a sum over
residues expressible in terms of the poles is invariant under Galois group. This is the case for the
simplest integrals in plane with n poles and probably quite generally. Physically the invariance
under the hierarchy of Galois group would mean that Galois groups act as the symmetry group
of quantum physics. This conforms with the number theoretic vision and one could justify the
formula for the residue integral also as a definition motivated by the condition of Galois invariance.
Of course, all symmetric functions of roots would be Galois invariants and would be expected to
appear in the expressions for scattering amplitudes.

The Galois groups associated with zeros and poles of the infinite rational seem to have a clear
physical significance. This can be understood in zero energy ontology if positive (negative) physical
states are indeed identifiable as infinite integers and if zero energy states can be mapped to infinite
rationals which as real numbers reduce to real units. The positive/negative energy part of the zero
energy state would correspond to zeros/poles in this correspondence. An interesting question is
how strong correlations the real unit property poses on the two Galois groups hierarchies. The
asymmetry between positive and negative energy states would have interpretation in terms of
the thermodynamic arrow of geometric time [K1] implied by the condition that either positive
or negative energy states correspond to state function reduced/prepared states with well defined
particle numbers and minimum amount of entanglement.

5.6 Twistors, Hyperbolic 3-Manifolds, And Zero Energy Ontology

While performing web searches for twistors and motives I have begun to realize that Russian
mathematicians have been building the mathematics needed by quantum TGD for decades by
realizing the vision of Grothendieck. One of the findings was the article “Volumes of hyperbolic
manifolds and mixed Tate motives” (see http://tinyurl.com/yargy3uw) [A44] by Goncharov-
one of the great Russian mathematicians involved with the drama - about volumes of hyperbolic
n-manifolds and motivic integrals.

Hyperbolic n-manifolds (see http://tinyurl.com/y8d3udpr) [A19] are n-manifolds equipped
with complete Riemann metric having constant sectional curvature equal to -1 (with suitable choice
of length unit) and therefore obeying Einstein’s equations with cosmological constant. They are
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obtained as coset spaces on proper-time constant hyperboloids of n+1-dimensional Minkowski
space by dividing by the action of discrete subgroup of SO(n, 1), whose action defines a lattice like
structure on the hyperboloid. What is remarkable is that the volumes of these closed spaces are
homotopy invariants in a well-define sense.

What is even more remarkable that hyperbolic 3-manifolds (see http://tinyurl.com/2vyksy)
[AT8] are completely exceptional in that there are very many of them. The complements of knots
and links in 3-sphere are often cusped hyperbolic 3-manifolds (having therefore tori as boundaries).
Also Haken manifolds are hyperbolic. According to Thurston’s geometrization conjecture, proved
by Perelman (whom we all know!), any closed, irreducible, atoroidal 3-manifold with infinite fun-
damental group is hyperbolic. There is an analogous statement for 3-manifolds with boundary.
One can perhaps say that very many 3-manifolds are hyperbolic.

The geometrization conjecture of Thurston (see http://tinyurl.com/y8otvjau) [A14] allows
to see hyperbolic 3-manifolds in a wider framework. The theorem states that compact 3-manifolds
can be decomposed canonically into sub-manifolds that have geometric structures. It was Perelman
who sketched the proof of the conjecture. The prime decomposition with respect to connected sum
reduces the problem to the classification of prime 3-manifolds and geometrization conjecture states
that closed 3-manifold can be cut along tori such that the interior of each piece has a geometric
structure with finite volume serving as a topological invariant. There are 8 possible geometric
structures in dimension three and they are characterized by the isometry group of the geometry
and the isotropy group of point.

Important is also the behavior under Ricci flow (see http://tinyurl.com/2cwlzh9) [A3]]
0i9ij = —2R;;: here t is not space-time coordinate but a parameter of homotopy. If I have
understood correctly, Ricci flow is a dissipative flow gradually polishing the metric for a particular
region of 3-manifold to one of the 8 highly symmetric metrics defining topological invariants. This
conforms with the general vision about dissipation as the source of maximal symmetries. For
compact n-manifolds the normalized Ricci flow 0,9;; = —2R;; + (2/n)Rg;; preserving the volume
makes sense. Interestingly, for n = 4 the right hand side is Einstein tensor so that the solutions of
vacuum Einstein’s equations in dimension four are fixed points of normalized Ricci flow. Ricci flow
expands the negatively curved regions and contracts the positively curved regions of space-time
time. Hyperbolic geometries represent one these 8 geometries and for the Ricci flow is expanding.
The outcome is amazingly simple and gives also support for the idea that the preferred extremals of
Kahler action could represent maximally symmetries 4-geometries defining topological or algebraic
geometric invariants: the preferred extremals would be maximally symmetric representatives - kind
of archetypes- for a given topology or algebraic geometry.

The volume spectrum for hyperbolic 3-manifolds forms a countable set which is however not
discrete: some reader might understand what the statement that one can assign to them ordinal
w® could possibly mean for the man of the street. What comes into my simple mind is that p-
adic integers and more generally, profinite spaces which are not finite, are something similar: one
can enumerate them by infinitely long sequences of pinary digits so that they are countable (I do
not know whether also infinite p-adic primes must be allowed). They are totally disconnected in
real sense but do not form a discrete set since since can connect any two points by a p-adically
continuous curve.

What makes twistor people excited is that the polylogarithms emerging from twistor integrals
and making sense also p-adically seems to be expressible in terms of the volumes of hyperbolic
manifolds. What fascinates me is that the moduli spaces for causal diamonds or rather for the
double light-cones associated with their M* projections with second tip fixed are naturally lattices
of the 3-dimensional hyperbolic space defined by all positions of the second tip and 3-dimensional
hyperbolici spaces are the most interesting ones! At least in the intersection of the real and p-adic
worlds number theoretic discretization requires discretization and volume could be quantized in
discrete manner.

For n = 3 the group defining the lattice is a discrete subgroup of the group of SO(3, 1)
which equals to PSL(2,C) obtained by identifying SL(2,C) matrices with opposite sign. The
divisor group defining the lattice and hyperbolic spaces as its lattice cell is therefore a subgroup
of PSL(2,Z.), where Z. denotes complex integers. Recall that PSL(2,Z.) acts also in complex
plane (and therefore on partonic 2-surfaces) as discrete Mobius transformations wheras PSL(2, Z)
correspond to 3-braid group. Reader is perhaps familiar with fractal like orbits of points under
iterated Mobius transformations. The lattice cell of this lattice obtained by identifying symmetry
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related points defines hyperbolic 3-manifolds. Therefore zero energy ontology realizes directly the
hyperbolic manifolds whose volumes should somehow represent the polylogarithms.

The volumes, which are topological invariants, are said to be highly transcendental. In the
intersection of real and p-adic worlds only algebraic volumes are possible unless one allows extension
by say finite number of roots of e (e? is p-adic number). The p-adic existence of polylogarithms
suggests that also p-adic variants of hyperbolic spaces make sense and that one can assign to them
volume as topological invariant although the notion of ordinary volume integral is problematic.
In fact, hyperbolic spaces are symmetric spaces and general arguments allow to imagine what the
p-adic variants of real symmetric spaces could be.

6 Floer Homology And TGD

Floer homology (see http://tinyurl.com/m3thlqgx) [A1I] has provided considerable understand-
ing of symplectic manifolds using physics based approach relying on 2-D variational principle
called symplectic action. One variant of Floer theory has been applied also to deduce topo-
logical invariants of 3-manifolds in terms of SU(2) Chern-Simons action. The basics of Floer
homology without recourse to quantum field theoretic approach are described at technical level
in the lectures of Dietmar Salamon (see http://tinyurl.com/y7spzfce) [A46]. The notion of
quantum cohomology (see http://tinyurl.com/y94n3xd3) closely related to Floer homology and
related approaches and involving also supersymmetry is described by Alexander Givental (see
http://tinyurl.com/y94n3xd3)) in [A43].

The quantum fluctuating degrees of freedom of TGD Universe are parameterized by symplectic
group acting as isometries of WCW | which can be regarded as a union of symmetric spaces
assignable to the symplectic group. Hence the optimistic hunch is that Floer homology might
provide new insights about quantum TGD - in particular about the problem of understanding the
preferred extremals of Kéhler action. Especially interesting is the relationship of Floer homology to
the proposed vision about braided Galois homology. The following considerations encourage this
optimism. In particular, completely new insights about the role of Minkowskian and Euclidian
regions emerge.

6.1 Trying To Understand The Basic Ideas Of Floer Homology

I do not have competence to describe Floer’s homology as a mathematician. Instead, I try just to
outline the basic ideas as I have (possibly mis-)understood them as a physicist by reading the basic
introduction to the theory [A11l]. The motivation for the symplectic Floer homology came from
Arnold’s conjecture (see http://tinyurl.com/y86scus7) stating that for a closed symplectic man-
ifold the number of fixed points for non-degenerate (isolated critical points) symplecto-morphisms
has the sum of the Betti numbers as a lower bound. The equivalence of Floer’s symplectic homol-
ogy for closed symplectic manifolds with singular homology (see http://tinyurl.com/y9d6cg8n)
proves this conjecture. This means that symplectic Floer homology as such is not interesting from
TGD view point of view.

6.1.1 Morse function in the loop space of the symplectic manifold

Recall that Morse function is a monotonically increasing real valued function in n-manifold for
which critical points are isolated. Its level surfaces induce the slicing of the manifold n — 1-
dimensional surfaces. At the extrema the topology of the slice changes as is clear from a simple
example provided by torus (standing on tangent plane orthogonal to the plane defined by the torus
with Morse function identified as the height function defined by the coordinate orthogonal to the
plane). There is minimum and maximum and two saddle points. Quite generally, the signature
of the matrix defined by the second derivatives of the Morse function -Hessian- characterizes the
properties of the critical point. Hessian allows to deduce information about the topology of the
manifold and Morse theorem states that the number of critical points has a lower limit given by
the sum of the Betti numbers defining the dimensions of various homology groups of the manifolds
in singular homology.

Floer generalizes Morse theory from the level of symplectic manifold M with a Morse function
defined by Hamiltonian to the level of the free loop space LM of M. This Morse function depends
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on preferred Hamiltonian and its cyclic time variation defining a loop in LM . Salamon represents
the approach without recourse to the methods of topological quantum field theories [A46]. A very
schematic representation -even more schematic than that in [A43] - using referring to quantum
about what one does is attempted in following.

1. 2-dimensional action for an orbit of string in M replaces Morse function. The extrema of the
action analogous to critical points of Morse function are crucial for calculating path integral
in QFT approach using saddle point approximation. In topological QFTs path integral
reduces to a well-defined finite dimensional integrals over moduli spaces. One constructs
action principle in the form

s = [ QP+ 9Py (6.1

—00

where u can be seen regarded as a coordinate parallel to cylinder axes defined by the orbit
of the loop of M and t could be regarded as an angle coordinate of the loop. f denotes
the symplectic action functional of the loop defined by time dependent Hamiltonian H;. V f
is the functional gradient of f with respect to coordinates of m regarded as analogous to
fields ST x R. ||...]|? defines inner product in the space of maps S* — M involving integral
over the circle parameterized by coordinate t. Note that this action introduces preferred
parameterization of the cylinder meaning breaking of at least manifest general coordinate
invariance.

2. Schematically the field equations read as

?Zm = V3f | (6.2)
where V? is functional d’Alembertian reducing to its analog at the level of M but depending
on preferred Hamilton H;. This condition states that the cylinder represents a harmonic
map S' x R — M with respect to the almost Kahler metric of M.

3. Assuming the analog of N/ = 2 supersymmetry for the solution the above equation reduces
to

Oum = +Vf . (6.3)

This condition is just the condition saying that one has a wave packed moving to right or left
and state the hyper-complex variant of holomorphy. These left and right moving solutions are
in key role in string model. In Euclidian metric of S* x R the conditions have interpretation
as the generalization of Cauchy-Riemann conditions stating that the map S' x R — M
commutes with complex conjugation: in other worlds the multiplication by imaginary unit
in S! x R is equivalent with the tensor multiplication defined by the almost Kihler form in
M. The tangent space of image is complex sub-space of tangent space of M. Depending on
the sign on the right hand side one has pseudo-holomorphy or anti-pseudo-holomorphy.

4. The solutions with finite action become asymptotically independent of u so that one has
Vf = 0. This states that the loop represents a cyclic solution of Hamilton’s equations for
Hamilton H. Hamilton could also depend on time in periodic manner so that for ¢ = 0 and
t = 27w one has H; = H.

5. One can consider also solutions which are independent of v and t asymptotically so that the
circles reduce to critical points asymptotically. One can also consider solutions representing
spheres with more than two critical points as marked points. Also solutions with higher
genus can be considered These solutions are relate closely to the definition of Gromov-Witten
invariants in quantum cohomology.
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This approach generalizes also to Chern-Simons action by replacing f with Chern-Simons action
for the 3-manifold X2 and R x S! with R x X3 to get space-time. The symplectic manifold is
replaced with the space of Yang-Mills gauge potentials. In this case field equations from the
variational principle are YM equations and instanton and anti-instanton equations are obtained
in the super-symmetric case. Time independent solutions correspond asymptotically to static
solutions describing magnetic monopoles. In this case the critical points of Morse function can
be seen as points at which the topology of the slice of field space defined by the Morse function
changes its topology. A good intuitive guideline is Morse function for torus.

6.1.2 About Witten’s approach to Floer homology

Using the ideas discussed for the first time in Witten’s classic work (see http://tinyurl.com/
yclbmjld) revealing a connection between supersymmetry and Morse theory (seehttp://tinyurl.
com/y82ymev9) [A55], one can extend M to a super-manifold. Witten defines N' = 2 SUSY
algebra by introducing a parameter dependent deformation of the exterior algebra via d; =
exp(—th)dexp(th) and its conjugate di = exp(th)dexp(—th): for t = 0 one has d; = d. h takes the
role the role of Morse function. Q1 = d; + df and Q2 = i(d; — dj) obey standard supersymmetry
algebra Q1Q2 + Q2Q1 = 0 and Q? = Q3 = H;. The solutions of d;¥ = 0 are differential forms
of various degrees and correspond to zero energy solutions for which the supersymmetry is not
broken. The deformed cohomology is equivalent with the original cohomology by ¥ — exp(th)W.
This gives a direct connection between cohomology and supersymmetry whose existence is to be
expected from the basic properties of exterior algebra.

The motivation for the deformation is that for degree p closed forms are localized around
critical points of h with Hessian having p negative eigenvalues so that the correspondence between
homology generators and critical points becomes manifest. There is indeed a natural mapping
from de Rham cohomology to the critical points such that the degree of the form correspond to
the number of negative eigenvalues of the Hessian.

Later Witten managed to expand his ideas about supersymmetric Morse theory so that it
could be applied to Floer homology (1+1 case) and to the calculation of Donaldson invariants of 4-
manifold (143 case). Recently Witten has been working with the applications to knot theory (142
case) for ordinary knots and for 2-knots and cobordisms of 1-knots (143 case) [A50, [A39] [A51].

6.1.3 Representation of loops with fixed based in terms of Hamiltonians with cyclic
time dependence

As already noticed Floer - whose work preceded Witten’s work - considered instead of the symplec-
tic manifold M its free loop space LM. One begins with symplectic action identified as the sum
of the symplectic area of the loop expressible as the value of the one-form defining the symplectic
form over the loop and integral of the Hamiltonian H around the loop. The natural choice of the
loop parameter is as the canonical conjugate of the symplectic potential so that the integrated
quantity is analogous to the minimal substitution p —eA of familiar from elementary quantum me-
chanics. The variational equations for the symplectic action are Hamiltonian equations of motion
in the force field defined by the Hamiltonian H and one considers periodic orbits (recall that there
is conserved energy associated with the orbits defined by the Hamiltonian). The counterparts of
critical points are loops which correspond to the extrema of symplectic action.

One can also consider time dependent Hamiltonians H; for which the initial and final value of
the Hamiltonian is the same preferred Hamiltonian. This kind of Hamiltonians define via their time
evolutions loops in the loop space LG of the symplectic group. At the level of LM the resulting
map of M to itself is symplecto-morphism. Now however energy is not in general conserved. By
periodicity the critical points of the Hamiltonian H correspond to cyclic orbits of periodically time
varying Hamiltonian so that the homotopies of LM with base point defined by H are mapped to
a collection of homotopies of M defined by the critical points of the Hamiltonian. For constant
Hamiltonian H; = H the critical orbits reduce to a point and the need to obtain non-trivial elements
of homotopy group of M explains why one needs Hamiltonians with cyclic time dependence. The
homotopy group of LM is mapped to that of M by homomorphism.

One could consider also higher homotopy groups of the loop space. The first homotopy group
would correspond to loops in loop space mapped to tori associated with the fixed points of the
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Hamiltonian. In this manner one would obtain analogs of homotopy groups defined by mappings
from (S*)™ to loop space to M and also of homotopy groups. By taking the initial loop to be
trivial so that initial Hamiltonian is constant Hamiltonian, one obtains the symplectic analogs of
ordinary homotopy groups defined as a map from S™ to loop space to M. Also the condition that
loops are contracted to points asymptotically gives rise to homotopy groups.

6.1.4 Representation of non-closed paths of LM as paths connecting critical points
of M

In Floer homology one considers also paths of LM and M, which are not closed. These paths form
the first homotopy groupoid of LM. Since the elements of mo(LM) (loops not deformable to each
other) represented by Hamiltonians with cyclic time dependence are mapped to those of 71 (M)
at critical points, a good guess is that the elements of homotopy group m1(LM) can be mapped
to elements of mo(M) connecting critical points of H. If the loops at the ends of cylinder reduce
to points the images of w1 (LM) are indeed elements of m3(M) containing two critical points. As
noticed, the number critical points can be also higher.

To achieve the representation of first homotopy group one considers a path of LM parameterized
by a parameter u defining a cylinder in M which should connect the critical points. This requires
that the deformation becomes at the limit v — +o0o independent of u so that one obtains a cyclic
deformation of H. The partial differential equations state that one has gradient flow defined by
symplectic action in loop space. The equations (resulting from supersymmetry in QFT approach)
pseudo-holomorphy or generalized Cauchy-Riemann conditions as

Oum + Ly, (m)=0 ,

where Ly, (m) = 0 denotes Hamiltonian equations for the coordinates m of M so that Ly, m is
indeed the functional gradient of symplectic action. At the asymptotic limit d,m — 0 boundary
conditions give just Hamiltonian equations.

As already found, one can assign to these equations a supersymmetric action functional defined
in terms of the almost Kéhler metric defining the analog of energy. As a matter fact, the existence
of almost complex structure in M is enough (transitions functions between coordinate patches
need not be holomorphic in this case). The condition that the energy is finite requires asymptotic
u-independence and super-symmetry condition since energy density is the sum of kinetic energy
densities associated with the motion in u direction and of the square of the vector Ly, m. Since the
time evolution with respect to w is not energy conserving, the cylinders can connect different critical
points of H. This motivates the term “connecting cylinder”. From the point of view of physicist
the role of the field equations is to perform a “gauge choice” selecting particular representative for
homotopy.

6.1.5 The orbit of the loop as a pseudo-holomorphic surface

The cylinder defined by the loop defines a pseudo-holomorphic surface. The sub-spaces connected
by pseudo-holomorphic surfaces intersect in quantum cohomology and Gromow-Witten invariant
counts for the number of the pseudo-holomorphic surfaces connecting/intersecting given n surfaces.
Stringy interpretation for the pseudo-holomorphic curves (holomorphic for K&hler manifolds) would
be as string world sheets. There is an obvious connection with the vision about branes connected by
string world sheets. If the asymptotic images of S! contract to points, they correspond to critical
points (marked points). One can consider also more general solutions of field with n asymptotic
circles containing n critical points as marked points.

The statement of quantum cohomology that two surfaces intersect in fuzzy sense when they
are connected by pseudo-holomorphic curve would mean that that two surfaces intersect when
they both have points common with the pseudo-holomorphic curve. The 2-dimensional mapping
cylinders can be filled to 3-D objects by adding the 2-dimensional pseudo-holomorphic surface.
From this the connection with Chern-Simons action and possibility to apply analogous construction
to 3-D manifold topology becomes obvious. Chern-Simons action in turn implies connection to
4-D manifold topology.
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6.1.6 The correspondence with the singular homology

Symplectic Floer homology for closed symplectic manifolds is equivalent with singular homology.
This means that one has one-to-one map of the space spanned by the critical points to the singular
homology. Critical points are classified by the signature of the Hessian of Hamiltonian so that
there is natural ordering of the critical points, which should correspond to the ordering of the
homology groups since signature varies from n (maximum of Morse function) to zero (minimum of
Morse function). The study of the homology of torus defined in terms of critical points of height
function h serves as a guide-line when one tries to guess the idea behind the correspondence.

To each critical point one can assign a tangent plane defined as the plane of negative signature
of the Hessian of h. Its value equals to 0, 1, 1, 2 for the critical points of h. The critical manifolds
assigned with the negative signature tangent space at critical points can be identified as point, first
homologically non-trivial circle, second homologically non-trivial circle, and the entire torus and
correspond to the generators of the homology. In Floer homology the correspondence need not be
as simple as this but one expect similar correspondence so that the value of grading of homology
corresponds to the signature of the critical point. One must allow only the connections going to
the direction of smaller energy and by a proper choices of signs the dynamics defined by the action
defined gradient flow is indeed dissipative so that this condition is satisfied.

6.1.7 Quantum cup product and pseudo-holomorphic surfaces

As the analog of intersection product in ordinary cohomology homology, the cohomology associated
with the symplectic Floer homology corresponds to the so called pair of pants product of quantum
cohomology [A43] which is a deformed cup product having fuzzy intersection as its dual at the
level of homology.

Ordinary cup product for two forms of degree n; and ns is a form which is characterized by
its values for the elements of homology with co-dimension n; + ng so that d — ny — no is the
dimension of the intersection of the corresponding surfaces. The product is characterized by a
coefficients W(a, 8,v) where the arguments represent homology equivalence classes identifiable
as Gromov-Witten invariants assignable to sphere with three punctures. One can say that three
representatives «, 3,7 of homology give rise to a non-vanishing coefficient W («, 8, ) if there is a
pair of pants having non-empty intersections with «, 3,v. The coefficient W (c, 8,) is analogous
to a coupling constant associated with vertex with «, 3, representing the particles entering to the
vertex.

The factors of the cup product of quantum cohomology are associated with the two legs of the
pants and the outcome of the product to the “waist”. More abstractly, by conformal transforma-
tions the legs and “waist” can be reduced to 3 marked points and the number of marked points
can be arbitrary and represent the intersection points for n manifolds connected by a pseudo-
holomorphic surface with n marked points. One can indeed generalize the variational principle
to allow besides cylinders also pseudo-holomorphic surfaces with arbitrary number holes whose
boundaries are associated with loops containing critical point so that critical points would indeed
represent marked points of a sphere with holes. When H; reduces to H, loops and marked spheres
reduce to point a so that ordinary cup product results.

6.2 Could Floer Homology Teach Something New About Quantum TGD?

The understanding of both quantum TGD and its classical counterpart is still far from from
comprehensive. For instance, skeptic could argue that the understanding of the preferred extremals
of Kéhler action is still just a bundle of ideas without a coherent overview. Also the physical roles of
Kahler actions for Euclidian and Minkowskian space-time regions is far from clear. Do they provide
dual descriptions as suggested or are both needed? Kéhler action for preferred extremal in Euclidian
regions defines naturally Kahler function. Could Kahler action in Minkowskian regions- naturally
imaginary by negative sign of metric determinant- give an imaginary contribution to the vacuum
functional and define Morse function so that both Kéhler and Morse would find a prominent role
in the world order of TGD? One might hope that the mathematical insights from Floer homology
combined with the physical picture and constraints from quantum classical correspondence could
provide additional insights about the construction preferred extremals of Kéhler action.
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6.2.1 Basic picture about preferred extremals of Kéhler action

It is useful to gather some basic ideas about construction of preferred extremals before the discus-
sion of ideas inspired by Foloer homology.

1. For the preferred extremals Kéhler action reduces to Chern-Simons term at the light-like sur-
faces defining orbits of partonic 2-surfaces and space-like 3-surfaces the ends of the space-time
sheets. These 3-surfaces are extremals of Chern-Simons action subject to the constraint force
defined by the weak form of electric-magnetic duality implying that TGD does not reduce to
a mere topological QFT. One has clearly two dynamics: one along light-like 3-surfaces and
one along space-like 3-surfaces and their internal consistency is a powerful constraint.

2. The Chern-Simons contributions from Minkowskian region is imaginary and corresponds
to almost topological QFT aspect of TGD. The argument reducing the action to Chern-
Simons term has been discussed in detail only in Minkowskian regions and involves in an
essential manner the notions of local polarization and light-like momentum direction: the
latter one does not make sense in Euclidian regions. Note however that Laplace equation
makes sense and local polarization and momentum directions are replaced by those for color
quantum numbers. It will be found that internal consistency requires holography both in
Minkowskian and Euclidian regions. In any case, the Euclidian contribution would give
rise to the exponent of Kéahler function and Minkowskian contribution to a phase factor
appearing usually in path integral defining topological QFT. Exponent of Kéhler function
would guarantee that integration over WCW is mathematically well-defined.

3. How could one extend the 3-surfaces to 4-surfaces using strong form of holography? One
could think of having for each time=constant collection of 2-D slices of the light-like 3-
surfaces a space-like Chern-Simons dynamics connecting them to each other. One would
have two dynamics-one time-like and one space-like as effective 2-dimensionality required by
the strong form of holography requires. These dynamics should be mutually consistent and
this should give consistency conditions. The time parameters for these two dynamics would
correspond to the two coordinates of string world sheets involved.

4. The idea that one could assign Hamiltonians to the marked points of the partonic 2-surfaces
as carriers is physically compelling. The Hamiltonians of §M$ x C'P; inducing Hamiltonians
of WCW play essential role in quantum theory. Also the Hamiltonians at ends of braid
strands should have classical counterparts at space-time level. Could braid strand obey
Hamiltonian dynamics defined by Hamiltonian attached to it? This would give a constraint
to the wormhole throat making itself visible also a properties of the space-time sheet. If so
then braid strands would define a kind of the skeleton for the space-time sheet. This idea
could be generalized so that one would have a skeleton of space-time consisting of string
world sheets and finite measurement resolution would mean the restriction of consideration
to this skeleton. Also the braid strands carrying fermion number (other than right handed
neutrino number) should obey their own dynamics.

6.2.2 Braided Galois homology as counterpart of Floer homology?

The picture suggested by braided Galois homology seems to have natural correspondences with
that provided by Floer homology.

1. The quantum fluctuating degrees of freedom correspond to the symplectic group of M$ x
CP,. Finite measurement resolution leads to the discretization. One considers the subgroup
G of symplectic group of M} x CP, permuting a given set of n points of the partonic
2-surface defining the end points of braids. Subgroup of S,, having interpretation as Galois
group is in question. The normal subgroup H of symplecto-morphisms leaving these points
invariant and the factor group G/H is the target of primary interest and expected to be
discrete group. The braiding of this group is intuitively equivalent with the replacement of
symplectic transformations with flows and the points can be interpreted as critical points of
infinite number of Hamiltonian belonging to H. In Floer’s theory one makes a gauge choice
selecting a generic non-degenerate Hamiltonian. This choice -or a generalization of it- should
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have a definite physical meaning in TGD framework in terms of classical correlates for the
quantum numbers of the zero energy state.

2. Preferred Hamiltonian acting and its time dependent deformation play a key role in Floer
homology and represent homotopy in symplectic group. In the recent case braided Galois
homology assigns to preferred extremals subgroup of symplectic flow in Minkowskian space-
time regions and the braid points are invariant under its normal subgroup. The flow defined
by time dependent deformation a Hamiltonian of subgroup defines a candidate for the flow
defined by preferred Hamiltonian. The connecting flows in turn would correspond to the
Galois group. The condition that the flow lines of the Hamilton along 3-surfaces poses a
strong condition on the choice of Hamiltonian on one hand and on the preferred extremal
on the other hand. The time evolution of Hamiltonian could be realized by the slicing of
embedding space by light-cone boundaries parallel to the lower or upper boundary of CD.

3. For braided Galois homology the generators d; representing boundary homomorphisms whose
square maps to commutator subgroup and to zero after abelianization define candidates for
the algebra of SUSY generators. Parameter dependent deformation of these generators would
make sense also now and give rise a homology analogous to that of Witten. The generators
of the cohomology would correspond to supersymmetric ground states and one would expect
that cohomology is non-trivial for the critical points of Morse function. This super-symmetry,
which need not have anything to do with the standard notion of supersymmetry, would be
assigned to Minkowskian regions of space-time. One cannot of course exclude purely fermionic
representations of braided Galois homology and number theoretic quantization of fermions
would pose a powerful constraint on the spectrum of fermionic modes.

6.2.3 Kahler function as Kahler action in Euclidian regions and Morse function as
Kahler action in Minkowskian regions?

The role of Kéhler action in the Floer like aspects of TGD has been already briefly discussed.

1. Symplectic Floer homology for embedding space gives just the homology groups of S? x CP;.
This homology is crucial for the interpretation of TGD but much more detailed information
is required. The analog of Floer homology must be associated with WCW for which quan-
tum fluctuating degrees of freedom are parametrized by symplectic group of §M$ x C P or
symmetric space associated with it. In finite measurement resolution one would have discrete
subgroup defined as a factor group of subgroup permuting braid points and normal subgroup
leaving them invariant identifiable in terms of a hierarchy of Galois groups. Flows must be
considered in order to have braiding. The flows could also correspond to parameter depen-
dent Hamiltonians with the parameter varying along light-like wormhole throat or space-like
3-surface at the end of CD.

2. In the case of Chern-Simons action the critical points correspond to flat connections and
define the generators of the homology for the space of connections. For YM action instanton
solutions play similar role. In the recent case the space of 3-surfaces associated with given
CD seems to be natural object of study.

Kahler function - to be distinguished from Kahler action - would be the first guess for the
Morse function in WCW and the analog of Floer homology would be formally defined by the
sums of the 3-surfaces which correspond to the extrema of Kéhler function. This idea fails.
Kéahler metric must be positive definite. Therefore the Hessian of the Kéahler function in
holomorphic quantum fluctuating degrees of freedom characterized by complex coordinates
of WCW should have only non-negative or non-positive eigen values.

One could try to circumvent the difficulty by assuming that the allowed extrema with varying
signature of Hessian are associated with the zero modes. Therefore the analog of Floer
homology based on Kahler function would not however tell anything about symplectic degrees
of freedom -at least those assignable to the Euclidian regions.

Remark: One can wonder how the Kahler function can escape the implications of Morse
theorem. In the case of C'P, the degeneracy of Kéhler function - meaning that it depends
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on single U(2) invariant C'P, coordinate only - takes care of the problem. Also now infinite-
dimensional symmetries of WCW are expected to allow to circumvent the Morse theorem.

3. The only manner to save this idea is that the Euclidian regions defined by the generalized
Feynman graphs define Kéhler function and Minkowskian regions the analog of the action
defining path integral. The earlier proposed duality states that the formulation TGD is
possible either as a functional integral or a path integral. If duality holds true, its effect
would be analogous to that of Wick rotation. The alternative approach would assign physical
significance to both contributions. The Kéhler action in Minkowskian regions could serve as
Morse function. This identification is rather natural since the determinant of the induced
metric appearing in the action indeed gives imaginary unit in Minkowskian regions. If this
were the case interference effects would result already at the level of action and the connection
with quantum field theories would be much tighter than previously thought.

FEuclidian regions would guarantee the convergence of the functional integral and one would
have a mathematically well-defined theory. The analog of Floer homology would represent
quantum superpositions of critical points identifiable a ground states defined by the extrema
of Kahler action for Minkowskian regions. Perturbative approach to quantum TGD would
rely on functional integrals around the extrema of Kéhler function.

4. Should one assume that the reduction to Chern-Simons terms occurs for the preferred ex-
tremals in both Minkowskian and Euclidian regions or only in Minkowskian regions?

(a) All arguments for this have been represented for Minkowskian regions [K24] involve lo-
cal light-like momentum direction which does not make sense in the Euclidian regions.
This does not however kill the argument: one can have non-trivial solutions of Lapla-
cian equation in the region of C'P, bounded by wormhole throats: for C'Ps itself only
covariantly constant right-handed neutrino represents this kind of solution and at the
same time supersymmetry. In the general case solutions of Laplacian represent bro-
ken super-symmetries and should be in one-one correspondences with the solutions of
the Kéhler-Dirac equation. The interpretation for the counterparts of momentum and
polarization would be in terms of classical representation of color quantum numbers.

(b) If the reduction occurs in Euclidian regions, it gives in the case of C P, two 3-D terms
corresponding to two 3-D gluing regions for three coordinate patches needed to define
coordinates and spinor connection for C'Py so that one would have two Chern-Simons
terms. I have earlier claimed that without any other contributions the first term would
be identical with that from Minkowskian region apart from imaginary unit and different
coefficient. This statement is wrong since the space-like parts of the corresponding
3-surfaces are discjoint for Euclidian and Minkowskian regions.

(¢) There is also a very beautiful argument stating that Dirac determinant for Ké&hler-Dirac
action equals to Kéahler function, which would be lost if Euclidian regions would not
obey holography. The argument obviously generalizes and applies to both Morse and
Kahler function which are definitely not proportional to each other.

5. The preferred extremal of Kahler action itself would connect 3-surfaces at the opposite bound-
aries of CD just as the action for Floer theory connects two loops assignable to critical points.
In zero energy ontology the unions of 3-surfaces at the ends of CD is the basic unit and cor-
respond to the critical points of Morse function. The question is whether objects can be
mapped to a set of critical points of the preferred Hamiltonian in a natural manner. Braided
Galois homology with preferred Hamiltonian defining the braids as its flow lines gives hopes
about this.

6. In Floer theory the homology of LM is mapped to homology of M. The homology of
the WCW cannot be mapped to that of the embedding space. The hierarchy of Planck
constants [K9| assigned to the multi-valued correspondence between canonical momentum
densities of Kéahler action and time derivatives of embedding space coordinates leads to the
introduction of singular covering spaces of the embedding space with the number of sheets
of covering depending on space-time region. The homology of WCW might be mapped
homomorphically to the homology of this space.
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In the case of loop space Ho(LM) is mapped to Hy (M). Something similar should take place
now since all odd homology groups of WCW must vanish if it is Kédhler manifold whereas
zeroth homology could be non-trivial. In zero energy ontology 3-surfaces having disjoint
components at the ends of CD indeed correspond naturally to paths of connected 3-surface
so that this condition might be realized.

On basis of these arguments it seems that the general structure of Floer homology fits rather

nicely the structure of quantum TGD.

6.2.4 TGD counterparts for pseudo-holomorphic surfaces

If the Morse function exists as Kéhler action for preferred extremal in the Minkowskian regions of
the space-time, there are good hopes of obtaining the analog of Floer homology in TGD framework.
Consider first pseudo-holomorphic surfaces.

1. The analogy with Floer homology would suggest that the analogs of pseudo-holomorphic

surfaces assignable to the critical points of Morse function correspond to 3-surfaces at the
ends of CD are 3-surface defined by the simultaneous vanishing of two holomorphic rational
functions of the complex coordinates of S? C M} and of CP, depending parametrically
on the light-like radial coordinate of §M™* giving 7 — 4 = 3 conditions. The effective metric
2-dimensionality implied by the strong form of holography is expected to pose conditions on
the radial dependence of these functions.

Pseudo-holomorphic closed string world sheets with punctures provide a beautiful geometric
realization of quantum cohomology. If positive and negative energy parts of zero energy
states can be regarded as elements of homology, space-time sheets could take a similar role.
In finite measurement resolution string world sheets would perform the same function so
that closed strings would be replaced with open ones as connectors in TGD based quantum
cohomology. Signature is not a problem: in string theories the hypercomplex variant of
holomorphy is allowed. String world sheets would connect partonic two surfaces at the given
end of partonic CD and also at different ends of CD. String world sheets could branch but
the mechanism would be the decay of open string creating new partonic 2-surfaces meeting
at TGD counterpart of Feynman vertex. Note that also in Witten’s approach to Floer theory
and Donaldson theory the signature of string world sheets is Minkowskian.

Remarks:

(a) One can imagine an extremely simple definition for the intersection for partonic 2-
surfaces at opposite boundaries of CD proposed actually earlier. One could identify the
opposite boundaries of CD given by pieces dM1 x C'P, by identifying M3 and §M2
in an obvious manner. This definition is however a natural dynamical counterpart for
intersection in classical sense obtained by identifying the boundaries of CD.

(b) So called massless extremals represent one example about the analogs of right and left
moving solutions in TGD framework [K3]. They distinguish sharply between classical
TGD and Maxwell’s hydrodynamics. There are arguments suggesting that quite gen-
erally the preferred extremals in Minkowskian regions representable as graphs of maps
M* x CP, decompose to regions characterized by local directions of momentum and
polarization representing propagation of massless waves. This would be the classical
space-time correlate for the decomposition of radiation to massless quanta.

Partonic 2-surfaces with particles at the ends of braid strands would define basic objects and
would naturally correspond to holomorphic surfaces for the critical points of Morse function
defined by the contribution of Minkowskian regions to Kéahler action. The hyper-complex
string world sheets and hyper-quaternionicity are however necessary for the M* x CP, —
M? correspondence suggested by physics as generalized number theory vision. The finite
dimensions of the moduli spaces would not be a problem since holomorphy would characterize
only the critical points. The connection between super-symmetry and cohomology plays a key
role in TQFT and pseudo-holomorphy is an excellent candidate for the geometric correlate
of supersymmetry of some kind.
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The natural question is whether pseudo-holomorphy could generalize in 4-D context to its
quaternionic analog.

1. One of the basic conjectures of TGD is that preferred extremals of Kéhler action can be
regarded as associative (co-associative) sub-manifolds. The tangent spaces of space-time
surfaces would define hyper-quaternionic sub-spaces of complexified octonions with imaginary
units of quaternions would be multiplied by commuting imaginary unit.

2. The tangent spaces of space-time surface would also contain a preferred hyper-complex plane
or more generally, a hyper-complex plane which depends on position so that these planes
integrate to string world sheet. This would allow to regard space-time surfaces either as sur-
faces in M* x C' Py or in hyper-octonionic subspace M® [K21]. Integrable distributions of the
hyper-complex sub-manifolds would define string world sheets analogous with hypercomplex
sub-manifolds. The physical interpretation would be in terms of local preferred planes of
un-physical polarizations. The philosophical motivation of hyper-quaternionicity would be
that associativity for space-time surfaces and commutativity for string world sheets could
define a number theoretical variational principle.

3. The role of pseudo-holomorphy suggests that hyper-quaternionicity could characterize the
critical points of Morse function defined by Kéhler action in Minkowskian regions of space-
time. If all preferred extremals are hyper-quaternionic, this property cannot imply holomor-
phy of the partonic surfaces.

4. Tt was already mentioned that finite measurement resolution defines a skeleton of space-
time surface realized in terms of string world sheets. This skeleton would generalize a curve
of complex plane at which holomorphic function defining a complex coordinate is real to
hyper-complex sub-manifold of hyper-quaternionic space-time surface. Given this skeleton,
the construction of space-time surface would be analogous to an analytic continuation from
hyper-complex realm to hyper-quaternionic realm.

6.2.5 Hierarchy of Planck constants, singular coverings of the embedding space, and
homology of WCW

1. As already noticed, the homology groups of embedding space are certainly too simple to be
of interest from the point of physics and quantum TGD. Physically interesting analogs of
homology groups could be associated with the space-time surface itself or with the singular
covering of embedding space allowing to describe the many-valued correspondence between
canonical momentum densities and time derivatives of embedding space coordinates. This
would allow to interpret the resulting non-trivial homology as a property of either space-time
surface or of effective embedding space. In any case, one should add to the homology the
constraint that the elements of homology are representable as sub-varieties for the preferred
extremals of Kahler action. This might allow to code physics using the formalism of ho-
mology theory. Floer like theory would also define a homomorphism mapping the homology
H, (WCW) to the homology group H,, 1 of the singular covering of the embedding space.

2. The recent interpretation for the effective hierarchy of Planck constants coming as integer
multiples of ordinary Planck constants has interpretation in terms of effective coverings of
space-time surface implied by the 1-to-many character of the map assigning to canonical
momentum densities of Kahler action time derivatives of embedding space coordinates. The
strange sounding proposal is that at partonic two surfaces branching occurs in the sense
that the various branchings of the many-valued function involved with this correspondence
co-incide. Branching would however occur both in the direction of the light-like 3-surface
and space-like 3-surface at the end of CD. Branching could occur at both ends of given CD
or only at single end if the branching is taken as a space-time correlate for dissipation and
arrow of time, and perhaps even for quantum superposition as will be discussed below.

3. This branching brings in mind the emergence of homologically non-trivial curves from the
critical points in Floer cohomology and possibility of several curves connecting two critical
points (torus serves as a good illustration also now). The analogy would be more convincing
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if one could assign to the branches a sign factor analogous to the sign of the eigenvalue of
Hessian as physical signature. One possibility is that the sign factor tells whether the line is
incoming or outgoing. Also the sign of energy in the case of virtual particles could appear in
the sign factor.

6.2.6 How detailed quantum classical correspondence can be?

The gradient dynamics is quite essential for the super-symmetric solutions of Floer theory and
typically gradient dynamics is dissipative leading to fixed points of the function function involved.
Dissipative dynamics allows to order critical points in terms of the energy defined by Hamilton
and also connect different critical points. Physicist would obviously ask whether this aspect of the
dynamics is only an artefact of the model or whether it has a much deeper physical significance.
If it does not, the following considerations can be taken only as a proposal for how the quantum
correlates could be represented at space-time level and how detailed they can be.

Can the dynamics defined by preferred extremals of Kéhler action be dissipative in some sense?
The generation of the arrow of time has a nice realization in zero energy ontology as a choice of
well-defined particle numbers and other quantum numbers at the “lower” end of CD. By quantum
classical correspondence this should have a space-time correlate. Gradient dynamics is a highly
phenomenological realization of the dissipative dynamics and one must try to identify a microscopic
variant of dissipation in terms of entropy growth of some kind. If the arrow of time and dissipation
has space-time correlate, there are hopes about the identification of this kind of correlate.

Quantum classical correspondence has been perhaps the most useful guiding principle in the
construction of quantum TGD. What is says that not only quantum numbers but also quantum
jump sequences should have space-time correlates: about this the failure of strict determinism of
Kahler action gives good hopes. Even the quantum superposition- at least for certain situations
-might have space-time correlates.

1. Measurement interaction term in the modified Dirac action at the ends of CD indeed defines
a coupling of quantala dynamics to the classical dynamics [K24]. The interpretation of
TGD as square root of thermodynamics suggests that measurement interaction terms are
completely analogous to the Lagrange multiplier terms fixing the values of observables in
thermodynamics. Now the classical conserved charges would be fixed to their quantal values
for the space-time surfaces appearing in quantum superposition. These Lagrange multiplier
terms would also give to Kahler-Dirac action 3-D boundary terms. By the localization spinor
modes to space-time sheets these boundary terms are effectively one-dimension and localized
to stringy curves.

This kind of measurement interaction is indeed basic element of quantum TGD. Also the
color and charges and angular momentum associated with the Hamiltonians at point of
braids could couple to the dynamics via the boundary conditions.

2. The braid strand with a given Hamiltonian could obey Hamiltonian equations of motion:
this would give rise to a skeleton of space-time defined by braid strands possibly continued
to string world sheets and would provided different realization of quantum classical corre-
spondence.

3. Quantum TGD can be regarded as a square root of thermodynamics in well-defined sense.
Could it be possible to couple the Hermitian square root of density matrix appearing in M-
matrix and characterizing zero energy state thermally to the geometry of space-time sheets by
coupling it to the classical dynamical via boundary conditions depending on its eigenvalues?
This is indeed the case if one accepts the description of the equality of classical and quantum
charges in terms of Lagrange multipliers.

The necessity to choose single eigenvalue would give a representation for single measurement
outcome. One can achieve a representation of the ensemble at space-time level consisting of
space-time sheets representing various outcomes of measurement. This ensemble would be
realized as ensemble of sub-CDs for a given CD.

4. One can as whther a quantum superposition of WCW spinor fields could have a space-
time correlate in the sense that all space-time surfaces in the superposition would carry
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information about the superposition itself? Obviously this would mean self-referentiality via
quantum-classical feedback.

The following discussion concentrates on possible space-time correlates for the quantum super-
position of WCW spinor fields and for the arrow of time.

1. Tt seems difficult to imagine space-time correlate for the quantum superposition of final states
with varying quantum numbers since these states correspond to quantum superpositions of
different space-time surfaces. How could one code information about quantum superposition
of space-time surfaces to the space-time surfaces appearing in the superposition? This kind
of self-referentiality seems to be necessary if one requires that various quantum numbers
characterizing the superposition (say momentum) couple via boundary conditions to the
space-time dynamics.

2. The failure of non-determinism of quantum dynamics is behind dissipation and strict deter-
minism fails for Kéhler action. This gives hopes that the dynamics induces also arrow of
time. Energy non-conservation is of course excluded and one should be able to identify a
measure of entropy and the analog of second law of thermodynamics telling what happens
at for preferred extremals when the situation becomes non-deterministic. The vertices of
generalized Feynman graphs are natural places were non-determinism emerges as are also
sub-CDs. naive physical intuition would suggest that dissipation means generation of en-
tropy: the vertices would favor decay of particles rather than their spontaneous assembly.
The analog of blackhole entropy assignable to partonic 2-surfaces might allow to characterize
this quantatively. The symplectic area of partonic 2-surface could be a symplectic invariant
of this kind.

3. Could the mysterious branching of partonic 2-surfaces -obviously analogous to even more
mysterious branching of quantum state in many worlds interpretation of quantum mechanics-
assigned to the multi-valued character of the correspondence between canonical momentum
densities and time derivatives of H coordinates allow to understand how the arrow of time
is represented at space-time level?

(a) This branching would effectively replace CD with its singular covering with number
of branches depending on space-time region. The relative homology with respect to
the upper boundary of CD (so that the branches of the trees would effectively meet
there) could define the analog of Floer homology with various paths defined by the
orbits of partonic 2-surfaces along lines of generalize Feynman diagram defining the
first homology group. Typically tree like structures would be involved with the ends of
the tree at the upper boundary of CD effectively identified.

(b) This branching could serve as a representation for the branching of quantum state to a
superposition of eigenstates of measured quantum observables. If this is the case, the
various branches to which partonic 2-surface decays at partonic 2-surface would more
or less relate to quantum superposition of final states in particle reaction. The number
of branches would be finite by finite measurement resolution. For a given choice of the
arrow of geometric time the partonic surface would not fuse back at the upper end of
CD.

(¢) Rather paradoxically, the space-time correlate for the dissipation would reduce the dis-
sipation by increasing the effective value of A: the interpretation would be however in
terms of dark matter identified in terms of large & phase. In the same manner dis-
sipation would be accompanied by evolution since the increase of /i naturally implies
formation of macroscopically quantum coherent states. The space-time representation
of dissipation would compensate the increase of entropy at the ensemble level.

(d) The geometric representation of quantum superposition might take place only in the
intersection of real and p-adic worlds and have interpretation in terms of cognitive
representations. In the intersection one can also have a generalization of second law
[K14] in which the generation of genuine negentropy in some space-time regions via the
build up of cognitive representation compensated by the generation of entropy at other
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space-time regions. The entropy generating behavior of living matter conforms with
this modification of the second law. The negentropy measure in question relies on the
replacement of logarithms of probabilities with logarithms of their p-adic norms and
works for rational probabilities and also their algebraic variants for finite-dimensional
algebraic extensions of rationals.

(e) Each state in the superposition of WCW quantum states would contain this represen-
tation as its space-time correlate realizing self-referentiality at quantum level in the
intersection of real and p-adic worlds. Also the state function reduced members of
ensemble could contain this cognitive representation at space-time level. Essentially
quantum memory making possible self-referential linguistic representation of quantum
state in terms of space-time geometry and topology would be in question. The for-
mulas written by mathematicians would define similar map from quantum level to the
space-time level making possible to “see” one’s thoughts.

7 Could Gromov-Witten Invariants And Braided Galois Ho-
mology Together Allow To Construct WCW Spinor Fields?

The challenge of TGD is to understand the structure of WCW spinor fields both in the zero modes
which correspond to symplectically invariant degrees of freedom not contributing to the WCW
Kaéhler metric and in quantum fluctuating degrees of freedom parametrized by the symplectic
group of §M} x CP,. The following arguments suggest that an appropriate generalization of
Gromov-Witten invariants to covariants combined with braid Galois homology could allow do
construct WCW spinor fields and at the same time M-matrices and U-matrices, which in ZEO
context generalize quantum theory to what might be called square root of thermodynamics.

The recent view about general structure of U- and S-matrices is discussed in [K17]. Suffice it to
notice that the time translation operator of quantum field theories is represented now as scalings
of causal diamonds (CDs) allowing to circumvent the problems related to the loss of manifest
Lorentz invariance. U-matrix represents a semi-group of scalings rather than group. Also unitarily
represented discrete Lorentz boosts for CDs are in an essential role but not visible at the limit,
when the size scale of CD is large and one obtains the counterpart of usual S-matrix.

7.1 Gromov-Witten Invariants

Gromov-Witten invariants (see http://tinyurl. com/y7nled63) [A15] are rational numbers GW;’(;LA,
which in a loose sense count the number of pseudo-holomorphic curves of genus g and n marked
points and homology equivalence class A in symplectic space X meeting n surfaces of X with given
homology equivalence classes. These invariants can distinguish between different symplectic man-
ifolds. Since also the proposed generalized homology groups would define symplectic invariants if
the realization of braided Galois groups as symplectic flows works, the attempt to understand the
relation of Gromov-Witten invariants of TGD is well-motivated.

Let X be a symplectic manifold with almost complex structure J (the transition functions are
not holomorphic) and C' be an algebraic variety in X of genus g and with complex structure j
having n marked points x1, ...x,, which are points of X. Pseudo-homolomorphic maps of C' to X
are by definition maps, whose Jacobian map commutes with the multiplication of the tangent space
vectors with the antisymmetric tensor representing imaginary unit Jodf = df oj. If the symplectic
manifold allows Kéhler structure, one can say that pseudohomolomorphic maps commute with the
multiplication by imaginary unit so that tangent plane of complex 2-manifold is mapped to a
complex tangent plane of X.

The moduli space M, ,(X) of the pseudoholomorphic maps is finite-dimensional. One considers
also its subspaces My (X, A) of M, ,,(X), where A represents a fixed homology equivalence class A
for the image of C' in X. The so called evaluation map from M, ,, (X, A) to My, (X)) x X™ defined
by (C,x1,z2,..2n, f) = (st(C,x1, 22, ...x0); f(21), .o, f(25)). Here st(C,x1, 22, ...2,) denotes so
called stabilization of (C,x1,....z,) defined in the following manner. A smooth component of
Riemann surface is said to be stable if the number of automorphisms (conformal transformations)
leaving the marked and nodal (double) points invariant is finite. Stabilization is obtained by
dropping away the unstable components from the domain of C.
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The image of the fundamental class of the moduli space M ,,(X) defines a homology class in
Mgy (X)) x X™. Since the homology groups of M ,,(X)) x X™ are by Kiinneth theorem expressible
as convolutions of homology groups of M, ,(X) and n copies of X, this homology class can be
expressed as a sum

Z GWg)f,;Aﬁ X Q. X Q-

B,
The coefficients, which in the general case are rational valued, define Gromov-Witten invariants.
One can roughly say that these rational numbers count the number of surfaces C intersecting the
n homology classes «; of X. n surfaces intersect when there is a surface of genus g with n marked
points intersection the surfaces at marked points and Gromov-Witten invariant counts the number
of homologically non-equivalent pseudo-holomorphic 2-surfaces of this kind [A43].

Branes connected by closed strings would represent a basic example about quantum intersec-
tions. Also in Floer homology [A46] and quantum cohomology [A28] this kind of fuzzy intersection
is encountered. The fundamental Gromov-coefficients W («, 8,7) are for three homology gener-
ators «, 3,7 and connecting surface correspond to pseudo-holomorphic spheres (or higher genus
surfaces) with three marked points obtained by contracting the outgoing three strings of stringy
trouser vertex to point.

7.2 Gromov-Witten Invariants And Topological String Theory Of Type
A

Gromow-Witten invariants appear in topological string theory (see http://tinyurl.com/yaydkshu)
of type A [A37] for which the scattering amplitudes depend on Kéhler structure of X only. The tar-
get space X of this theory is 6-dimensional symplectic manifold. X can correspond to 6-dimensional
Calabi-Yau manifold. Twistor space is one particular example of this kind of manifold and one
can indeed relate twistor amplitudes to those of topological string theory in twistor space.

Type A topological string theory contains both fundamental string orbits, which are 2-surfaces
wrapping over 2-real-D holomorphic curves in X and D2 branes, whose 3-D “orbits” in X wrap
over Lagrangian manifolds having by definition a vanishing induced symplectic form. There are
also strings connecting the branes. C' corresponds now to the world sheet of string with n marked
points representing emitted particles. Gromov-Witten invariants are defined as integrals over the
moduli spaces M, ,(X) and provide a rigorous definition for path integral and the free energy at
given genus ¢ is the generating function for Gromov-Witten invariants.

Witten introduced the formulation of the topological string theories in terms of topological
sigma models [A36]. The formulation involves the analog of BRST symmetry encountered in
gauge fixing meaning that one replaces target space with super-space by assigning to target space-
coordinates anti-commuting partners which do not however represent genuine fermionic degrees
of freedom. One also replaces string world sheet with a super-manifold NV = (2,2) SUSY and
spinors are world sheet spinors and Lorentz transformations act on string world sheet. Topological
string models are characterized by continuous R-symmetries and the mixing of rotational and R-
symmetries takes place. The R-symmetry associated with 2-D world sheet Lorentz transformation
compensates for the spin rotation so that one indeed obtains a BRST charge @ (for elementary
introduction to BRST symmetry see [BI7]), which is scalar and the condition Q% = 0 is satisfied
identically so that cohomology is obtained.

7.3 Gromov-Witten Invariants And WCW Spinor Fields In Zero Mode
Degrees Of Freedom

One can ask whether Gromow-Witten invariants of something more general could emerge naturally
in TGD framework.

1. Gromov-Witten invariants modified so that closed string orbits are replaced by open string
world sheets with boundaries identifiable as braid strands relate to the braided Galois ho-
mology. Both the geometric interpretation these invariants in terms of fuzzy quantum inter-
section induced by connecting string world sheets and the discussion of the Floer homology
like aspects of quantum TGD support this idea.
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2. Another interpretation is that Gromov-Witten invariants or their generalizations emerge
in the construction of WCW spinor fields in zero mode degrees of freedom, which do not
contribute to the line element of WCW Kéhler metric. Contrary to the first hopes there is
no convincing support for this view.

7.3.1 Comparison of the basic geometric frameworks

The basic geometric frameworks are sufficiently similar to encourage the idea that Gromov-Witten
type invariants might make sense in TGD framework.

1. In the standard formulation of TGD the 6-dimensional symplectic manifold is replaced with
the metrically 6-dimensional manifold §M{ x CP; having degenerate symplectic and Kéhler
structure and reducing effectively (metrically) to the symplectic manifold S? x C' P,. Partonic
2-surfaces at the light-like boundaries of CD identifiable as wormhole throats define the coun-
terparts of fundamental string like object of topological string theory of type A. The n marked
points of Gromov-Witten theory could correspond to the ends of braid strands carrying purely
bosonic quantum numbers characterized by the attached §M$ x C' P, Hamiltonians with well
defined angular momentum and color quantum numbers. One must distinguish these braid
strands from the braid strands carrying fermion quantum numbers.

2. There are also differences. One assigns 3-D surfaces to the boundaries of CD and partonic
2-surfaces at CD are connected with are interpreted as strings so that partonic 2-surfaces
have also brane like character. One can identify 3-D surfaces for which induced Kéhler forms
of CP; and §M{ vanish (any surface with 1-D projection to §M$ and 2-D C'P, projection
with Lagrangian manifold would define counterpart of brane) but it is not natural to raise
these objects to a special role.

3. I have proposed that quantum TGD is analogous to a physical analog of Turing machine in
the sense that the inclusions of HFF's could allow to emulate any QFT with almost gauge
group assignable to the included algebra [K9]. The representation of these gauge groups as
subgroups of symplectic transformations leaving the marked points of the partonic 2-surfaces
invariant gives hopes of realizing this idea mathematically. Symplectic groups (see http:
//tinyurl.com/y8us9sgw) are indeed completely exceptional because of their representative
power [A35] and used already in classical mechanics and field theory to represent symmetries.
An interesting question is whether the symplectic group associated with M3 x C Py could
be universal in the sense that any gauge group of this kind allows a faithful homomorphism
to this group.

One should understand what pseudo-holomorphy means in TGD framework. One must consider
both the identification of pseudo-holomorphic surfaces as string world sheets or as partonic 2-
surfaces. Consider first the interpretation of pseudo-holomorphic 2-surfaces as string world sheets
assignable to the space-time sheets.

1. String world sheets would not represent closed strings and their ends would define braid
strands at light-like 3-surfaces and at the space-like 3-surfaces defining the ends of space-
time. This is not a problem: also the standard picture about pseudo-holomorphic surfaces
as spheres with punctures is obtained by idealizing the holes of closed string with punctures
[A46]. Open string world sheet be seen as a string containing holes defined by the boundary
braid strands. Disjoint partonic two surfaces at the ends of braid strands would intersect
in quantum sense. The interpretation for the fuzzy intersection would be in terms of causal
dependence of the quantum state at the ends of CD so that the assignment of Gromov-Witten
invariants to them would be natural.

2. This option looks very natural from TGD point of view since the moduli space is expected
to be finite-dimensional and have interpretation in terms of the preferred extremal property.
For a given partonic 2-surfaces and tangent space data at them the moduli would be fixed
more or less uniquely and the variation of the tangent space data would vary the moduli.
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Also the identification of pseudo-holomorphic surfaces as partonic 2-surfaces can be considered.
It would apparently conform with the canonical identification of pseudo-holomorphic surfaces but
the interpretation as connectors in fuzzy cup product can be challenged.

1. Since the moduli space of pseudo-holomorphic surfaces is finite-dimensional, only a very
restricted set of partonic 2-surfaces satisfies pseudo-holomorphy condition. The induced
metric of the partonic 2-surface defines a unique complex structure. Pseudo-holomorphy
states that Jacobian takes the complex tangent place of partonic 2-surface to a comlex plane
of the tangent space of §M$ x CP,. Pseudo-holomorphy is implied by holomorphy stating
that both CP, coordinates and S? coordinates as functions of the complex coordinate of
the partonic 2-surface are holomorphic functions implying that the induced metric as the
standard ds? = g,zdzdz. Holomorphy is also implied if one can express as a variety using
functions which are holomorphic functions of §M4} and C P, complex coordinates and analytic
functions of the radial coordinate r. These surfaces are characterized by the homology-
equivalence classes of their projections in M % (3-D Euclidian space with puncture at origin)
and in CP,. Both are characterized by integer. These surfaces obviously define a subset of
partonic 2-surfaces and one can actually assign to the string-like objects as cartesian products
of string world sheets satisfying minimal surface equations and of 2-D complex sub-manifolds
of CPs.

2. The first objection is that partonic two-surfaces do not represent time-evolution so punctures
associated with them cannot be regarded as causally dependent. From physics point of view it
does not make sense to speak about fuzzy intersection except in terms of finite measurement
resolution implying that second quantized induced spinor fields have finite number of modes
so that they do not anti-commute at partonic 2-surfaces anymore.

3. Second objection is that there is nothing physically interesting that partonic 2-surfaces could
connect!

4. The third counter argument is that pseudo-holomorphy condition allows only finite-dimensional
moduli space whereas the space of partonic 2-surfaces is infinite-dimensional. Two explana-
tions suggest itself.

(a) The finite-measurement resolution might imply an effective reduction of the space of
partonic 2-surfaces to this moduli space? Finite measurement resolution could be un-
derstood also as a kind of gauge invariance when realized in terms of inclusion of hyper-
finite factors of type II; (HFFs) with the action of sub-factor having no effect on its
observable properties. Holomorphy would serve as a gauge fixing condition.

(b) If TGD as almost topological QFT can be formulated as an analog of Floer’s theory
relying on action principle, the natural proposal is that holomorphic partonic 2-surfaces
correspond to critical values for the Kéhler action assignable to the Minkowskian regions
of the preferred extremal.

It seems relatively safe to conclude that only the string world sheets have a natural interpreta-
tion as connectors the deformed interwection product in TGD framework.

7.3.2 Could an analog of topological string theory make sense in TGD framework

The observations of previous paragraphs motivate the question whether an analog of type A topo-
logical string theory could emerge in the construction of WCW spinor fields. The basic problem is
to understand how the WCW spinor fields depend on symplectic invariants, which however need
not correspond to zero modes which should be expressible in terms of symplectic fluxes alone.
One might hope that topological string theory of some kind could allow to construct this kind of
symplectic invariants.

1. The encouraging symptom is that the n-point functions of both A and B type topological
string theories are non-trivial only in dimension D = 6, which is the metric dimension of
S§M4$ x CP,. Since the n-point functions of type A topological string theory depend only
on the Kihler structure associated now by CP, and §M$ Kihler forms they could code for
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the physics associated with the zero modes representing non-quantum fluctuating degrees of
freedom. Since type B topological string theory requires vanishing of the first Chern class
implying Calabi-Yau property, this theory is not possible in the standard formulation of
TGD.

The emergence of the topological string theory of type A seems to be in conflict with what
twistorialization suggests. Witten suggested in his classic article [B§| boosting the twistor
revolution, that the Fourier transforms of the sattering amplitudes from momentum space
to twistor space scattering amplitudes for perturbative A" = 4 SUSY could be interpreted
in terms of D-instanton expansion of topological string theory of type B defined in twistor
space CPj.

2. One can identify the marked points as the end points of both space-like and time-like braids
but it is not natural to assign them fermionic quantum numbers except those of covariantly
constant right-handed neutrino spinor with the points of symplectic triangulation. This is
well-motivated since symplectic algebra extends to super-symplectic algebra with covariantly
constant right handed neutrino spinor defining the super-symmetry. One can assign the
values of Hamiltonians of dM$ x C'P, to the marked points belonging to the irreducible rep-
resentations of rotation group and color group such that the total quantum numbers vanish
by the symplectic invariance. n-point functions would be correlation functions for Hamilto-
nians. In a well-defined sense one would have color and angular momentum confinement in
WCW degres of freedom.

The vanishing of net quantum numbers need not hold true for single connected partonic
2-surface. Also it could hold true only for a collection of partonic 2-surfaces associated with
same 3-surface at either end of CD. The most general condition would be that the total
color and spin numbers of positive and negative energy parts of the state sum up to zero in
symplectic degrees of freedom.

3. The generating function for Gromov-Witten invariants is defined for a connected pseudo-
holomorphic 2-surface with a fixed genus g as such is not general enough if one allows partonic
2-surfaces with several components. The generalization would provide information about the
preferred extremal of Kéahler action and about the topology of space-time surface. The
generalization of the Gromov-Witten partition function would define as its inverse the nor-
malization factor for zero energy state identifiable as M-matrix defined as a positive diagonal
square root of density matrix multiplied by S-matrix for which initial partons possess fixed
genus and which contains superposition over braids with arbitrary number of strands. The
intuition from ordinary thermodynamics suggests that this partition function is in a reason-
able approximation expressible as convolution for n-points functions for individual partonic
2-surfaces allowing the set of marked points to carry net §M$ angular momentum and color
quantum numbers.

7.3.3 Description of super-symmetries in TGD framework

It is interesting to see whether the formulation of super-symmetries in the framework of topological
sigma models giving rise to Gromov-Witten invariants [A36] has any reasonable relation to TGD
where the notion of super-space does not look natural as a fundamental notion although it might
be very useful as a formal tool in the formulation of SUSY QFT limit [?] and even quantum TGD
itself.

1. Almost topological QFT property means that Kéahler action for the preferred extremals
reduces to Chern-Simons action assuming the weak form of electric magnetic duality. In
the fermionic sector one must use Kéhler-Dirac gamma matrices defined as contractions
of the canonical momentum densities for Kéhler action (Ké&hler-Chern-Simon action) with
embedding space gamma matrices in the counterpart of Dirac action in the interior of space-
time sheet and at 3-D wormhole throats. The Kahler-Dirac gamma matrices define effective
metric quadratic in canonical momentum densities which is typically highly degenerate. It
contains information about the induced metric. Therefore one cannot expect that topological
sigma model approach could work as such in TGD framework.
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2. In TGD framework supersymmetries are generated by right-handed covariantly constant

neutrinos and antineutrinos with both spin directions. These spinors are embedding space
spinors rather than world sheet spinors but one can say that the induction of the spinor
structure makes them world sheet spinors. Since the momentum of the spinors is vanishing,
one can assign all possible spin directions to the neutrinos.

Covariantly constant right-handed neutrino and antineutrino can have all possible spin di-
rections and for fixed choice of quantization axes two spin directions are possible. Therefore
one could say that rotation group acts as non-Abelian group of R-symmetries. TGD for-
mulation need not be based on sigma model so that it is not all clear whether a twisted
Lorenz transformations are needed. If so, the most obvious guess is that space-time rotations
are accompanied by R-symmetry rotation of right-handed neutrino spinors compensating the
ordinary rotation it as in the case of topological sigma model originally introduced by Witten.

It is interesting to look the situation also from the point of view of the breaking of SUSY for
supergravity defined in dimension 8 by using the table listing super-gravities (see http://tinyurl.
com/y71zxud7)) in various dimensions [B2].

1.

One can assign to the causal diamond a fixed direction as a WCW correlate for the fixing of
spin quantization axis and this direction corresponds to a particular modulus. The preferred
time directiond defined by the line connecting the tips of CD and this direction define a
plane of non-physical polarizations having in number theoretical approach as a preferred
hypercomplex plane of hyper-octonions [K21]. Hence it would seem that by the symmetry
breaking by the choice of quantization axes allows only two spin directions the right handed
neutrino and antineutrino and that different choices of the quantization axes correspond to
different values for the moduli space of CDs.

. Since embedding space spinors are involved, the sugra counterpart of TGD is N' = 2 super

gravity in dimension 8 for which super charges are Dirac spinors and their hermitian con-
jugates with U(2) acting as R-symmetries. Note that the supersymmetry does not require
Majorana spinors unlike N = 1 supersymmetry does in string model and fixes the target
space dimension to D = 10 or D = 11. Just like D = 11 of M-theory is the unique maximal
dimension if one requires fundamental Majorana spinors (for which there is no empirical
support), D = 8 of TGD is the unique maximal dimension if one allows only Dirac spinors.

. In dimensional reduction to D = 6, which is the metric dimension of the boundary of 6CD

a breaking of N' = 8 sugra N' = (2,2) sugra occurs, and one obtains decomposition into
pseudoreal representations with supercharges in representations (4, 0) and (0, 4) of R =
Sp(2) x Sp(2) (Sp(2) = SI(2, R) corresponds to 2-D symplectic transformations identifiable
also as Lorentz group SO(1, 2)). (4, 0) and (0, 4) could correspond to left and right handed
neutrinos with both directions of helicities and thus potentially massive. CP» geometry
breaks this supersymmetry.

. The reduction to the level of right handed neutrinos requires a further symmetry breaking

and D = 5 sugra indeed contains supercharges Q and their conjugates in 4-D pseudoreal
representation of R = Sp(4). Note that this group corresponds to 2 X 2 quaternionic matrices.
A possible interpretation would be as a reduction in C' P, degrees freedom to U(2) x U(1)
invariant sphere.

. The R-symmetries mixing neutrinos and antineutrinos are pysically questionable so that a

breaking of R-symmetry to Sp(2) x Sp(2) to SU(2) x SU(2) or even SU(2) should take
place. A further reduction to homologically non-trivial geodesic sphere of C' P, might reduce
the action of C'P»(2) holonomies to those generated by electric charge and weak isospin and
thus leaving right-handed neutrinos invariant. Fixing the quantization axis of spin would
reduce R-symmetry to U(1). The inverse imaged of this geodesic sphere is identified as
string world sheet [K11].
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7.3.4 How braided Galois homology and Gromov-Witten type homology and WCW
spinor fields could relate?

One can distinguish between WCW “orbital” degrees of freedom and fermionic degrees of freedom
and in the case of WCW degrees of freedom also between zero modes expressible in terms of Kahler
fluxes and quantum fluctuating degrees of freedom expressible using wave functions in symplectic

group.
1. Quantum fluctuating degrees of freedom

As far as quantum number are considered, quantum fluctuating degrees of freedom correspond
to the symplectic algebra in the basis defined by Hamiltonians belonging to the irreps of rotation
group and color group.

1. At the level of partonic 2-surfaces finite measurement resolution leads to discretization in
terms of braid ends and symplectic triangulation. At the level of WCW discretization replaces
symplectic group with its discrete subgroup. This discrete subgroup must result as a coset
space defined by the subgroup of symplectic group acting as Galois group in the set of
braid points and its normal subgroup leaving them invariant. The group algebra of this
discrete subgroup of symplectic group would have interpretation in terms of braided Galois
cohomology. This picture provides an elegant realization for finite measurement resolutions
and there is also a connection with the realization of finite measurement resolution using
categorification [A54], [K4].

2. The proposed generalized homology theory involving braided Galois group and symplectic
group of §M% x C'P, would realize the “almost” in TGD as almost topological QFT in finite
measurement resolution replacing symplectic group with its discretized version. This algebra
would relate to the quantum fluctuating degrees of freedom. The braids would carry only
fermion number and there would be no Hamiltonians attached with them. The braided Galois
homology could define in the more general situation invariants of symplectic isotopies.

3. The generalization of Gromov-Witten invariants to n-point functions defined by Hamiltoni-
ans of §M${ x CP, are symplectic invariants if net §M$} x C'P, quantum numbers vanish.
As As a special case one obtains Gromove-Witten invariants. The most general definition
assumes that the vanishing of quantum numbers occurs only for zero energy states having
disjoint unions of partonic 2-surfaces at the boundaries of C' Ds as geometric correlate. Since
Hamiltonians correspond to quantum fluctuating degrees of freedom the interpretation in
terms of zero modes is not not possible. The comparison of Floer homology with quan-
tum TGD encourages to think that the generalizations of Gromov-Witten invariants can be
assigned to the braided Galois homology.

4. One should also add four-momenta and twistors to this picture. The separation of dynamical
fermionic and sup-symplectic degrees of freedom suggests that the Fourier transforms for am-
plitudes containing the fermionic braid end points as arguments define twistorial amplitudes.
The representations of light-like momenta using twistors would lead to a generalization of the
twistor formalism. At zero momentum limit one would obtain symplectic QFT with states
characterized by collections of Hamiltonians and their super-counterparts.

2. Zero modes

WCW spinor field depends also on zero modes and the challenge is to identify the appropriate
variables coding for this information in accordance with quantum classical correspondence. The
best that one could achieve would be a basis for the parts of WCW spinor fields in these degrees
of freedom. Zero modes correspond essentially to the non-local symplectic invariants assignable to
the projections of the §M$ and CP, symplectic forms to the space-time surface and expressible
in terms of symplectic fluxes only. The appropriate symplectic fluxes should be determined by
the information about the quantum state in quantum fluctuating degrees of freedom by quantum
classical correspondence.

1. The exponent of Kéahler action for preferred extremal- by above proposal real in Euclidian
regions and imaginary in Minkowskian regions and reducing to Chern-Simons action at both
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sides - contains also information about zero modes and would code implicitly the vacuum
functional in zero modes. What would be needed is an explicit representation for this part
of vacuum functional. The identification of zero modes as classical variables requires en-
tanglement between zero modes and quantum fluctuating degrees of freedom and one-one
correspondence analogous to that between the states of the measurement apparatus and
the outcome of quantum measurement is expected. This duality would express quantum
holography and quantum classical correspondence crucial for quantum measurement theory.

. Could the generating function for appropriately generalized Gromow-Witten invariants define

a candidate for what might be regarded as a vacuum functional in zero modes separating
into a factor in WCW spinor field? The first thing to notice is that symplectic invariance is
not equivalent with zero mode property. In Floer homology there is a preferred Hamiltonian
interpreted in TGD framework in terms of the braiding defining braided Galois homology.
Neither Floer homology, Gromov-Witten invariants nor braided Galois homology do depend
on the details of the Hamiltonian. Does this mean that the TGD counterparts of Gromov-
Witten invariants might could be interpreted as zero modes and generating function for these
invariants as vacuum functional in zero modes? Or does the fact that Hamiltonian flow is
involved mean that information about quantum fluctuating degrees of freedom is present?

Symplectic QFT [K4] provides a more promising approach to the description of zero modes in

terms of symplectic fluxes.

8

1. The earlier proposal [K4] for symplectic QFT defined as a generalization of conformal QFT

coding for these degrees of freedom assigns to the partonic 2-surface collections of marked
points defining its division to 2-polygons carrying Kéhler magnetic flux together with the
signed area defined by Rij’r symplectic form (essentially solid angle assignable to partonic
2-surface or its portion with respect to the tip of light-cone). A given assignment of marked
points defines symplectic fusion algebra and these algebras integrate to an operad with a
product defined by the product of fusion algebras.

. Symplectic triangulation would define symplectic invariants. The nodes of the symplectic tri-

angulation could be identified as the ends of braid strands assignable to string world sheets.
If the information about quantum state can be used to fix the edges of the triangulation,
the phases defined by the fluxes associated with the triangles define physically interesting
symplectic invariants. If one assumes that each Hamiltonian assignable to the partonic 2-
surface defines its own symplectic triangulation, the Hamiltonian equations associated with
the Hamiltonian would naturally define the edges of the triangulation. Symplectic triangu-
lation would characterize a Bose-Einstein condensate like state assignable to single Hamilto-
nian. The total magnetic flux for the triangulation would characterize the Hamiltonian. If
only single Hamiltonian is involved the orbit should be a closed orbit connecting the node to
itself and also now could assign to it a symplectic area.

. Symplectic triangulation would add additional pieces to the proposed skeleton of the space-

time surface. If the symplectic triangulation can be continued from partonic 2-surfaces to
the interior of space-time in both time and spatial direction it would provide space-time
with a web string world sheets connected by sheets assignable to the edges of the symplectic
triangulation.

K-Theory, Branes, And TGD

K-theory has played important role in brane classification in super string models and M-theory.
The excellent lectures by Harah Evslin with title What doesn’t K-theory classify? (see http://
tinyurl.com/y9og83ut) [B14] make it possible to learn the basic motivations for the classification,
what kind of classifications are possible, and what are the failures. Also the Wikipedia article (see
http://tinyurl.com/ycuuh7j4) [B] gives a bird’s eye of view about problems. As a by-product
one learns something about the basic ideas of K-theory - at least I hope so - and about possible
mathematical and physical problems of string theories and M-theory.
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In the sequel I will discuss critically the basic assumptions of brane world scenario, sum up my
meager understanding about the problems related to the topological classification of branes and
also to the notion itself, ask what could go wrong with branes and demonstrate how the problems
could be avoided in TGD framework, and just to irritate colleauges conclude with a proposal
for a natural generalization of K-theory to include also the division of bundles inspired by the
generalization of Feynman diagrammatics in quantum TGD, by zero energy ontology, and by the
notion of finite measurement resolution.

8.1 Brane World Scenario

The brane world scenario looks attractive from the mathematical point of view one is able to get
accustomed with the idea that basic geometric objects have varying dimensions. Even accepting
the varying dimensions, the basic physical assumptions behind this scenario are vulnerable to
criticism.

1. Branes (see http://tinyurl.com/6650see) are geometric objects of varying dimension in
the 10-/11-dimensional space-time -call it M- of superstring theory/M-theory. In M-theory
the fundamental strings are replaced with M-branes, which are 2-D membranes with 3-
dimensional orbit having as its magnetic dual 6-D Mb-brane. Branes are thought to emerge
non-perturbatively from fundamental 2-branes but what this really means is not understood.
One has D-p-branes (see http://tinyurl.com/y7tdcmbp) with Dirichlet boundary condi-
tions fixing a p+1-dimensional surface of M as brane orbit: one of the dimensions corresponds
to time. Also S-branes localized in time have been proposed.

2. In the description of the classical limit branes interact with the classical fields of the target
space by the generalization of the minimal coupling of charged point-like particle to electro-
magnetic gauge potential. The coupling is simply the integral of the gauge potential over the
world-line - the value of 1-form for the word-line. Point like particle represents 0-brane and
in the case of p-brane the generalization is obtained by replacing the gauge potential repre-
sented by a 1-from with p + 1-form. The exterior derivative of this p + 1-form is p + 2-form
representing the analog of electromagnetic field. Complete dimensional democracy strongly
suggests that string world sheets should be regarded as 1-branes.

3. From TGD point of view the introduction of branes looks a rather ad hoc trick. By general-
izing the coupling of electromagnetic gauge potential to the word line of point like particle
one could introduce extended objects of various dimensions also in the ordinary 4-D Maxwell
theory but they would be always interpreted as idealizations for the carriers of 4- currents.
Therefore the crucial step leading to branes involves classical idealization in conflict with
Uncertainty Principle and the genuine quantal description in terms of fields coupled to gauge
potentials.

My view is that the most natural interpretation for what is behind branes is in terms of
currents in D=10 or D= 11 space-time. In this scheme branes have role only as semi-classical
idealizations making sense only above some scale. Both the reduction of string theories
to quantum field theories by holography and the dynamical character of the metric of the
target space conforms with super-gravity interpretation. Internal consistency requires also
the identification of strings as branes so that superstring theories and M-theory would reduce
to an idealization to 10-/11-dimensional quantum gravity.

In this framework the brave brane world episode would have been a very useful Odysseia. The
possibility to interpret various geometric objects physically has proved to be an extremely powerful
tool for building provable mathematical conjectures and has produced lots of immensely beautiful
mathematics. As a fundamental theory this kind of approach does not look convincing to me.

8.2 The Basic Challenge: Classify The Conserved Brane Charges Asso-
ciated With Branes

One can of course forget these critical arguments and look whether this general picture works.
The first thing that one can do is to classify the branes topologically. I made the same question
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about 32 years ago in TGD framework: I thought that cobordism for 3-manifolds might give highly
interesting topological conservation laws. I was disappointed. The results of Thom’s classical article
about manifold cobordism demonstrated that there is no hope for really interesting conservation
laws. The assumption of Lorentz cobordism meaning the existence of global time-like vector field
would make the situation more interesting but this condition looked too strong and I could not see
a real justification for it. In generalized Feynman diagrammatics there is no need for this kind of
condition.

There are many alternative approaches to the classification problem. One can use homotopy,
homology, cohomology and their relative and other variants, topological or algebraic K-theory,
twisted K-theory, and variants of K-theory not yet existing but to be proposed within next years.
The list is probably endless unless something like motivic cohomology brings in enlightenment.

1. First of all one must decide whether one classifies p-dimensional time=constant sections of
p-branes or their p 4+ 1-dimensional orbits. Both approaches have been applied although the
first one is natural in the standard view about spontaneous compactification. For the first
option topological invariants could be seen as conserved charges: homotopy invariants and
homological and cohomological characteristics of branes provide this kind of invariants. For
the latter option the invariants would be analogous to instanton number characterizing the
change of magnetic charge.

2. Purely topological invariants come first in mind. Homotopy groups of the brane are in-
variants inherent to the brane (the brane topology can however change). Homological and
cohomological characteristics of branes in singular homology characterize the embedding to
the target space. There are also more delicate differential topological invariants such as de
Rham cohomology defining invariants analogous to magnetic charges. Dolbeault cohomology
emerges naturally for even-dimensional branes with complex structure.

3. Gauge theories - both abelian and non-Abelian - define a standard approach to the con-
struction of brane charges for the bundle structures assigned with branes. Chern-Simons
classes are fundamental invariants of this kind. Also more delicate invariants associated
with gauge potentials can be considered. Chern-Simons theory with vanishing field strengths
for solutions of field equations provides a basic example about this. For instance, SU(2)
Chern-Simons theory provides 3-D topological invariants and knot invariants.

4. More refined approaches involve K-theory -closely related to motivic cohomology - and its
twisted version. The idea is to reduce the classification of branes to the classification of the
bundle structures associated with them. This approach has had remarkable successes but
has also its short-comings.

The challenge is to find the mathematical classification which suits best the physical intuitions
(, which might be fatally wrong as already proposed) but is universal at the same time. This
challenge has turned out to be tough. The Ramond-Ramond (RR) p-form fields (see http://
tinyurl.com/y9kmbxoy) of type II superstring theory are rather delicate objects and a source
of most of the problems. The difficulties emerge also by the presence of Neveu-Schwartz 3-form
H = dB defining classical background field.

K-theory has emerged as a good candidate for the classification of branes. It leaves the confines
of homology and uses bundle structures associated with branes and classifies these. There are many
K-theories. In topological K-theory bundles form an algebraic structure with sum, difference, and
multiplication. Sum is simply the direct sum for the fibers of the bundle with common base space.
Product reduces to a tensor product for the fibers. The difference of bundles represents a more
abstract notion. It is obtained by replacing bundles with pairs in much the same way as rationals
can be thought of as pairs of integers with equivalence (m,n) = (km, kn), k integer. Pairs (n, 1)
representing integers and pairs (1,n) their inverses. In the recent case one replaces multiplication
with sum and regards bundle pairs and (E, F) and (E + G, F + G) equivalent. Although the pair
as such remains a formal notion, each pair must have also a real world representativs. Therefore
the sign for the bundle must have meaning and corresponds to the sign of the charges assigned
to the bundle. The charges are analogous to winding of the brane and one can call brane with
negative winding antibrane. The interpretation in terms of orientation looks rather natural. Later
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a TGD inspired concrete interpretation for the bundle sum, difference, product and also division
will be proposed.

8.3 Problems

The classification of brane structures has some problems and some of them could be argued to be
not only technical but reflect the fact that the physical picture is wrong.

8.3.1 Problems related to the existence of spinor structure

Many problems in the classification of brane charges relate to the existence of spinor structure. The
existence of spinor structure is a problem already in general general relativity since ordinary spinor
structure exists only if the second Stiefel- Whitney class (see http://tinyurl.com/y7m9ksq7)
[A34] of the manifold is non-vanishing: if the third Stiefel-Whitney class vanishes one can introduce
so called spin® structure. This kind of problems are encountered already in lattice QCD, where
periodic boundary conditions imply non-uniqueness having interpretation in terms of 16 different
spinor structures with no obvious physical interpretation. One the strengths of TGD is that
the notion of induced spinor structure eliminates all problems of this kind completely. One can
therefore find direct support for TGD based notion of spinor structure from the basic inconsistency
of QCD lattice calculations!

1. Freed-Witten anomaly (seehttp://tinyurl.com/y77znbqr)) [B13] appearing in type II string
theories represents one of the problems. Freed and Witten show that in the case of 2-branes
for which the generalized gauge potential is 3-form so called spin® structure is needed and
exists if the third Stiefel-Whitney class ws related to second Stiefel Whitney class whose van-
ishing guarantees the existence of ordinary spin structure (in TGD framework spin® structure
for C'P, is absolutely essential for obtaining standard model symmetries).

It can however happen that ws is non-vanishing. In this case it is possible to modify the
spin® structure if the condition w3 + [H] = 0 holds true. It can however happen that there is
an obstruction for having this structure - in other words ws + [H] does not vanish - known
as Freed-Witten anomaly. In this case K-theory classification fails. Witten and Freed argue
that physically the wrapping of cycle with non-vanishing ws 4 [H| by a Dp-brane requires the
presence of D(p—2) brane cancelling the anomaly. If D(p—2) brane ends to anti-Dp in which
case charge conservation is lost. If there is not place for it to end one has semi-infinite brane
with infinite mass, which is also problematic physically. Witten calls these branes baryons:
these physically very dubious objects are not classified by K-theory.

2. The non-vanishing of ws + [H] = 0 forces to generalize K-theory to twisted K-theory (see
http://tinyurl.com/ya2awfuk) [A38]. This means a modification of the exterior derivative
to get twisted de Rham cohomology and twisted K-theory and the condition of closedness
in this cohomology for certain form becomes the condition guaranteeing the existence of the
modified spin® structure. D-branes act as sources of these fields and the coupling is completely
analogous to that in electrodynamics. In the presence of classical Neveu-Schwartz (NS-NS)
3-form field H associated with the back-ground geometry the field strength GP*' = dC,
is not gauge invariant anymore. One must replace the exterior derivative with its twisted
version to get twisted de Rham cohomology:

d—>d+HA

There is a coupling between p- and p+2-forms together and gauge symmetries must be
modified accordingly. The fluxes of twisted field strengths are not quantized but one can
return to original p-forms which are quantized. The coupling to external sources also becomes
more complicated and in the case of magnetic charges one obtains magnetically charged Dp-
branes. Dp-brane serves as a source for D(p — 2)- branes.

This kind of twisted cohomology is known by mathematicians as Deligne cohomology. At
the level of homology this means that if branes with dimension of p are presented then also
branes with dimension p + 2 are there and serve as source of Dp-branes emanating from
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them or perhaps identifiable as their sub-manifolds. Ordinary homology fails in this kind of
situation and the proposal is that so called twisted K-theory could allow to classify the brane
charges.

3. A Lagrangian formulation of brane dynamics based on the notion of p-brane democracy
(see http://tinyurl.com/yb462wn9) [B16] due to Peter Townsend has been developed by
various authors.

Ashoke Sen (see http://tinyurl.com/yannv4q2) has proposed a grand vision for understand-
ing the brane classification in terms of tachyon condensation in absence of NS-NS field H [B3].
The basic observation is that stacks of space-filling D- and anti D-branes are unstable against pro-
cess called tachyon condensation which however means fusion of p + 1-D brane orbits rather than
p-dimensional time slices of branes. These branes are however accompanied by lower-dimensional
branes and the decay process cannot destroy these. Therefore the idea arises that suitable stacks
of D9 branes and anti-D9-branes could code for all lower-dimensional brane configurations as the
end products of the decay process.

This leads to a creation of lower-dimensional branes. All decay products of branes resulting in
the decay cascade would be by definition equivalent. The basic step of the decay process is the
fusion of D-branes in stack to single brane. In bundle theoretic language one can say that the
D-branes and anti-D branes in the stack fuse together to single brane with bundle fiber which is
direct sum of the fibers on the stack. This fusion process for the branes of stack would correspond
in topological K-theory. The fusion of D-branes and anti-D branes would give rise to nothing since
the fibers would have opposite sign. The classification would reduce to that for stacks of D9-branes
and anti D9-branes.

8.3.2 Problems with Hodge duality and S-duality

The K-theory classification is plagued by problems all of which need not be only technical.

1. R-R fields are self dual and since metric is involved with the mapping taking forms to their
duals one encounters a problem. Chern characters appearing in K-theory are rational valued
but the presence of metric implies that the Chern characters for the duals need not be rational
valued. Hence K-theory must be replaced with something less demanding.

The geometric quantization inspired proposal of Diaconescu, Moore and Witten [B5] is based
on the polarization using only one half of the forms to get rid of the proboem. This is
like thinking the 10-D space-time as phase space and reducing it effectively to 5-D space:
this brings strongly in mind the identification of space-time surfaces as hyper-quaternionic
(associative) sub-manifolds of embedding space with octonionic structure and one can ask
whether the basic objects also in M-theory should be taken 5-dimensional if this line of
thought is taken seriously. An alternative approach uses K-theory to classify the intersections
of branes with 9-D space-time slice as has been porposed by Maldacena, Moore and Seiberg
(see http://tinyurl.com/ycm319nt) [BI5].

2. There another problem related to classification of the brane charges. Witten, Moore and Dia-
conescu (see http://tinyurl.com/y8kdz6wm) [B5] have shown that there are also homology
cycles which are unstable against decay and this means that twisted K-theory is inconsistent
with the S-duality of type IIB string theory. Also these cycles should be eliminated in an
improved classification if one takes charge conservation as the basic condition and an hitherto
un-known modification of cohomology theory is needed.

3. There is also the problem that K-theory for time slices classifies only the R-R field strengths.
Also R-R gauge potentials carry information just as ordinary gauge potentials and this infor-
mation is crucial in Chern-Simons type topological QFTs. K-theory for entire target space
classifies D-branes as p+ 1-dimensional objects but in this case the classification of R-R field
strengths is lost.
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8.3.3 The existence of non-representable 7-D homology classes for targent space
dimension D > 9

There is a further nasty problem which destroys the hopes that twisted K-theory could provide a
satisfactory classification. Even worse, something might be wrong with the superstring theory itself.
The problem is that not all homology classes allow a representation as non-singular manifolds. The
first dimension in which this happens is D = 10, the dimension of super-string models! Situation
is of course the same in M-theory. The existence of the non-representables was demonstrated by
Thom - the creator of catastrophe theory and of cobordism theory for manifolds- for a long time
ago.

What happens is that there can exist 7-D cycles which allow only singular embeddings. A
good example would be the embedding of twistor space C'P3, whose orbit would have conical
singularity for which C'P; would contract to a point at the “moment of big bang”. Therefore
homological classification not only allows but demands branes which are orbifolds. Should orbifolds
be excluded as unphysical? If so then homology gives too many branes and the singular branes
must be excluded by replacing the homology with something else. Could twisted K-theory exclude
non-representable branes as unstable ones by having non-vanishing ws + [H]? The answer to the
question is negative: D6-branes with ws + [H] = 0 exist for which K-theory charges can be both
vanishing or non-vanishing.

One can argue that non-representability is not a problem in superstring models (M-theory) since
spontaneous compactification leads to M x Xg (M x X7). On the other hand, Cartesian product
topology is an approximation which is expected to fail in high enough length scale resolution and
near big bang so that one could encounter the problem. Most importantly, if M-theory is theory
of everything it cannot contain this kind of beauty spots.

8.4 What Could Go Wrong With Super String Theory And How TGD
Circumvents The Problems?

As a proponent of TGD I cannot avoid the temptation to suggest that at least two things could
go wrong in the fundamental physical assumptions of superstrings and M-theory.

1. The basic failure would be the construction of quantum theory starting from semiclassical
approximation assuming localization of currents of 10 - or 11-dimensional theory to lower-
dimensional sub-manifolds. What should have been a generalization of QFT by replacing
point-like particles with higher-dimensional objects would reduce to an approximation of 10-
or 11-dimensional supergravity.

This argument does not bite in TGD. 4-D space-time surfaces are indeed fundamental objects
in TGD as also partonic 2-surfaces and braids. This role emerges purely number theoretically
inspiring the conjecture that space-time surfaces are associative sub-manifolds of octonionic
embedding spaces, from the requirement of extended conformal invariance, and from the
non-dynamical character of the embedding space.

2. The condition that all homology equivalence classes are representable as manifolds excludes
all dimensions D > 9 and thus super-strings and M-theory as a physical theory. This would
be the case since branes are unavoidable in M-theory as is also the landscape of compact-
ifications. In semiclassical supergravity interpretation this would not be catastrophe but if
branes are fundamental objects this shortcoming is serious. If the condition of homological
representability is accepted then target space must have dimension D < 10 and the argu-
ments sequence leading to D=8 and TGD is rather short. The number theoretical vision
provides the mathematical justification for TGD as the unique outcome.

3. The existence of spin structure is clearly the source of many problems related to R-R form. In
TGD framework the induction of spin® structure of the embedding space resolves all problems
associated with sub-manifold spin structures. For some reason the notion of induced spinor
structure has not gained attention in super string approach.

4. Conservative experimental physicist might criticize the emergence of branes of various di-
mensions as something rather weird. In TGD framework electric-magnetic duality can be
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understood in terms of general coordinate invariance and holography and branes and their
duals have dimension 2, 3, and 4 organize to sub-manifolds of space-time sheets.

The TGD counterpart for the fundamental D-2-brane is light-like 3-surface. Its magnetic dual
has dimension given by the general formula (see http://tinyurl.com/y9aueyup) paua =
D —p—4, where D is the dimension of the target space [B10]. In TGD one has D = 8 giving
Pdual = 2. The first interpretation is in terms of self-duality. A more plausible interpretation
relies on the identification of the duals of light-like 3-surfaces as space-like 3-surfaces at
the light-like boundaries of CD. General Coordinate Invariance in strong sense implies this
duality. For partonic 2-surface and string world sheets carrying spinor modes one would have
p =1 and pgue = 3. The identification of the dual would be as 4-D space-time surface: does
this correspond to strong form of holography?. The crucial distinction to M-theory would be
that branes of different dimension would be sub-manifolds of space-time surface.

5. For p = 0 one would have pgyq = 4 assigning five-dimensional surface to orbits of point-like
particles identifiable most naturally as braid strands. One cannot assign to it any direct
physical meaning in TGD framework and gauge invariance for the analogs of brane gauge
potentials indeed excludes even-dimensional branes in TGD since corresponding forms are
proportional to Kéhler gauge potential (so that they would be analogous to odd-dimensional
branes allowed by type I1p superstrings).

4-branes might be however mathematically useful by allowing to define Morse theory for the
critical points of the Minkowskian part of Kahler action. While writing this I learned that
Witten (see http://tinyurl.com/y8ganhrz) has proposed a 4-D gauge theory approach
with N' = 4 SUSY to the classification of knots. Witten also ends up with a Morse theory
using 5-D space-times in the category-theoretical formulation of the theory [A53]. For some
time ago I also proposed that TGD as almost topological QFT defines a theory of knots,
knot braidings, and of 2-knots in terms of string world sheets [K1I]. Maybe the 4-branes
could be useful for understanding of the extrema of TGD of the Minkowskian part of Kahler
action which would take take the same role as Hamiltonian in Floer homology: the extrema
of 5-D brane action would connect these extrema.

6. Light-like 3-surfaces could be seen as the analogs von Neuman branes for which the boundary
conditions state that the ends of space-like 3-brane defined by the partonic 2-surfaces move
with light-velocity. The interpretation of partonic 2-surfaces as space-like branes at the ends
of CD would in turn make them D-branes so that one would have a duality between D-branes
and N-brane interpretations. T-duality (see http://tinyurl.com/ycvp7rnqg) exchanges von
Neumann and Dirichlet boundary conditions so that strong from of general coordinate in-
variance would correspond to both electric-magnetic and T-duality in TGD framework. Note
that T-duality exchanges type I14 and type Ilp super-strings with each other.

7. What about causal diamonds and their 7-D light-like boundaries? Could one regard the
light-like boundaries of CDs as analogs of 6-branes with light-like direction defining time-like
direction so that space-time surfaces would be seen as 3-branes connecting them? This brane
would not have magnetic dual since the formula for the dimensions of brane and its magnetic
dual allows positive brane dimension p only in the range (1, 3).

8.5 Can One Identify The Counterparts Of R-R And NS-NS Fields In
TGD?

R-R and NS-NS 3-forms are clearly in fundamental role in M-theory. Since in TGD partonic
2-surfaces define the analogs of fundamental D-2-branes, one can wonder whether these 3-forms
could have TGD counterparts.

1. In TGD framework the 3-forms G3 4 = dC3 4 defined as the exterior derivatives of the two-
forms Cy 4 identified as products Cy 4 = HaJ of Hamiltonians Hy of (5Mi x CP, with
Kihler forms of factors of dM${ x CP, define an infinite family of closed 3-forms belonging
to various irreducible representations of rotation group and color group. One can consider
also the algebra generated by products HaA, HaJ, HAANJ, HyJ N J, where A resp. J
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denotes the Kihler gauge potential resp. Kéhler form or either §M$ or CP,. A resp. Also
the sum of Kihler potentials resp. forms of dM4{ and C'P, can be considered.

2. One can define the counterparts of the fluxes [ Adz as fluxes of H4 A over braid strands, HaJ
over partonic 2-surfaces and string world sheets, H4 A A J over 3-surfaces, and HaJ A J over
space-time sheets.Gauge invariance however suggests that for non-constant Hamiltonians one
must exclude the fluxes assigned to odd dimensional surfaces so that only odd-dimensional
branes would be allowed. This would exclude 0-branes and the problematic 4-branes. These
fluxes should be quantized for the critical values of the Minkowskian contributions and for
the maxima with respect to zero modes for the Euclidian contributions to Kéhler action.
The interpretation would be in terms of Morse function and Kéhler function if the proposed
conjecture holds true. One could even hope that the charges in Cartan algebra are quantized
for all preferred extremals and define charges in these irreducible representations for the
isometry algebra of WCW . The quantization of electric fluxes for string world sheets would
give rise to the familiar quantization of the rotation [ E - dl of electric field over a loop in
time direction taking place in superconductivity.

3. Should one interpret these fluxes as the analogs of NS-NS-fluxes or R-R fluxes? The exterior
derivatives of the forms G5 vanish which is the analog for the vanishing of magnetic charge
densities (it is however possible to have the analogs of homological magnetic charge). The
self-duality of Ramond p-forms could be posed formally (G, =* Gs—_p) but does not have
any implications for p < 4 since the space-time projections vanish in this case identically for
p > 3. For p = 4 the dual of the instanton density J A J is proportional to volume form if A4
and is not of topological interest. The approach of Witten eliminating one half of self dual
R-R-fluxes would mean that only the above discussed series of fluxes need to be considered
so that one would have no troubles with non-rational values of the fluxes nor with the lack of
higher dimensional objects assignable to them. An interesting question is whether the fluxes
could define some kind of K-theory invariants.

4. In TGD embedding space is non-dynamical and there seems to be no counterpart for the
NS 3-form field H = dB. The only natural candidate would correspond to Hamiltonian
B = J giving H = dB = 0. At quantum level this might be understood in terms of bosonic
emergence meaning that only Ramond representations for fermions are needed in the theory
since bosons correspond to wormhole contacts with fermion and anti-fermions at opposite
throats. Therefore twisted cohomology is not needed and there is no need to introduce the
analogy of brane democracy and 4-D space-time surfaces containing the analogs of lower-
dimensional brains as sub-manifolds are enough. The fluxes of these forms over partonic 2-
surfaces and string world sheets defined non-abelian analogs of ordinary gauge fluxes reducing
to rotations of vector potentials and suggested be crucial for understanding braidings of knots
and 2-knots in TGD framework. [K11]. Note also that the unique dimension D=4 for space-
time makes 4-D space-time surfaces homologically self-dual so that only they are needed.

8.6 What About Counterparts Of S And U Dualities In TGD Frame-
work?

The natural question is what could be the TGD counterparts of S—, T— and U-dualities. If
one accepts the identification of U-duality as product U = ST and the proposed counterpart of
T duality as a strong form of general coordinate invariance, it remains to understand the TGD
counterpart of S-duality - in other words electric-magnetic duality - relating the theories with
gauge couplings g and 1/g.

Quantum criticality selects the preferred value of gx: Kéhler coupling strength is very near to
fine structure constant at electron length scale and can be equal to it. Note that the hierarchy of
Planck constants (dark matters) could be understood in terms of a spectrumfor ax = g% /4mhesy,
heff =mn x h: in thermodynamical analogy one would have accumulation of critical points at zero
temperature.

If there is no coupling constant evolution associated with a, it does not make sense to say that
gi becomes strong and is replaced with its inverse at some point. One should be able to formulate
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the counterpart of S-duality as an identity following from the weak form of electric-magnetic duality
and the reduction of TGD to almost topological QFT. This might be the case.

1. For preferred extremals the interior parts of Kahler action reduces to a boundary term if the
term j*A, from them vanishes. The weak form of electric-magnetic duality requires that
Kahler electric charge is proportional to Kahler magnetic charge, which implies reduction to
abelian Chern-Simons term: the Kéahler coupling strength does not appear at all in Chern-
Simons term. The proportionality constant beween the electric and magnetic parts Jg and Jp
of Kéhler form however enters into the dynamics through the boundary conditions stating the
weak form of electric-magnetic duality. At the Minkowskian side the proportionality constant
must be proportional to g% to guarantee a correct value for the unit of Kéhler electric charge
- equal to that for electric charge in electron length scale- from the assumption that electric
charge is proportional to the topologically quantized magnetic charge. It has been assumed
that

JE = aKJB

holds true at both sides of the wormhole throat but this is an un-necessarily strong assumption
at the Euclidian side. In fact, the self-duality of C'P, Kéhler form stating

Jg=Jp

favours this boundary condition at the Euclidian side of the wormhole throat. Also the fact
that one cannot distinguish between electric and magnetic charges in Euclidian region since
all charges are magnetic can be used to argue in favor of this form. The same constraint arises
from the condition that the action for C' P, type vacuum extremal has the value required by
the argument leading to a prediction for gravitational constant in terms of the square of C' P,
radius and ak the effective replacement g% — 1 would spoil the argument.

2. Minkowskian and Euclidian regions should correspond to a strongly /weakly interacting phase
in which Kéhler magnetic/electric charges provide the proper description. In Euclidian re-
gions associated with C P, type extremals there is a natural interpretation of interactions
between magnetic monopoles associated with the light-like throats: for C'P; type vacuum ex-
tremal itself magnetic and electric charges are actually identical and cannot be distinguished
from each other. Therefore the duality between strong and weak coupling phases seems to
be trivially true in Euclidian regions if one has Jg = Jg at Euclidian side of the wormhole
throat. This is however an un-necessarily strong condition as the following argument shows.

3. In Minkowskian regions the interaction is via Kahler electric charges and elementary par-
ticles have vanishing total Kahler magnetic charge consisting of pairs of Kahler magnetic
monopoles so that one has confinement characteristic for strongly interacting phase. There-
fore Minkowskian regions naturally correspond to a weakly interacting phase for Kahler
electric charges. One can write the action density at the Minkowskian side of the wormhole
throat as

[077¢ [(675:¢

The exchange Jg <> Jp accompanied by ax — —1/ak leaves the action density invariant.
Since only the behavior of the vacuum functional infinitesimally near to the wormhole throat
matters by almost topological QFT property, the duality is realized. Note that the argument
goes through also in Euclidian regions so that it does not allow to decide which is the correct
form of weak form of electric-magnetic duality.

4. S-duality could correspond geometrically to the duality between partonic 2-surfaces respon-
sible for magnetic fluxes and string worlds sheets responsible for electric fluxes as rotations of
Kahler gauge potentials around them and would be very closely related with the counterpart
of T-duality implied by the strong form of general coordinate invariance and saying that
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space-like 3-surfaces at the ends of space-time sheets are equivalent with light-like 3-surfaces
connecting them.

The boundary condition Jg = Jp at the Euclidian side of the wormhole throat inspires the
question whether all Euclidian regions could be self-dual so that the density of K&hler action would
be just the instanton density. Self-duality follows if the deformation of the metric induced by the
deformation of the canonically imbedded C'P; is such that in C'P; coordinates for the Euclidian
region the tensor (g% g — g® g#%)/,/g remains invariant. This is certainly the case for CP» type
vacuum extremals since by the light-likeness of M* projection the metric remains invariant. Also
conformal scalings of the induced metric would satisfy this condition. Conformal scaling is not
consistent with the degeneracy of the 4-metric at the wormhole throat. Self-duality is indeed an
un-necessarily strong condition.

8.6.1 Comparison with standard view about dualities

One can compare the proposed realization of T, S and U to the more general dualities defined
by the modular group SL(2,Z), which in QFT framework can hold true for the path integral
over all possible gauge field configurations. In the resent case the dualities hold true for every
preferred extremal separately and the functional integral is only over the space-time projections
of fixed Kahler form of C'P,. Modular invariance for Maxwell action was discussed by E. Verlinde
for Maxwell action with 6 term (see http://tinyurl.com/ycx61lved)) for a general 4-D compact
manifold with Euclidian signature of metric in [B7]. In this case one has path integral giving
sum over infinite number of extrema characterized by the cohomological equivalence class of the
Maxwell field the action exponential to a high degree. Modular invariance is broken for C'Ps: one
obtains invariance only for 7 — 7 4 2 whereas S induces a phase factor to the path integral.

1. In the recent case these homology equivalence classes would correspond to homology equiva-
lence classes of holomorphic partonic 2-surfaces associated with the critical points of Kahler
function with respect to zero modes.

2. In the case that the Euclidian contribution to the Kéhler action is expressible solely in terms
of wormhole throat Chern-Simons terms, and one can neglect the measurement interaction
terms fixing the values of some classical conserved quantities to be equal with their quantal
counterparts for the space-time surfaces allowed in quantum superposition, the exponent of
Kahler action can be expressed in terms of Chern-Simons action density as

L = 7Lc-s ,
Le_gs = JANA
1 k

T o= o ti—, k=1 (8.1)
9% 47

Here the parameter 7 transforms under full SL(2, Z) group as

ar +b
ct+d

(8.2)

The generators of SL(2, Z) transformations are T': 7 — 741, S : 7 — —1/7. The imaginary
part in the exponents corresponds to Kac-Moody central extension k& = 1.

This form corresponds also to the general form of Maxwell action with CP breaking 6 term
given by

1 0
9% 8
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Hence the Minkowskian part mimics the 6 term but with a value of 6 for which the term does
not give rise to CP breaking in the case that the action is full action for C'P, type vacuum
extremal so that the phase equals to 27 and phase factor case is trivial. It would seem that the
deviation from the full action for C'P» due to the presence of wormhole throats reducing the
value of the full Kahler action for C' P, type vacuum extremal could give rise to CP breaking.
One can visualize the excluded volume as homologically non-trivial geodesic spheres with
some thickness in two transverse dimensions. At the limit of infinitely thin geodesic spheres
CP breaking would vanish. The effect is exponentially sensitive to the volume deficit.

8.6.2 CP breaking and ground state degeneracy

Ground state degeneracy due to the possibility of having both signs for Minkowskian contribution
to the exponent of vacuum functional provides a general view about the description of CP breaking
in TGD framework.

1. In TGD framework path integral is replaced by inner product involving integral over WCV.
The vacuum functional and its conjugate are associated with the states in the inner product
so that the phases of vacuum functionals cancel if only one sign for the phase is allowed.
Minkowskian contribution would have no physical significance. This of course cannot be
the case. The ground state is actually degenerate corresponding to the phase factor and
its complex conjugate since /g can have two signs in Minkowskian regions. Therefore the
inner products between states associated with the two ground states define 2 x 2 matrix and
non-diagonal elements contain interference terms due to the presence of the phase factor. At
the limit of full C' P, type vacuum extremal the two ground states would reduce to each other
and the determinant of the matrix would vanish.

2. A small mixing of the two ground states would give rise to CP breaking and the first principle
description of CP breaking in systems like X — K and of CKM matrix should reduce to
this mixing. K° mesons would be CP even and odd states in the first approximation and
correspond to the sum and difference of the ground states. Small mixing would be present
having exponential sensitivity to the actions of C'P, type extremals representing wormhole
throats. This might allow to understand qualitatively why the mixing is about 50 times
larger than expected for B° mesons.

3. There is a strong temptation to assign the two ground states with two possible arrows of
geometric time. At the level of M-matrix the two arrows would correspond to state prepa-
ration at either upper or lower boundary of CD. Do long- and short-lived neutral K mesons
correspond to almost fifty-fifty orthogonal superpositions for the two arrow of geometric time
or almost completely to a fixed arrow of time induced by environment? Is the dominant part
of the arrow same for both or is it opposite for long and short-lived neutral mesons? Different
lifetimes would suggest that the arrow must be the same and apart from small leakage that
induced by environment. CP breaking would be induced by the fact that CP is performed
only K° but not for the environment in the construction of states. One can probably imagine
also alternative interpretations.

Remark: The proportionality of Minkowskian and Euclidian contributions to the same Chern-
Simons term implies that the critical points with respect to zero modes appear for both the phase
and modulus of vacuum functional. The Ké&hler function property does not allow extrema for
vacuum functional as a function of complex coordinates of WCW since this would mean Kahler
metric with non-Euclidian signature. If this were not the case. the stationary values of phase factor
and extrema of modulus of the vacuum functional would correspond to different configurations.

8.7 Could One Divide Bundles?

TGD differs from string models in one important aspects: stringy diagrams do not have inter-
pretation as analogs of vertices of Feynman diagrams: the stringy decay of partonic 2-surface to
two pieces does not represent particle decay but a propagation along different paths for incoming
particle. Particle reactions in turn are described by the vertices of generalized Feynman diagrams
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in which the ends of incoming and outgoing particles meet along partonic 2-surface. This suggests
a generalization of K-theory for bundles assignable to the partonic 2-surfaces. It is good to start
with a guess for the concrete geometric realization of the sum and product of bundles in TGD
framework.

1. The analogs of string diagrams could represent the analog for direct sum. Difference between
bundles could be defined geometrically in terms of trouser vertex A + B — C. B would by
definition represent C' — A. Direct sum could make sense for single particle states and have
as space-time correlate the conservation of braid strands.

2. A possible concretization in TGD framework for the tensor product is in terms of the vertices
of generalized Feynman diagrams at which incoming light-like 3-D orbits of partons meet
along their ends. The tensor product of incoming state spaces defined by fermionic oscillator
algebras is naturally formed. Tensor product would have also now as a space-time correlate
conservation of braid strands. This does not mean that the number of braid strands is
conserved in reactions if also particular exchanges can carry the braid strands of particles
coming to the vertex.

Why not define also division of bundles in terms of the division for tensor product? In terms of
the 3-vertex for generalized Feynman diagrams A® B = C representing tensor product B would be
by definition C/A. Therefore TGD would extend the K-theory algebra by introducing also division
as a natural operation necessitated by the presence of the join along ends vertices not present in
string theory. I would be surprised if some mathematician would not have published the idea in
some exotic journal. Below I represent an argument that this notion could be also applied in the
mathematical description of finite measurement resolution in TGD framework using inclusions of
hyper-finite factor. Division could make possible a rigorous definition for for non-commutative
quantum spaces.

Tensor division could have also other natural applications in TGD framework.

1. One could assign bundles M, and M_ to the upper and lower light-like boundaries of CD.
The bundle M, /M_ would be obtained by formally identifying the upper and lower light-like
boundaries. More generally, one could assign to the boundaries of CD positive and negative
energy parts of WCW spinor fields and corresponding bundle structures in “half WCW 7.
Zero energy states could be seen as sections of the unit bundle just like infinite rationals
reducing to real units as real numbers would represent zero energy states.

2. Finite measurement resolution would encourage tensor division since finite measurement
resolution means essentially the loss of information about everything below measurement
resolution represented as a tensor product factor. The notion of coset space formed by
hyper-finite factor and included factor could be understood in terms of tensor division and
give rise to quantum group like space with fractional quantum dimension in the case of Jones
inclusions [K23]. Finite measurement resolution would therefore define infinite hierarchy of
finite dimensional non-commutative spaces characterized by fractional quantum dimension.
In this case the notion of tensor product would be somewhat more delicate since complex
numbers are effectively replaced by the included algebra whose action creates states not
distinguishable from each other [K23]. The action of algebra elements to the state |B) in the
inner product (A|B) must be equivalent with the action of its hermitian conjugate to the
state (A|. Note that zero energy states are in question so that the included algebra generates
always modifications of states which keep it as a zero energy state.

9 A Connection Between Cognition, Number Theory, Al-
gebraic Geometry, Topology, And Quantum Physics

I have had some discussions with Stephen King and Hitoshi Kitada in a closed discussion group
about the idea that the duality between Boolean algebras and Stone spaces could be important
for the understanding of consciousness, at least cognition. In this vision Boolean algebras would
represent conscious mind and Stone spaces would represent the matter: space-time would emerge.
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I am personally somewhat skeptic because I see consciousness and matter as totally different
levels of existence. Consciousness (and information) is about something, matter just is. Con-
sciousness involves always a change as we no from basic laws about perception. There is of course
also the experience of free will and the associated non-determinism. Boolean algebra is a model
for logic, not for conscious logical reasoning. There are also many other aspects of consciousness
making it very difficult to take this kind of duality seriously.

I am also skeptic about the emergence of space-time say in the extremely foggy form as it used
in entropic gravity arguments. Recent day physics poses really strong constraints on our view
about space-time and one must take them very seriously.

This does not however mean that Stone spaces could not serve as geometrical correlates for
Boolean consciousness. In fact, p-adic integers can be seen as a Stone space naturally assignable
to Boolean algebra with infinite number of bits.

9.1 Innocent Questions

T ende up with the innocent questions, as I was asked to act as some kind of mathematical consultant
and explain what Stone spaces actually are and whether they could have a connection to p-adic
numbers. Anyone can of course go to Wikipedia and read the article “Stone’s representation
theorem for Boolean algebras” (see http://tinyurl.com/ybyf56e3)). For a layman this article
does not however tell too much.

Intuitively the content of the representation theorem looks rather obvious, at least at the first
sight. As a matter fact, the connection looks so obvious that physicists often identify the Boolean
algebra and its geometric representation without even realizing that two different things are in
question. The subsets of given space- say Euclidian 3-space- with union and intersection as basic
algebraic operations and inclusion of sets as ordering relation defined a Boolean algebra for the
purposes of physicist. One can assign to each point of space a bit. The points for which the value
of bit equals to one define the subset. Union of subsets corresponds to logical OR and intersection
to AND. Logical implication B— A corresponds to A contains B.

When one goes to details problems begin to appear. One would like to have some non-trivial
form of continuity.

1. For instance, if the sets are form open sets in real topology their complements representing
negations of statements are closed, not open. This breaks the symmetry between statement
and it negation unless the topology is such that closed sets are open. Stone’s view about
Boolean algebra assumes this. This would lead to discrete topology for which all sets would
be open sets and one would lose connection with physics where continuity and differential
structure are in key role.

2. Could one dare to disagree with Stone and allow both closed and open sets of E? in real
topology and thus give up clopen assumption? Or could one tolerate the asymmetry between
statements and their negations and give some special meaning for open or closet sets- say as
kind of axiomatic statements holding true automatically. If so, one an also consider algebraic
varieties of lower dimension as collections of bits which are equal to one. In Zariski topology
used in algebraic geometry these sets are closed. Again the complements would be open.
Could one regard the lower dimensional varieties as identically true statements so that the
set of identically true statements would be rather scarce as compared to falsities? If one tol-
erates some quantum TGD, one could ask whether the 4-D quaternionic/associative varieties
defining classical space-times and thus classical physics could be identified as the axiomatic
truths. Associativity would be the basic truth inducing the identically true collections of
bits.

9.2 Stone Theorem And Stone Spaces

For reasons which should be clear it is perhaps a good idea to consider in more detail what Stone
duality says. Stone theorem states that Boolean algebras are dual with their Stone spaces. Logic
and certain kind of geometry are dual. More precisely, any Boolean algebra is isomorphic to closed
open subsets of some Stone space and vice versa. Stone theorem respects category theory. The
homomorphisms between Boolean algebras A and B corresponds to homomorphism between Stone
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spaces S(B) and S(A): one has contravariant functor between categories of Boolean algebras and
Stone spaces. In the following set theoretic realization of Boolean algebra provides the intuitive
guidelines but one can of course forget the set theoretic picture altogether and consider just abstract
Boolean algebra.

1. Stone space is defined as the space of homomorphisms from Boolean algebra to 2-element
Boolean algebra. More general spaces are spaces of homomorphisms between two Boolean
algebras. The analogy in the category of linear spaces would be the space of linear maps be-
tween two linear spaces. Homomorphism is in this case truth preserving map: h(A AND B) =
h(a) AND h(B), h( OR B) = h(a) OR h(B) and so on.

2. For any Boolean algebra Stone space is compact, totally disconnected Hausdorff space. Con-
versely, for any topological space, the subsets, which are both closed and open define Boolean
algebra. Note that for a real line this would give 2-element Boolean algebra. Set is closed
and open simultaneously only if its boundary is empty and in p-adic context there are no
boundaries. Therefore for p-adic numbers closed sets are open and the sets of p-adic numbers
with p-adic norm above some lower bound and having some set of fixed pinary digits, define
closed-open subsets.

3. Stone space dual to the Boolean algebra does not conform with the physicist’s ideas about
space-time. Stone space is a compact totally disconnected Hausdorff space. Disconnected
space is representable as a union of two or more disjoint open sets. For totally disconnected
space this is true for every subset. Path connectedness is stronger notion than connected and
says that two points of the space can be always connected by a curve defined as a mapping
of real unit interval to the space. Our physical space-time seems to be however connected in
this sense.

4. The points of the Stone space S(B) can be identified ultrafilters. Ultrafilter defines homo-
morphism of B to 2-element of Boolean algebra Boolean algebra. Set theoretic realization
allows to understand what this means. Ultrafilter is a set of subsets with the property that
intersections belong to it and if set belongs to it also sets containing it belong to it: this
corresponds to the fact that set inclusion A D B corresponds to logical implication. Either
set or its complement belongs to the ultrafilter (either statement or its negation is true).
Empty set does not. Ultrafilter obviously corresponds to a collection of statements which
are simultaneously true without contradictions. The sets of ultrafilter correspond to the
statements interpreted as collections of bits for which each bit equals to 1.

5. The subsets of B containing a fixed point b of Boolean algebra define an ultrafilter and
embedding of b to the Stone space by assigning to it this particular principal ultrafilter. b
represents a statement which is always true, kind of axiom for this principal ultrafilter and
ultrafilter is the set of all statements consistent with b.

Actually any finite set in the Boolean algebra consisting of a collection of fixed bits b; defines
an ultrafilter as the set all subsets of Boolean algebra containing this subset. Therefore the
space of all ultra-filters is in one-one correspondence with the space of subsets of Boolean
statements. This set corresponds to the set of statements consistent with the truthness of b;
analogous to axioms.

9.3 2-Adic Integers And 2-Adic Numbers As Stone Spaces

I was surprised to find that p-adic numbers are regarded as a totally disconnected space. The
intuitive notion of connected is that one can have a continuous curve connecting two points and
this is certainly true for p-adic numbers with curve parameter which is p-adic number but not for
curves with real parameter which became obvious when I started to work with p-adic numbers and
invented the notion of p-adic fractal. In other words, p-adic integers form a continuum in p-adic
but not in real sense. This example shows how careful one must be with definitions. In any case,
to my opinion the notion of path based on p-adic parameter is much more natural in p-adic case.
For given p-adic integers one can find p-adic integers arbitrary near to it since at the limit n — oo
the p-adic norm of p™ approaches zero. Note also that most p-adic integers are infinite as real
integers.
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Disconnectedness in real sense means that 2-adic integers define an excellent candidate for a
Stone space and the inverse of the Stone theorem allows indeed to realize this expectation. Also
2-adic numbers define this kind of candidate since 2-adic numbers with norm smaller than 2™ for
any n can be mapped to 2-adic integers. One would have union of Boolean algebras labelled by
the 2-adic norm of the 2-adic number. p-Adic integers for a general prime p define obviously a
generalization of Stone space making sense for effectively p-valued logic: the interpretation will be
discussed below.

Consider now a Boolean algebra consisting of all possible infinitely long bit sequences. This
algebra corresponds naturally to 2-adic integers. The generating Boolean statements correspond to
sequences with single non-vanishing bit: by taking the unions of these points one obtains all sets.
The natural topology is that for which the lowest bits are the most significant. 2-adic topology
realizes this idea since n: th bit has norm 27". 2-adic integers as an p-adic integers are as spaces
totally disconnected.

That 2-adic integers and more generally, 2-adic variants of n-dimensional p-adic manifolds
would define Stone bases assignable to Boolean algebras is consistent with the identification of
p-adic space-time sheets as correlates of cognition. Each point of 2-adic space-time sheet would
represent 8 bits as a point of 8-D embedding space. In TGD framework WCW (“world of classical
worlds” ) spinors correspond to Fock space for fermions and fermionic Fock space has natural
identification as a Boolean algebra. Fermion present/not present in given mode would correspond
to true/false. Spinors decompose to a tensor product of 2-spinors so that the labels for Boolean
statements form a Boolean algebra too in this case. A possible interpretation is as statements
about statements.

In TGD Universe life and thus cognition reside in the intersection of real and p-adic worlds.
Therefore the intersections of real and p-adic partonic 2-surfaces represent the intersection of real
and p-adic worlds, those Boolean statements which are expected to be accessible for conscious
cognition. They correspond to rational numbers or possibly numbers in an algebraic extension
of rationals. For rationals pinary expansion starts to repeat itself so that the number of bits is
finite. This intersection is also always discrete and for finite real space-time regions finite so that
the identification looks a very natural since our cognitive abilities seem to be rather limited. In
TGD inspired physics magnetic bodies are the key players and have much larger size than the
biological body so that their intersection with their p-adic counterparts can contain much more
bits. This conforms with the interpretation that the evolution of cognition means the emergence
of increasingly longer time scales. Dark matter hierarchy realized in terms of hierarchy of Planck
constants realizes this.

9.4 What About P-Adic Integers With P > 27

The natural generalization of Stone space would be to a geometric counterpart of p-adic logic which
I discussed for some years ago. The representation of the statements of p-valued logic as sequences
of pinary digits makes the correspondence trivial if one accepts the above represented arguments.
The generalization of Stone space would consist of p-adic integers and embedding of a p-valued
analog of Boolean algebra would map the number with only n: th digit equal to 1,...,p — 1 to
corresponding p-adic number.

One should however understand what p-valued statements mean and why p-adic numbers near
powers of 2 are important. What is clear that p-valued logic is too romantic to survive. At least
our every-day cognition is firmly anchored to a reality where everything is experience to be true
or false.

1. The most natural explanation for p > 2 adic logic is that all Boolean statements do not
allow a physical representation and that this forces reduction of 2" valued logic to p < 2"-
valued one. For instance, empty set in the set theoretical representation of Boolean logic has
no physical representation. In the same manner, the state containing no fermions fails to
represent anything physically. One can represent physically at most 2 — 1 one statements of
n-bit Boolean algebra and one must be happy with n — 1 completely represented digits. The
remaining statements containing at least one non-vanishing digit would have some meaning,
perhaps the last digit allowed could serve as a kind of parity check.
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2. If this is accepted then p-adic primes near to power 2™ of 2 but below it and larger than the
previous power 2"~ ! can be accepted and provide a natural topology for the Boolean state-
ments grouping the binary digits to p-valued digit which represents the allowed statements
in 2" valued Boolean algebra. Bit sequence as a unit would be represented as a sequence
of physically realizable bits. This would represent evolution of cognition in which simple
yes or not statements are replaced with sequences of this kind of statements just as working
computer programs are fused as modules to give larger computer programs. Note that also
for computers similar evolution is taking place: the earliest processors used byte length 8
and now 32, 64 and maybe even 128 are used.

3. Mersenne primes M, = 2" — 1 would be ideal for logic purposes and they indeed play a
key role in quantum TGD. Mersenne primes define p-adic length scales characterize many
elementary particles and also hadron physics. There is also evidence for p-adically scaled
up variants of hadron physics (also lepto-hadron physics allowed by the TGD based notion
of color predicting colored excitations of leptons). LHC will certainly show whether Mgg
hadron physics at TeV energy scale is realized and whether also leptons might have scaled
up variants.

4. For instance, Mjs7 assignable to electron secondary p-adic time scale is.1 seconds, the fun-
damental time scale of sensory perception. Thus cognition in.1 second time scale single
pinary statement would contain 126 digits as I have proposed in the model of memetic code.
Memetic codons would correspond to 126 digit patterns with duration of.1 seconds giving
126 bits of information about percept.

If this picture is correct, the interpretation of p-adic space-time sheets- or rather their inter-
sections with real ones- would represent space-time correlates for Boolean algebra represented at
quantum level by fermionic many particle states. In quantum TGD one assigns with these in-
tersections braids- or number theoretic braids- and this would give a connection with topological
quantum field theories (TGD can be regarded as almost topological quantum field theory).

9.5 One More Road To TGD

The following arguments suggests one more manner to end up with TGD by requiring that fermionic
Fock states identified as a Boolean algebra have their Stone space as space-time correlate required
by quantum classical correspondence. Second idea is that space-time surfaces define the collections
of binary digits which can be equal to one: kind of eternal truths. In number theoretical vision
associativity condition in some sense would define these divine truths. Standard model symmetries
are a must- at least as their p-adic variants -and simple arguments forces the completion of discrete
lattice counterpart of M* to a continuum.

1. If one wants Poincare symmetries at least in p-adic sense then a 4-D lattice in M* with
SL(2,7) x T*, where T* is discrete translation group is a natural choice. SL(2,Z) acts
in discrete Minkowski space 7% which is lattice. Poincare invariance would be discretized.
Angles and relative velocities would be discretized, etc..

2. The p-adic variant of this group is obtained by replacing Z and T* by their p-adic counter-
parts: in other words Z is replaced with the group Z, of p-adic integers. This group is p-
adically continuous group and acts continuously in 7# defining a p-adic variant of Minkowski
space consisting of all bit sequences consisting of 4-tuples of bits. Only in real sense one
would have discreteness: note also that most points would be at infinity in real sense. There-
fore it is possible to speak about analytic functions, differential calculus, and to write partial
differential equations and to solve them. One can construct group representations and talk
about angular momentum, spin and 4-momentum as labels of quantum states.

3. If one wants standard model symmetries p-adically one must replace T with T4 x CP,. CPy
would be now discrete version of C'P, obtained from discrete complex space C?3 by identifying
points different by a scaling by complex integer. Discrete versions of color and electroweak
groups would be obtained.
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The next step is to ask what are the laws of physics. TGD fan would answer immediately: they
are of course logical statements which can be true identified as subsets of T% x C'P; just as subset
in Boolean algebra of sets corresponds to bits which are true.

1. The collections of 8-bit sequences consisting of only 1: s would define define 4-D surfaces
in discrete 7% x CP,. Number theoretic vision would suggest that they are quaternionic
surfaces so that one associativity be the physical law at geometric level. The conjecture
is that preferred extremals of Kéahler action are associative surfaces using the definition of
associativity as that assignable to a 4-plane defined by Kéhler-Dirac gamma matrices at given
point of space-time surface.

2. Induced gauge field and metric make sense for p-adic integers. p-Adically the field equations
for Kéahler action make also sense. These p-adic surfaces would represent the analog of
Boolean algebra. They would be however something more general than Stone assumes since
they are not closed-open in the 8-D p-adic topology.

One however encounters a problem.

1. Although the field equations associated with Kéahler action make sense, Kahler action itself
does not exists as integral nor does the genuine minimization make sense since p-adically
numbers are not well ordered and one cannot in general say which of two numbers is the
larger one. This is a real problem and suggests that p-adic field equations are not enough and
must be accompanied by real ones. Of course, also the metric properties of p-adic space-time
are in complete conflict with what we believe about them.

2. One could argue that for preferred extremals the integral defining Kéhler action is expressible
as an integral of 4-form whose value could be well-defined since integrals of forms for closed
algebraic surfaces make sense in p-adic cohomology theory pioneered by Grothendieck. The
idea would be to use the definition of Kéahler action making sense for preferred extremals
as its definition in p-adic context. I have indeed proposed that space-time surfaces define
representatives for homology with inspiration coming from TGD as almost topological QFT.
This would give powerful constraints on the theory in accordance with the interpretation as
a generalized Bohr orbit.

3. This argument together with what we know about the topology of space-time on basis of
everyday experience however more or less forces the conclusion that also real variant of
M* x CP, is there and defines the proper variational principle. The finite points (on real
sense) of T# x CP, (in discrete sense) would represent points common to real and p-adic
worlds and the identification in terms of braid points makes sense if one accepts holography
and restricts the consideration to partonic 2-surfaces at boundaries of causal diamond. These
discrete common points would represent the intersection of cognition and matter and living
systems and provide a representation for Boolean cognition.

4. Finite measurement resolution enters into the picture naturally. The proper time distance
between the tips would be quantized in multiples of C' P, length. There would be several
choices for the discretized embedding space corresponding to different distance between lattice
points: the interpretation is in terms of finite measurement resolution.

It should be added that discretized variant of Minkowski space and its p-adic variant emerge
in TGD also in different manner in zero energy ontology.

1. The discrete space SL(2,7) x T* would have also interpretation as acting in the moduli
space for causal diamonds identified as intersections of future and past directed light-cones.
T* would represent lattice for possible positions of the lower tip of CDandSL(2, Z) leaving
lower tip invariant would act on hyperboloid defined by the position of the upper tip obtained
by discrete Lorentz transformations. This leads to cosmological predictions (quantization
of red shifts). CP, length defines a fundamental time scale and the number theoretically
motivated assumption is that the proper time distances between the tips of CDs come as
integer multiples of this distance.



9.6 A Connection Between Cognition And Algebraic Geometry 78

2. The stronger condition explaining p-adic length scale hypothesis would be that only octaves
of the basic scale are allowed. This option is not consistent with zero energy ontology. The
reason is that for more general hypothesis the M-matrices of the theory for Kac-Moody type
algebra with finite-dimensional Lie algebra replaced with an infinite-dimensional algebra rep-
resenting hermitian square roots of density matrices and powers of the phase factor replaced
with powers of S-matrix. All integer powers must be allowed to obtain generalized Kac-
Moody structure, not only those which are powers of 2 and correspond naturally to integer
valued proper time distance between the tips of CD. Zero energy states would define the
symmetry Lie-algebra of S-matrix with generalized Yangian structure.

3. p-Adic length scale hypothesis would be an outcome of physics and it would not be surprising
that primes near power of two are favored because they are optimal for Boolean cognition.

The outcome is TGD. Reader can of course imagine alternatives but remember the potential
difficulties due to the fact that minimization in p-adic sense does not make sense and action defined
as integral does not exist p-adically. Also the standard model symmetries and quantum classical
correspondence are to my opinion “must”: s.

9.6 A Connection Between Cognition And Algebraic Geometry

Stone space is synonym for profinite space. The Galois groups associated with algebraic extensions
of number fields represent an extremely general class of profinite group (see http://tinyurl.
com/y92ms8£3)) [A27]. Every profinite group appears in Galois theory of some field K. The most
most interesting ones are inverse limits of Gal(Fy/K) where Fy varies over all intermediate fields.
Profinite groups appear also as fundamental groups in algebraic geometry. In algebraic topology
fundamental groups are in general not profinite. Profiniteness means that p-adic representations
are especially natural for profinite groups.

There is a fascinating connection between infinite primes and algebraic geometry discussed
above leads to the proposal that Galois groups - or rather their projective variants- can be repre-
sented as braid groups acting on 2-dimensional surfaces. These findings suggest a deep connection
between space-time correlates of Boolean cognition, number theory, algebraic geometry, and quan-
tum physics and TGD based vision about representations of Galois groups as groups lifted to
braiding groups acting on the intersection of real and p-adic variants of partonic 2-surface con-
forms with this.

Fermat theorem serves as a good illustration between the connection between cognitive repre-
sentations and algebraic geometry. A very general problem of algebraic geometry is to find rational
points of an algebraic surface. These can be identified as common rational points of the real and
p-adic variant of the surface. The interpretation in terms of consciousness theory would be as
points defining cognitive representation as rational points common to real partonic 2-surface and
and its p-adic variants. The mapping to polynomials given by their representation in terms of
infinite primes to braids of braids of braids.... at partonic 2-surfaces would provide the mapping
of n-dimensional problem to 2-dimensional one.

One considers the question whether there are integer solutions to the equation ™ 4+y" 42" = 1.
This equation defines 2-surfaces in both real and p-adic spaces. In p-adic context it is easy to
construct solutions but they usually represent infinite integers in real sense. Only if the expansion
in powers of p contains finite number of powers of p, one obtains real solution as finite integers.

The question is whether there are any real solutions at all. If they exist they correspond to
the intersections of the real and p-adic variants of these surfaces. In other words p-adic surface
contains cognitively representable points. For n > 2 Fermat’s theorem says that only single point
x =1y =z =0 exists so that only single p-adic multi-bit sequence (0,0, 0, ...) would be cognitively
representable.

This relates directly to our mathematical cognition. Linear and quadratic equations we can
solve and in these cases the number in the intersection of p-adic and real surfaces is indeed very
large. We learn the recipes already in school! For n > 2 difficulties begin and there are no general
recipes and it requires mathematician to discover the special cases: a direct reflection of the fact
that the number of intersection points for real and p-adic surfaces involved contains very few points.
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9.7 Quantum Mathematics

To my view the self referentiality of consciousness is the real “hard problem” of consciousness
theories. The “hard problem” as it is usually understood is only a problem of dualistic approach.
My own belief is that the understanding of self-referentiality requires completely new mathematics
with explicitly built-in self-referentiality. One possible view about this new mathematics is de-
scribed in [KI8]: here I provide only a brief summary in a form of recipe. The basic idea could
have been abstracted from algebraic holography: replace numbers by Hilbert spaces and basic
arithmetic operations with their counterparts for Hilbert spaces. Repeat this procedure by replac-
ing the points of Hilbert spaces with Hilbert spaces and continue this procedure ad infinitum. It
is quite possible that this procedure analogous to second quantization is more or less equivalent
with the construction of infinite primes [K19].

9.7.1 Construction recipe

The construction recipe is following.
1. The idea is to start from arithmetics: + and x for natural numbers and generalize it.

(a) The key observation is that + and x have direct sum and tensor product for Hilbert

spaces as complete analogs and natural number n has interpretation as Hilbert space
dimension and can be mapped to n-dimensional Hilbert space.
Replace natural numbers n with n-dimensional Hilbert spaces at the first abstraction
step. n+m and nxm go to direct sum n®m and tensor product n®m of Hilbert spaces.
One would calculate with Hilbert spaces rather than numbers. This induces calculation
also for Hilbert space states and sum and product are like 3-particle vertices.

(b) At second step construct integers (also negative) as pairs of Hilbert spaces (m,n) iden-
tifying (m @ r,n@®r) and (m,n). This gives what might be called negative dimensional
Hilbert spaces! Then take these pairs and define rationals as Hilbert space pairs (m,n)
of this kind with (m, n) equivalent to (k ® m, k ® n). This gives rise to what might be
called m/n-dimensional Hilbert spaces!

(¢) At the third step construct Hilbert space variants of algebraic extensions of rationals.
Hilbert space with dimension /2 say: this is a really nice trick [KI8]. The idea is
to consider for n-dimensional extension n-tuples of Hilbert spaces and induce tensor
product for them from the product for the numbers of extension. After that one can
continue with p-adic number fields and even reals: one can indeed understand even
what w-dimensional Hilbert space could be! These spaces could also have interpretation
in term of hyper-finite factors for which Hilbert spaces which otherwise would have
infinite-dimension have finite and continuous dimension [K23]. If Hilbert space infinite-
dimensional in the usual sense has dimension 1 (say) in the sense that identity operator
has trace equal to 1 then subspaces in general have continuous range of dimensions
smaller than one.

The direct sum decompositions and tensor products would have genuine meaning Hilbert
spaces associated with transcendentals are finite-dimensional in the sense as it is defined
here but infinite-dimensional in ordinary sense. These Hilbert spaces would have different
decompositions and would not be equivalent. Also in quantum physics decompositions to
tensor products and direct sums (say representations of symmetry group) have phyiscal
meaning: abstract Hilbert space of infinite dimension is too rough a concept.

A direct connection with the ideas about complexity emerges. Rationals correspond to pairs
of pairs of finite-dimensional Hilbert spaces corresponding to integers. Algebraic numbers
correspond to n-tuples of finite-dimensional Hilbert spaces. Transcendentals correspond to
infinite-dimensional Hilbert spaces decomposing to direct sums of tensor products: for in-
stance, pinary expansion could define this decomposition. This decomposition matters so that
abstract infinite-dimensional Hilbert spaces are not in question. The additional structure due
to tensor product and direct sum is present also in physical applications: for instance the
decomposition to irreducible representations defines this kind of direct sum decomposition.
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2. Do the same for complex numbers, quaternions, and octonions, embedding space M* x CPs,
etc.. The objection is that the construction is not general coordinate invariant. In coordinates
in which point corresponds to integer valued coordinate one has finite-D Hilbert space and
in coordinates in which coordinates of point correspond to transcendentals one has infinite-D
Hilbert space. This makes sense only if one interprets the situation in terms of cognitive
representations for points. 7 is very difficult to represent cognitively since it has infinite
number of digits for which one cannot give a formula. “2” in turn is very simple to represent.
This suggests interpretation in terms of self-referentiality. The two worlds with different
coordinatizations are not equivalent since they correspond to different cognitive contents.

3. Replace also the coordinates of points of Hilbert spaces with Hilbert spaces again and again!

The second key observation is that one can do all this again but at new level. Replace the
numbers defining vectors of the Hilbert spaces (number sequences) assigned to numbers with
Hilbert spaces! Continue ad infinitum by replacing points with Hilbert spaces again and
again.

One obtains a sequence of abstractions, which would be analogous to a hierarchy of n: th
order logics. At lowest levels would be just predicate calculus: statements like 4 = 22. At
second level abstractions like y = 2. At next level collections of algebraic equations, etc....

This construction is structurally very similar to - if not equivalent with - the construction of
infinite primes which corresponds to repeated second quantization in quantum physics. There
is also a close relationship to - maybe equivalence with - what I have called algebraic hologra-
phy or number theoretic Brahman=Atman identity [K19]. Numbers have infinitely complex
anatomy not visible for physicist but necessary for understanding the self referentiality of
consciousness and allowing mathematical objects to be holograms coding for mathematics.
Hilbert spaces would be the DNA of mathematics from which all mathematical structures
would be built!

9.7.2 Generalized Feynman diagrams as mathematical formulas?

One can assign to direct sum and tensor product their co-operations [KI8| [K2] and sequences
of mathematical operations are very much like generalized Feynman diagrams. Co-product for
instance would assign to integer m superposition of all its factorizations to a product of two
integers with some amplitude for each factorization. Same applies to co-sum. Operation and co-
operation would together give meaning to number theoretical 3-particle vertices. The amplitudes
for the different factorizations must satisfy consistency conditions: associativity and distributivity
could give constraints to the couplings to different channels- as particle physicist might express it.

The proposal is that quantum TGD is indeed quantum arithmetics with product and sum and
their co-operations. Perhaps even something more general since also quantum logics and quantum
set theory could be included! Generalized Feynman diagrams would correspond to formulas and
sequences of mathematical operations with stringy 3-vertex as fusion of 3 -surfaces corresponding
to @ and Feynmanian 3-vertex as gluing of 3-surfaces along their ends, which is partonic 2-surface,
corresponding to ®! One implication is that all generalized Feynman diagrams would reduce to a
canonical form without loops and incoming/outgoing legs could be permuted. This is actually a
generalization of old fashioned string model duality symmetry that I proposed years ago but gave
it up as too “romantic” [K2].

10 Boolean algebras, Stone spaces and p-adic physics

The Facebook discussion with Stephen King about Stone spaces (seehttp://tinyurl.com/ze20405)
led to a highly interesting development of ideas concerning Boolean, algebras, Stone spaces, and
p-adic physics. I have discussed these ideas already earlier but the improved understanding of the
notion of Stone space helped to make the ideas more concrete. The following piece of text emerged
from the attempt to clarify thoughts and to summarize what I think (just now).
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10.1 Boolean algebras

The most familiar representation of Boolean algebras (see http://tinyurl.com/cwhw8kd and
http://tinyurl.com/jznz7kq) is in terms of set theory. Intersection N and union U for subsets
of given set are the basic commutative and associative set theoretic operations having logical
meaning as A (AND) and V. Negation — corresponds to complement of set and is reflection like
operation. A (N) is distributive over V (U) just like product is distributive over sum in arithmetics
(a(b+¢) = ab+ ac). A (N) has unit element 1 (entire set) acting as annihilator for v (U).
V (U) has unit element 0 (empty set) acting as annihilator for A (N). Both A (N) and V (U)
are idempotent and are thus analogous to projection operations. The law of absorbtion states
zA(xVy)=2zV(xAy) ==z Only distribution law breaks the symmetry between A and V.

For sets the Boolean algebra B of sets can be realized algebraically as maps from set to Boolean
algebra Zs. Given set is defined as points for which the value of map is 1 and its complement as
points for which it is zero: the points of the entire set are colored with black or white, and white
points form the subset. Boolean operations correspond to simple operations for these Zs valued
functions in the set representable as bit sequences with one bit for each element of set. AND as
intersection of sets corresponds to bit-wise product

finfa=fixfa .

OR as union of sets to

hvia=h+fot+fixfa.
Negation corresponds to the addition of bit 1 to each bit:

For finite sets Boolean algebra is identical to its power set consisting of its subsets and having
2V elements if the set has N elements: each element of set corresponds to a bit telling whether it
is present in the subset or not.

For infinite sets situation is not at all so obvious. For instance, for subsets of real line the
condition that sets are open is in conflict with the existence of negation. The complement of open
set is closed (containing its boundaries).

Stone spaces (see http://tinyurl.com/ze20405) could be seen as a formulation of Boolean
logic in which one gets rid of the difficulty. One does not try to make the topology of set consistent
with Boolean algebra (by assuming that open sets correspond to all elements of Boolean algebra:
this would produce discrete topology, which is totally trivial). Instead, one topologizes the Boolean
algebra and the outcome is so called Stone space (or pro-finite space) in honour of Marshal Stone
who discovered the notion. Stone spaces have compact-open topology meaning that open sets
are also compact sets. This means that points of space - if they belong to the Boolean algebra -
are open sets. If I have understood correctly the idea of Stone space is to give up the points of
continuum as elements of Boolean algebra and replace Boolean algebra with the space of ultrafilters
defining Stone space.

What makes Stone spaces so interesting from the point of view of TGD is that also p-adic
numbers are Stone spaces. My first misunderstanding was that all Stone spaces are associated
with Boolean algebras. This is not the case. The obvious guess is however that 2-adic numbers
as sequences of possibility infinite bits ordered by their significance correspond to some Boolean
algebra. A slight generalization would suggest that p-adic numbers correspond to p-valued logics
and “p-Boolean” algebra for some set. Some-one has said that God created the natural numbers
and humans did the rest so that the first guess is that this set consists of natural numbers. In the
following also these innocent guesses are considered in more detail.

10.2 Stone spaces

First some basic notions about Boolean algebras relevant to the notion of Stone space.

1. The notion of filter is important in the theory of Boolean algebras and Stone spaces (see
http://tinyurl.com/hhvvped). Non-empty subset of F' of Boolean algebra B is a filter if
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(a) for any pair x,y elements of F' there exists z < z,z < y,

(b) for any z in F and z < y, also y belongs to F.

It is easy to see that filter does not contain mutually inconsistent statements. It is like the
set of all theorems of axiomatic system with some basic axioms from which theorems are
deduced.

2. Ultrafilter is a filter not contained in any filter. Ultrafilter has an important property that
for every element x in Boolean algebra either z or its negation —a but not both belongs to
ultrafilter.

Ultrafilters on a Boolean algebra can be related to prime ideals, maximal ideals, and homo-
morphisms to the 2-element Boolean algebra Z,. For given homomorphism of this kind the
inverse image of “true” is ultrafilter. The inverse image of false is a maximal ideal. Given
a maximal ideal, its complement is an ultrafilter and there is unique homomorphism taking
the maximal ideal to “false”. The dual of this statement holds for given ultrafilter.

Prime ideals of Boolean algebra are maximal and have the property that if A y belongs to
the ideal, then either x or y does so. In finite case maximal ultrafilter the number of elements
in maximal ultrafilter is one half of that for the entire Boolean algebra. Maximal ideal and
ultrafilter correspond to subset and its complement in Boolean algebra ideal contains empty
set and ultrafilter entire set.

3. Stone space (see http://tinyurl.com/jsapyeq) for a set S is defined as the set of ultrafilters
for the Boolean algebra associated with it. It is contained by the power set of S consisting
of its subsets but not equal to it if the set is infinite. Ultrafilters are equivalent with Zs
homomorphisms from the set. The realization of ultrafilters as inverse images of “true” for
Z5 valued homomorphisms allow to understand Stone space as the set of true statements
about fundamental statements defined by the points of the set.

Homomorphism property tells that these statements about fundamental statements are log-
ically consistent: either given element of Boolean algebra or its negation belongs to the
ultrafilter. From Wikipedia (see http://tinyurl.com/ofysow5) one learns that for a finite
set Boolean algebra equals to its power set. The Boolean algebra of infinite set is a subset
of power set. One can intuit that at least points and discrete subsets are excluded.

4. Category theory is an additional aspect. Homomorphisms between Boolean algebras corre-
spond to homeomorphisms between their Stone spaces.

A couple of additional remarks relevant for TGD point of view about Stone spaces are in order.

1. Given Stone space is not necessarily associated with any Boolean algebra as the space of its
ultrafilters.

2. What is important is the “statements about statements” structure and ultrafilter as set of true
statements about statements. Stone space represents higher level of abstraction hierarchy.

Around 1990 or so I discussed for the first time a model of genetic code inspired by so
called Combinatorial Hierarchy [K10] [?]. Mersenne prime M; = 227 — 1 corresponds to the
number of elements a Boolean algebra of 7 bits with the statement corresponding to physically
non-realizable empty set thrown away. One can however choose 64 statements representable
using 6 bits and identified in terms of genetic code as statements, which correspond to subsets
represented as bit sequences with bit 1 for the elements of sub-set and 0 for the rest. These
subsets form an inclusion hierarchy which corresponds to implication hierarchy in opposite
direction. They correspond also to all statements consistent with atomic statement (1 bit
fixed). I talked about axioms but the correct interpretation is perhaps as theorems deducible
from axioms. This selection of 64 bit sequences is nothing but selection of an ultrafilter,
which T did not realize because I could not go to Wikipedia and check what it says about
Boolean algebras.
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10.3 Stone spaces and TGD

p-Adic number fields define Stone space and one expect that 2-adic numbers correspond to Boolean
algebra. p-Adic numbers would most naturally correspond to p-valued logic. What could be the
interpretation of p-valued logic? The difficult quesetion concerns the Stone spaces associated
various classical number fields? Could TGD allow to speculate about them?

10.3.1 p-Adic numbers and Stone spaces

Some examples might make the notion of Stone space more concrete and clarify the connection to
p-adic physics as physics of cognition and therefore also physics of Boolean mind.

1. 2-adic integers define Stone space for natural numbers very naturally. The ’1’:s in the bit
sequence specify the elements of the subset.

2. Also p-adic integers are a Stone space but defined in terms of Z, valued homomorphisms from
natural numbers to Z,, defining p-valued logic and analogs of its ultrafilters. In this case the
set is decomposed to p subsets with different colors and generalized union and intersection
can be defined for these decompositions using exactly the same algebraic formulas as in the
case of Boolean algebra.

What is important is that these operations are not anymore operations for a pair of subsets
but for two decompositions of the set to p subsets. Cyclic transformations in Z, are natural
operations analogous to negation. Now however p:th power represents identify transforma-
tion. The operation z — —x is possible since Z,, is finite field but is trivial for p = 2.

For natural numbers p-valued logic gives p-adic integers as decomposition of natural numbers
to p sub-sets. The homomorphisms generalize also to positive rationals and one expects that
Stone space consists of all p-adic numbers. There are good reasons to expect that one can
extend this notion also to algebraic extensions of rationals and corresponding integers so that
algebraic extensions of p-adic numbers have interpretation as Stone space for corresponding
algebraic extension of rationals.

3. Also n-valued logic is possible and correspond to expansions of natural numbers in powers of
n. Z, is not however finite field unless n is a power of prime - for n = p* one obtains finite
field G(p, k) reducing to Z, for k = 1. It also makes sense to speak about n-adic topology
but n-adic numbers numbers form only ring rather than number field unless n is prime. For
general n the operation x — —z does not exist by the loss of field property anymore but
other operations are well-defined.

4. In TGD framework adelic picture strongly suggests that 2-valued logic is only the lowest one
in the hierarchy of p-valued logics. A possible interpretation for p < 2*-valued logics is in
terms of error correction and will be discussed below. One selects p statements from k-bit
Boolean algebra and error correction routine checks whether the k-bit sequence belongs to
this sub-space. The classical analog of error correction in quantum computation. p-Adic
evolution would have interpretation in terms of evolving error correction mechanisms.

Could the generation of elements of n-valued logic (n-Boolean algebra) consisting of n subsets
of set be reduced to Boolean measurements decomposing set to subset and its complement?

1. A natural operation yielding decomposition of a set to n-subsets is as a sequence of Boolean
measurements. Decompose first the set to set x and its complement by Boolean measurement,
decompose then z to set y and its complement, etc... n-valued logic would require n — 2
Boolean measurements for independent observables. The problem is how one selects the
set to be decomposed at given step and there are n — 2 choices meaning 2"~ 2 ways to do
the operation labelled by elements of n — 2-bit Boolean algebra. One possibility is that at
each step the next set to be decomposed corresponds to “true” for the previous Boolean
measurement. This construction might allow to express elements of n-Boolean algebra as
sequences of elements for Boolean algebra and sub-algebras associated with subsets.
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2. Physically this process could correspond to a sequence of Boolean measurements. Measure
first the Boolean variable P; for the elements of set. After than measure whether Boolean
variable P; is true for the subset for which P; is true and false. This gives decomposition of
this set to n subsets defining a sequence of truth values (P;=false, P;=true and Py=false,...,
P,=true, i = 1,..,n — 3 and P,,_o= true/false). The sets of decomposition are ordered with
respect to the number of measured properties P; and thus amount of information. It is not
clear how unique this decomposition process is.

One can consider several physical realizations of the n-valued logics. An attractive idea is that
all discrete quantum numbers could provide a realization for these logics.

1. 2-valued logic allows a natural fermionic realization. In positive energy ontology super-
selection rule for fermion numbers makes this realization problematic but in zero energy
ontology (ZEO) the problem is avoided. In ZEO one can interpret zero energy states as
assigning to a quantum superposition of quantum Boolean statements represented by positive
energy state similar similar superposition represented by negative energy state. Physical laws
correspond to the conservation laws for various fermionic quantum numbers.

2. Pairs of space-time sheets connected by wormhole contact are fundamental in TGD: for
instance, elementary particles correspond to this kind of structures. An interesting question
is whether they could give rise to a geometric realization of Boolean logic.

3. n-valued logics could allow alternative realization realization in terms of algebraic extensions
of rationals defined by roots of unity. In p-adic context 2-valued logic does not require
extensions (exp(im) = —1) and this could exclude their realization in this manner.

4. The inclusions of hyperfinite factors are labelled by n:th roots of unity with n > 2 and one
can assign to this hierarchy Kac-Moody groups defined by simply laced Lie-groups which are
excellent candidates for dynamical symmetries in TGD Universe.

The hierarchy of Planck constants realized in terms of n-sheeted covering spaces could provide
a realization of m-valued logic. The internal quantum numbers assignable to the internal
dynamical symmetries would emerge as remnants of the huge super-symplectic symmetry
[K7]. For preferred extremals a sub-algebra isomorphic to super-symmetric algebra and its
commutator with super-symmetric algebra annihilate physical states and what is obtained
is presumably Kac-Moody algebra fof simply laced Lie-group. For this algebra also classical
Noether charges are non-vanishing. This would give additional spin like degrees of freedom
and could allow to realize n-valued logics in terms of quantum states.

10.3.2 p-valued logic and hierarchy of partition algebras

As found, one can formally generalize Boolean logic to a logic in finite field G(p) with p elements.
p-Logics have very nice features. For a given set the p-Boolean algebra can be represented as maps
having values in finite field G(p). The subsets with a given value 0 < k < p define subsets of a
partition and one indeed obtains p subsets some of which are empty unless the map is surjection.

The basic challenges are following: generalize logical negation and generalize Boolean opera-
tionsandOR. T have considered several options but the one based on category theoretical thinking
seems to be the most promising one. One can imbed p;-Boolean algebras to p-Boolean algebra
by considering functions which have values in G(p;) C G(p). One can also project G(p) valued
functions to G(p1) by mod p; operation. The operations should respect the logical negation and
p-Boolean operations if possible.

1. The basic question is how to define logical negation. Since 2-Boolean algebra is imbeddable
to any p-Boolean algebra, it is natural to require that also in p-Boolean case the operation
permute 0 and 1. These elements are also preferred elements algebraically since they are
neutral elements for sum and product. This condition could be satisfied by simply defining
negation as an operation leaving other elements of G(p) un-affected. An alternative definition
would be as shift & — k — 1. This is an attractive option since it corresponds to a cyclic
symmetry.For G(p) also higher powers of this operation would define analogs of negation in
accordance with p-valuedness.



10.3 Stone spaces and TGD 85

I have considered also the possibility that for p > 2 the analog of logical negation could be
defined as an additive inverse k — p — k in G(p) and k = p — 1 would be mapped to k = 1
as one might expect. The non-allowed value k£ = 0 is mapped to k = p = 0. kK = 0 would
be its own negation. This would suggest that & = 0 corresponds to an ill-defined truth value
for p > 2. For p = 2 k = 0 must however correspond to false. This option is not however
consistent with category theory inspired thinking.

2. For G(p)-valued functions f, one can define the p-analogs of both XOR (excluded or [(A OR
B) but not (A AND B)] and using local sum and product for the everywhere-non-vanishing
G(p)-valued functions. One can also define the analog of OR in terms of f1 + fa — fife
for arbitrary G(p)-valued functions. Note that minus sign is essential as one can see by
considering p =3 case (1+1—1x1=1and 1+1+1x1=0). For p =2 this would give
ordinary OR and it would be obviously non-vanishing unless both functions are identically
zero. For p > 2 AORB defined in this manner f; + fo — f1 f2 for functions having no zeros
can however have zeros. The mod p; projection from G(p) — G(p1) indeed commutes with
these operations.

Could 3-logic with 0 interpreted as ill-defined logical value serve as a representation of Boolean
logic? This is not the case: 1 x 2 =2 would correspond to 1 x 0 =0 but 2 x 2 =1 does not
correspond to 0 x 0 = 0.

3. It would be nice to have well-defined inverse of Boolean function giving additional algebra
structure for the partitions. For non-vanishing values of f(x) one would have (1/f)(z) =
1/f(x). How to define (1/f)(x) for f(x) = 0? One can consider three options.

(a) Option I: If 0 is interpreted as ill-defined value of p-Boolean function, there is a temp-
tation to argue that the value of 1/f is also ill defined: (1/f)(z) = 0 for f(x) = 0.
That function values would be replaced with their inverses only at points, where they
are no-vanishing would conform with how ill-defined Boolean values are treated in com-
putation. This leads to a well-defined algebra structure but the inverse defined in this
manner is only local inverse. One has fo f~1(x) = 1 only for f(z) # 0. One has algebra
but not a field.

(b) Option II: One could consider the extension of G(p) by the inverse of 0, call it oo,
satisfying 0 x oo = 1 ("false” AND oo = "true’!). Arithmetic intuition would suggest
k x 0o = oo for k > 0 and k + co = oo for all k.

On the other hand, the interpretation of + as XOR would suggest that k+oo corresponds
to [(k OR oo) but not (k AND oo)=00] suggesting k + oo = k so that 0 and co would
be in completely symmetrical position with respect to product and sum (koo = k and
k40 =k; kxoo =00 and kx0 = 0). It would be nice to have a logical interpretation for
the inverse and for the element co. Especially so in 2-Boolean case. A plausible looking
interpretation of oo would be as ”ill-defined” implying that [k oo] and [k AND oo is
also "ill-defined”. [false” AND ”ill-defined”]|="true” sounds however strange.

For a set with N elements this would give a genuine field with (p+1)" elements. For the
more convincing arithmetic option the outcome is completely analogous to the addition
of point 0o to real or complex numbers.

(¢) Option III: One could also consider functions, which are non-vanishing at all points of
the set are allowed. This function space is not however closed under summation.

4. For these three options one would have K (N) = pV¥, K(N) = (p+1)Y and K(N) = (p— 1)
different maps of this kind having additive and multiplicative inverses. This hierarchy of
statements about statements continues ad infinitum with K(n) = K(K(n —1)). For Option
IT this gives M(n) = (p + 1) (=1 5o that one does not obtain finite field G(p, N) with p™v
elements but function field.

5. One can also consider maps for which values are in the range 0 < k < p. This set of maps
would be however closed with respect to OR and would not obtain hierarchy of finite fields.
In this case the interpretation of 0 would be is un-determined and for p = 2 this option would
be trivial. For p = 3 one would have effectively two well-defined logic values but the algebra
would not be equivalent with ordinary Boolean algebra.
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The outcome for Option II would be a very nice algebraic structure having also geometric
interpretation possibly interesting from the point of view of logic. p-Boolean algebra provides
p-partitions with generalizations of XOR, OR, AND, negation, and finite field structure at each
level of the hierarchy: kind of calculus for p-partitions.

The lowest level of the algebraic structure generalizes as such also to p-adic-valued functions
in discrete or even continuous set. The negation fails to have an obvious generalization and the
second level of the hierarchy would require defining functions in the infinite-D space of p-adic-valued
functions.

10.3.3 p-Valued logics and error correction

Can one imagine any interpretation for the p-valued - and more generally - n-valued logics?

1. Error correction suggests a possible interpretation of p-valued logic. In quantum computation
error correction poses conditions on the quantum states so that sub-space of all possible
quantum states is realized. The idea is to check whether the state belongs to this space: if
not, error has occurred and must be corrected.

In the same manner one could perhaps choose a n-element subset in n-bit Boolean algebra
having 2¥ > p elements by some constraints. Error correction algorithm would check whether
the bit sequence belongs to this subset. The elements elements of k-bit Boolean algebra are
labelled by integers 0, ...2¢ — 1 in a natural manner. Could the map # — = mod n project
these elements to elements of n-Boolean algebra? The elements z > p would be mapped
to same elements as z mod n or that only bit sequences z < p are used. This would have
a natural interpretation as pinary cutoff in p-adic topology. For some prime values of k
dropping just the empty set gives Mersenne prime Mj, = 2¥ — 1 and Mj,-valued logic would
have a natural realization.

2. It seems that the error correction using n-valued logic does not allow a description in terms of
Boolean ultrafilters and ideals for the full set. By studying the illustration of the Wikipedia
article (see http://tinyurl.com/hhvvpe4) one can indeed get convinced that the number of
elements for filters is power of two as one might expect from the logical consistency condition.

10.3.4 What about Stone spaces of reals, p-adic numbers, etc.?

Can one speculate anything interesting about the Boolean algebra and Stone spaces of real line
, complex numbers, or p-adic numbers? TGD suggests two very interesting structures. Adeles
and hierarchy of infinite primes (, integers and rationals). It however seems that adeles provide
as coherent description of Stone space for the product of all p-valued logics so that only infinite
primes [K19] are left under consideration.

1. Real numbers are in a well-defined sense at the same hierarchy level as p-adic number fields
as extensions of rationals. This is suggested also by canonical identification mapping p-adics
to reals.

2. In the case of real/p-adic numbers one would have possibily infinite sequences of real/p-adic
numbers and one would map each such sequence to Z, (a map from real line to Z,). The
map cannot be continuous in real topology.

In the case of p-adic numbers one would have Stone space of Stone space. In the general
p-adic case one would have g-valued statements about p-valued statements about natural
numbers realized as collections of ¢ subsets of p-adic numbers. A priori it is not necessary to
have g = p although internal consistency might demand this. This might help to get some
grasp about the complexity involved.

The set of Z; valued maps forming g-ultra-filter is extremely large and expected to have
naturally g-adic topology. What this monster could be? The “world of classical worlds”
(WCW) and the generalization of the notion of real and p-adic number using the notion of
algebraic holography suggested by the hierarchy of infinite primes is what comes in mind in
TGD framework [K19.
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If it is possible to continue to make statements about statements indefinitely (we would
represent rather low level in this hierarchy!), a hierarchical structure should be in question
given p,-Boolean algebras of p,_i-Boolean algebras of.... At given level one has statements
about statements of previous level that is Z,,, valued maps from p,,_-Boolean algebra having
interpretation as subsets of p,_1-Boolean Stone space /p,_1-Boolean algebra. The first task
is to try to identify a hierarchical abstraction structure and TGD Universe is indeed full of
them.

3. Infinite primes (integers, and rationals) could define this kind of hierarchical structure [K19].
They are obtained by a repeated second quantization of an arithmetic QF T with supersym-
metry. The single particle states at the lowest level are labelled by primes and are both
bosons and fermions. Infinite primes correspond to both Fock states of free bosons and
fermions and to analogs of bound states. These many-particle states define single particle
states at the next level of hierarchy. Infinite primes are infinite only with respect to real
norm. With respect to p-adic norms they have unit norm.

By repeated second quantization infinite primes themselves form an infinite hierarchy map-
pable to polynomial primes at the first level of hierarchy: these irreducible polynomials
depend on single variable only. At higher levels of hierarchy one has primes, which cor-
respond to functions of m > 1 variables. There is resemblance with the statements about
statements hierarchy of Boolean algebras but the correspondence is not so obvious. What is
common that new level is constructed using primes of previous level as building bricks.

The interpretation of finite fermionic part of infinite prime is as a Boolean statement with
true assignable to a finite number of primes of the previous level. Besides this infinite primes
contain analogs of n-boson Bose Einstein condensates in various modes labelled by primes
serving as analogs of momenta. Their interpretation is open.

The physical correlate for the hierarchy infinite primes could be the hierarchy of space-time
sheets and would define a hierarchy of WCWs. At the level of logic one expects also a
hierarchy. The attempt to identify somehow the Stone space as the space of infinite primes
does not however look a promising idea. Could it be better to try to guess the hierarchy of
Stone spaces?

4. Infinite primes lead to what might be called algebraic holography or algebraic Atman=
Brahman identity [K19]. There exists a huge number of infinite integers, whose ratio equals
to one as real number and has lower level p-adic norms equal to 1. These pairs of integers
have also interpretation as analogs of zero energy states. Conservation of quantum numbers
implying the vanishing of total quantum numbers for zero energy states would correspond to
the fact that incoming and outgoing infinite integer have unit ratio in real topology although
they have different number theoretic anatomies.

The first thing to come in mind is to proceed using analogy. If p-adic number fields give Stone
spaces for p-Boolean algebras of natural numbers then one might expect that the analogs of
p-adic number fields for infinite primes - call them P - could give rise to Stone space for reals
and p-adics. The pinary expansion of P-adic integer in power of infinite prime P however
contains effectively only the lowest term for p-adic integers since already O(P) term has
p-adic norm 1/P = 0. The second problem is how to make sense of the generalization of the
condition 0 < k < p for the coefficients of the powers of p for infinite primes. On the other
hand, infinite rationals with finite real norm make sense. This would suggest that infinite-P
P-adic numbers are are just infinite-rationals of finite real norm.

Infinite rationals of unit norm can be interpreted in both real and p-adic senses and would
be number theoretically universal. Finiteness condition and ZEO suggests that one could
restrict the consideration to those infinite rationals for which the real norm and p-adic norms
for lower level primes equals to one. Thus one would have huge space of real units.

One could replace both reals and p-adics and even adelics with the bundle with fiber formed
by the huge infinite-D space of these units. This generalizes also to higher dimensional spaces.
Could these bundles or their fiber spaces of be identifiable as Stone spaces for reals, p-adics,
and adeles in a number theoretically universal manner? There would be infinite hierarchy of
these spaces.
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I have proposed earlier that this extension of embedding space and its p-adic and adelic
variants could allow to realize WCW as fiber bundle with embedding space as base space.
Could this hierarchy correspond to the hierarchy of Stone spaces assignable to reals, p-adics
and adeles? The only new thing would be the replacement of space-time points with a
space of real units, whose structure would not be visible in real number based space-time
geometry and visible only via the number theoretical anatomy and via our ability to think
mathematically. Single point of space-time would represent - if not entire WCW - at least
some hierarchy levels of WCW. This opens up rather wild vision about what might be behind
mathematical consciousness.

5. To make this really complicated, one can of course ask whether also infinite primes could
contribute to adeles at higher hierarchy levels! The definition of p-adic number fields for
infinite primes is problematic unless it is possible to make the p-adic norm finite.
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