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Abstract

A general model for the coupling constant evolution is proposed. The analogy of Riemann
zeta and fermionic zeta ζF (s)/ζF (2s) with complex square root of a partition function natural
in Zero Energy Ontology suggests that the the poles of ζF (ks), k = 1/2, correspond to com-
plexified critical temperatures identifiable as inverse of Kähler coupling strength itself having
interpretation as inverse of critical temperature. One can actually replace the argument s
of ζF with Möbius transformed argument w = (as + b)/(cs + d) with a, b, c, d real numbers,
rationals, or even integers. For αK w = (s+ b)/2 is proper choices and gives zeros of ζ(s) and
s = 2−b as poles. The identification αK = αU(1) leads to a prediction for αem, which deviates
by .7 per cent from the experimental value at low energies (atomic scale) if the experimental
value of the Weinberg angle is used. The conjecture generalizes also to weak, color and grav-
itational interactions when general Möbius transformation leaving upper half-plane invariant
is allowed. One ends up with a general model predicting successfully the entire electroweak
coupling constant evolution successfully from the values of fine structure constant at atomic
or electron scale and in weak scale.

1 Introduction

During years I have made several attempts to understand coupling evolution in TGD framework.

1. The first idea dates back to the discovery of WCW Kähler geometry defined by Kähler func-
tion defined by Kähler action (this happened around 1990) [K3]. The only free parameter of
the theory is Kähler coupling strength αK analogous to temperature parameter αK postu-
lated to be is analogous to critical temperature. Whether only single value or entire spectrum
of of values αK is possible, remained an open question.

About decade ago I realized that Kähler action is complex receiving a real contribution
from space-time regions of Euclidian signature of metric and imaginary contribution from
the Minkoswkian regions. Euclidian region would give Kähler function and Minkowskian
regions analog of QFT action of path integral approach defining also Morse function. Zero
energy ontology (ZEO) [K10] led to the interpretation of quantum TGD as complex square
root of thermodynamics so that the vacuum functional as exponent of Kähler action could
be identified as a complex square root of the ordinary partition function. Kähler function
would correspond to the real contribution Kähler action from Euclidian space-time regions.
This led to ask whether also Kähler coupling strength might be complex: in analogy with
the complexification of gauge coupling strength in theories allowing magnetic monopoles.
Complex αK could allow to explain CP breaking. I proposed that instanton term also
reducing to Chern-Simons term could be behind CP breaking

2. p-Adic mass calculations for 2 decades ago [K4] inspired the idea that length scale evolution is
discretized so that the real version of p-adic coupling constant would have discrete set of values
labelled by p-adic primes. The simple working hypothesis was that Kähler coupling strength
is renormalization group (RG) invariant and only the weak and color coupling strengths
depend on the p-adic length scale. The alternative ad hoc hypothesis considered was that
gravitational constant is RG invariant. I made several number theoretically motivated ad
hoc guesses about coupling constant evolution, in particular a guess for the formula for
gravitational coupling in terms of Kähler coupling strength, action for CP2 type vacuum
extremal, p-adic length scale as dimensional quantity [K6]. Needless to say these attempts
were premature and a hoc.

3. The vision about hierarchy of Planck constants heff = n × h and the connection heff =
hgr = GMm/v0, where v0 < c = 1 has dimensions of velocity [?] forced to consider very
seriously the hypothesis that Kähler coupling strength has a spectrum of values in one-one
correspondence with p-adic length scales. A separate coupling constant evolution associated
with heff induced by αK ∝ 1/~eff ∝ 1/n looks natural and was motivated by the idea that
Nature is theoretician friendly: when the situation becomes non-perturbative, Mother Nature
comes in rescue and an heff increasing phase transition makes the situation perturbative
again.
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Quite recently the number theoretic interpretation of coupling constant evolution [K9] [L2]
in terms of a hierarchy of algebraic extensions of rational numbers inducing those of p-adic
number fields encouraged to think that 1/αK has spectrum labelled by primes and values
of heff . Two coupling constant evolutions suggest themselves: they could be assigned to
length scales and angles which are in p-adic sectors necessarily discretized and describable
using only algebraic extensions involve roots of unity replacing angles with discrete phases.

4. Few years ago the relationship of TGD and GRT was finally understood [K8]. GRT space-
time is obtained as an approximation as the sheets of the many-sheeted space-time of TGD
are replaced with single region of space-time. The gravitational and gauge potential of sheets
add together so that linear superposition corresponds to set theoretic union geometrically.
This forced to consider the possibility that gauge coupling evolution takes place only at the
level of the QFT approximation and αK has only single value. This is nice but if true, one
does not have much to say about the evolution of gauge coupling strengths.

5. The analogy of Riemann zeta function with the partition function of complex square root of
thermodynamics suggests that the zeros of zeta have interpretation as inverses of complex
temperatures s = 1/β. Also 1/αK is analogous to temperature. This led to a radical idea to
be discussed in detail in the sequel.

Could the spectrum of 1/αK reduce to that for the zeros of Riemann zeta or - more plausibly
- to the spectrum of poles of fermionic zeta ζF (ks) = ζ(ks)/ζ(2ks) giving for k = 1/2 poles
as zeros of zeta and as point s = 2? ζF is motivated by the fact that fermions are the
only fundamental particles in TGD and by the fact that poles of the partition function are
naturally associated with quantum criticality whereas the vanishing of ζ and varying sign
allow no natural physical interpretation.

The poles of ζF (s/2) define the spectrum of 1/αK and correspond to zeros of ζ(s) and to the
pole of ζ(s/2) at s = 2. The trivial poles for s = 2n, n = 1, 2, .. correspond naturally to the
values of 1/αK for different values of heff = n×h with n even integer. Complex poles would
correspond to ordinary QFT coupling constant evolution. The zeros of zeta in increasing
order would correspond to p-adic primes in increasing order and UV limit to smallest value
of poles at critical line. One can distinguish the pole s = 2 as extreme UV limit at which
QFT approximation fails totally. CP2 length scale indeed corresponds to GUT scale.

6. One can test this hypothesis. 1/αK corresponds to the electroweak U(1) coupling strength
so that the identification 1/αK = 1/αU(1) makes sense. One also knows a lot about the
evolutions of 1/αU(1) and of electromagnetic coupling strength 1/αem = 1/[cos2(θW )αU(1).
What does this predict?

It turns out that at p-adic length scale k = 131 (p ' 2k by p-adic length scale hypothesis,
which now can be understood number theoretically [K9]) fine structure constant is predicted
with .7 per cent accuracy if Weinberg angle is assumed to have its value at atomic scale! It
is difficult to believe that this could be a mere accident because also the prediction evolution
of αU(1) is correct qualitatively. Note however that for k = 127 labelling electron one can
reproduce fine structure constant with Weinberg angle deviating about 10 per cent from the
measured value of Weinberg angle. Both models will be considered.

7. What about the evolution of weak, color and gravitational coupling strengths? Quantum
criticality suggests that the evolution of these couplings strengths is universal and indepen-
dent of the details of the dynamics. Since one must be able to compare various evolutions and
combine them together, the only possibility seems to be that the spectra of gauge coupling
strengths are given by the poles of ζF (w) but with argument w = w(s) obtained by a global
conformal transformation of upper half plane - that is Möbius transformation (see https://

en.wikipedia.org/wiki/M\unhbox\voidb@x\bgroup\let\unhbox\voidb@x\setbox\@tempboxa\

hbox{o\global\mathchardef\accent@spacefactor\spacefactor}\let\begingroup\endgroup\

relax\let\ignorespaces\relax\accent127o\egroup\spacefactor\accent@spacefactorbius_

transformation) with real coefficients (element of GL(2, R)) so that one as ζF ((as+b)/(cs+
d)). Rather general arguments force it to be and element of GL(2, Q), GL(2, Z) or maybe
even SL(2, Z) (ad − bc = 1) satisfying additional constraints. Since TGD predicts several
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https://en.wikipedia.org/wiki/ M\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \endgroup \relax \let \ignorespaces \relax \accent 127 o\egroup \spacefactor \accent@spacefactor bius_transformation
https://en.wikipedia.org/wiki/ M\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \endgroup \relax \let \ignorespaces \relax \accent 127 o\egroup \spacefactor \accent@spacefactor bius_transformation
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scaled variants of weak and color interactions, these copies could be perhaps parameterized
by some elements of SL(2, Z) and by a scaling factor K.

Could one understand the general qualitative features of color and weak coupling contant
evolutions from the properties of corresponding Möbius transformation? At the critical line
there can be no poles or zeros but could asymptotic freedom be assigned with a pole of cs+d
and color confinement with the zero of as+ b at real axes? Pole makes sense only if Kähler
action for the preferred extremal vanishes. Vanishing can occur and does so for massless
extremals characterizing conformally invariant phase. For zero of as + b vacuum function
would be equal to one unless Kähler action is allowed to be infinite: does this make sense?.
One can however hope that the values of parameters allow to distinguish between weak and
color interactions. It is certainly possible to get an idea about the values of the parameters of
the transformation and one ends up with a general model predicting the entire electroweak
coupling constant evolution successfully.

To sum up, the big idea is the identification of the spectra of coupling constant strengths as poles
of ζF ((as+ b/)(cs+ d)) identified as a complex square root of partition function with motivation
coming from ZEO, quantum criticality, and super-conformal symmetry; the discretization of the
RG flow made possible by the p-adic length scale hypothesis p ' kk, k prime; and the assignment of
complex zeros of ζ with p-adic primes in increasing order. These assumptions reduce the coupling
constant evolution to four real rational or integer valued parameters (a, b, c, d). In the sequel this
vision is discussed in more detail.

2 Fermionic Zeta As Partition Function And Quantum Crit-
icality

Riemann zeta has formal interpretation as a partition function ζ = ZB =
∏

1/(1− ps) for a gas of
bosons with energies coming as integer multiples of log(p), for given mode labelled by prime p. I
have proposed different interpretation based on the fermionic zeta ζF based on its representation
as a product

ζF =
∏
p

(1 + ps)

of single fermion partition functions associated with fermions with energy log(p) (by Fermi statistics
the fermion number is 0 or 1). In this framework the poles (not zeros!) of the fermionic zeta
ζF (ks) = ζ(ks)/ζ(2ks) (the value of k turns out to be k = 1/2) (this identity is trivial to deduce)
correspond to s/2, where s is either trivial or non-trivial zero of zeta (denominator), or the pole
of zeta at s = 1 (numerator). Trivial poles are negative integers s = −1 − 2,−3... suggesting an
interpretation as conformal weights. This interpretation is proposed also for the nontrivial poles.

ζF emerges naturally in TGD, where the only fundamental (to be distinguished from elemen-
tary) particles are fermions. The assignment of physics to poles rather than zeros of ζF is also
natural. The interpretation inspired by the structure of super-symplectic algebra is as conformal
weights associated with the representations of extended super-conformal symmetry associated with
super-symplectic algebra defining symmetries of TGD at the level of “World of Classical Worlds”
(WCW).

“Conformal confinement” states that the sum of conformal weights of particles in given state is
real. I discovered the idea for decade ago but gave it up to end up with it again. The fractal struc-
ture of superconformal algebra conforms with quantum criticality: infinite hierarchy of symmetry
breakings to sub-symmetry isomorphic to original one! The conformal structure is infinitely richer
than the ordinary one since the algebra in question has infinite number of generating elements
labelled by all zeros of zeta rather than a handful of conformal weights (n = −2, ...+2 for Virasoro
algebra). Kind of Mandelbrot fractal is in question. There is however deviation from the ordinary
conformal symmetry since real conformal weights can have only one sign (for generating elements
all negative conformal weights n = −1,−2,−. are realized as poles of 1/ζ(2s) but n = 1 realized
as pole of ζ(s) is the only positive conformal weight). Situation is therefore not quite identical
with that in conformal field theories although also conformal field theories realizes only positive
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conformal weights (positivity is a convention) and have also some tachyonic conformal weights
which are negative.

The problem of all attempts to interpret zeros of zeta relates to the fact that zeros are not
purely imaginary but possess the troublesome real part Re(s) = 1/2. This led me to consider
coherent states instead of eigenstates of Hamiltonian in my proposal, which I christened a strategy
for proving Riemann hypothesis [K5], [L1]. Zeta has phase at the critical line so the interpretation
as a partition function can be only formal. So called Z function defined at critical line and obtained
by extracting the phase of zeta out, is real at critical line.

In TGD framework the solution of these problems is provided by zero energy ontology (ZEO).
Quantum theory is “complex square root” of thermodynamics and means that partition function
becomes a complex entity having also a phase. The well-known function

ξ(s) =
1

2
π−s/2s(s− 1)Γ(s/2)(ζ(s)

assignable to Riemann zeta having same zeros and basic symmetries has at critical line phase equal
±1 except at zeros where the phase can be defined only as a limit depending the direction from
which the zero is approached. Fermionic partion function ζF (s) has a complex phase and it is not
clear whether it makes sense to assign with it the analog of ξ(s). Ordinary partition function is
modulus squared for the generalized partition function.

Why does the partition function interpretation does demand poles?

1. In ordinary thermodynamics the vanishing of partition function makes sense only at the limit
of zero temperature when all Boltzmann weights approach to zero. By subtracting the energy
of the lowest energy state from the energies the partition function becomes non-vanishing also
in this case. Hence the idea that partition function vanishes does not look very attractive.
The varying sign is even worse problem.

2. Since the temperature interpreted as 1/s in the partition function is not infinite could mean
that one has analog of Hagedorn temperature (see http://tinyurl.com/pvkbrum): the de-
generacy of states increases exponentially with temperature and at Hagedorn temperature
compensates the s exponential decreases of Boltzmann weights so that partition function
is sum of infinite number of terms approaching to unity. Hagedorn temperature relates by
strong form of holography to magnetic flux tubes behaving as strings with infinite number
of degrees of freedom. One would have quantum critical system possessing supersymplectic
symmetry and other superconformal symmetries predicted by TGD [K2, K1, K7].

3. The temperature is complex for non-trivial zeros. This requires a generalization of thermo-
dynamics by making partition function complex. Modulus squared of this function takes
the role of an ordinary partition function. One can allow in the case of Kähler action the
replacement of argument s with ks+ b without giving up the basic features of U(1) coupling
constant evolution. Here one can allow rational numbers k and b. The inverse temperature
for ζF (ks+ b) is identified as β = 1/T = k(s+ b). It turns out that in the model for coupling
constant evolution the scaling factor k = 1/2 is required. b is not completely fixed.

Complex temperature is indeed the natural quantity to consider in ZEO. The real part
of temperature at critical line equals to Re(β) = (s + b)/4k, with b rational or integer for
ζF (w = k(s+b)) at poles assignable with the zeros of ζ(2k(s+b)) in denominator. Imaginary
part

Im [β] =
1

T
=

1

2k
(b+ frac12 + iy) (2.1)

of the inverse temperature does not depend on b. Infinite number of critical temperatures
is predicted and a discrete coupling constant evolution takes place already at the level of
basic quantum TGD rather than emerging only at the QFT limit - I have also considered the
possibility that coupling constant evolution emerges at the QFT limit only [K6]. One could
even allow Möbius transformation with real coefficients in the argument of ζF and that this
could allow the understanding of the evolutions of weak and colour coupling constants.

http://tinyurl.com/pvkbrum
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ζF (w) at s = −(n − b)/k are also present. For s = 1/T they would correspond to negative
temperatures β = (−n+ b)/k? In the real context and for Hamiltonian with a fixed sign this
looks weird. Preferred extremals can be however dominated by either electric or magnetic
fields and the sign of the action density depends on this.

4. Interestingly, in p-adic thermodynamics p-adic temperatures has just the values T = −1/n
if one defines p-adic Boltzmann weight as exp(−E/T )→ p−E/T , with E = n ≥ 0 conformal
weight. The condition that weight approaches zero requires that T identified in this is as
real integer negative for p-adic thermodynamics! Trivial poles would correspond to p-adic
thermodynamics and non-trivial poles to ordinary real thermodynamics! Note that the earlier
convention is that T = 1/n is positive: the change of the sign is just a convention. Could the
hierarchy of p-adic thermodynamics labelled by p-adic primes corresponds to the sequence
of critical zeros of zeta? Number theoretic vision indeed leads to this proposal [L2], [K9].

The factor 1/(1 − pn) at the real poles s = −2n would exist p-adically in p-adic number
field Qp so that the factors of zeta would correspond to adelic decomposition of the partition
function. At critical line in turn 1/1 + p1/2+iy would exist for zeros y for which piy is root of
unity (note that p1/2 is somewhat problematic for Qp: does it make sense to speak about an
extension of Qp containing sqrtp or is the extension just the same p-adic number field but
with different definition of norm?). That piy is root of unity for some set C(p) of zeros y
associated with p was proposed in [L2], [K9]. Now C(p) would consist of single zero y = y(p).

2.1 Could The Spectrum Of Kähler Couplings Strength Correspond To
Poles Of ζF (s/2)?

The idea that the spectrum of conformal weights for supersymplectic algebra is given by the poles
of ζF is not new [L2].

Poles of ζF (ks) (k = /2 turns out to be the correct choice) have also interpretation as complex-
ified temperatures. Kähler action can be interpreted as a complexified partition function and the
inverse 1/αK of Kähler coupling appears in the role of critical inverse temperature β. The original
hypothesis was that Kähler coupling strength has only single value. The hierarchy of quantum
criticalities and its assignment with number theoretical hierarchy of algebraic extensions of ratio-
nals led to consider the possibility that Kähler coupling strength has a spectrum corresponding to
a hierarchy of critical temperatures. Quantum criticality and Hagedorn temperature for magnetic
flux tubes as string like objects are indeed key elements of TGD.

The hypothesis to be studied is that the values 1/αK correspond to poles of

ζF (ks) = ζ(ks)/ζ(2ks)

with the identification 1/αK = ks. The model for coupling constant evolution however favors
k = 1/2 predicting that poles correspond to zeros of zeta in the denominator of ζF and s = 2
in its numerator. For k = 1/2 only even negative integers would appear in the spectrum and
there would be pole at s = 2. Here one onr also allow the sift ks → ks + b, b integer without
shifting the imaginary parts of poles crucial for the coupling constant evolution. This induces a
shift Re[s]→ kRe[s] + b for the real parts of poles.

For nontrivial poles this requires the replacement of temperature with a complex temperature.
Therefore also 1/αK becomes complex. This is just what the ZEO inspired idea about quantum
theory as complex square root of thermodynamics suggests. Kähler action is also complex already
for real values of 1/αK since Euclidian resp. Minkowskian regions give real/imaginary contribution
to the Kähler action.

The poles of ζF would appear both as spectrum of complex critical temperatures β = 1/T =
1/αK and as spectrum of supersymplectic conformal weights. ζF is complex along the critical line
containing the complex poles. This makes sense only in ZEO. ξ function associated with ζ is real
at critical line but the problems are vanishing at finite temperature, indefinite sign, and also the
fact that partition function interpretation fails at positive real axis. This does not conform with
the intuitive picture about partition function defined in terms of Boltzmann weights.
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2.2 The Identification Of 1/αK As Inverse Temperature Identified As
Pole Of ζF

Let us list the general assumptions of the model based on the identification of 1/αK as a complex-
ified inverse temperature in turn identified as zero of ζF .

1. I have earlier considered the number theoretical vision based on the assumption that vacuum
functional identified as exponent of Kähler action receiving real/imaginary contributions from
Euclidian/Minkowskian space-time regions exists simultaneously in all number fields. This
is in spirit with the idea of integrability meaning that functional integral reduces to a sum
over exponents of Kähler action associated with stationary points. What is nice that by the
Kähler property of WCW metric Gaussian and metric determinants cancel [K3, K9] and one
indeed obtains a discrete sum over exponentials making sense also in p-adic sectors, where
ordinary integration does not make sense. Number theoretic universality is realized if one
allows the extension of rationals containing also some roots of e if the exponent reduces to a
product of root of unity and product of rational powers of e (ep is ordinary p-adic number)
and integer powers of primes p. It is perhaps needless to emphasize the importance of this
result.

The criticism is obvious: how does one know, which preferred extremals have a number
theoretically universal action exponent? For calculational purposes it might not be necessary
to know this. The easy option would be that all preferred extremals are number theoretically
universal: this cannot be however the case if the values of 1/αK correspond to zeros of ζ.
Second option is that in the sum over preferred extremals those which do not have a number
theoretically universal exponent give a vanishing net contribution and are effectively absent.
The situation brings in mind the reduction of momentum spectrum of a particle in a box to
momenta equal to k = n2π/L, L the length of the box. The contributions of other plane
waves in integrals vanish since they are dropped away by boundary conditions.

Strong form of number theoretic universality requires that the exponent of Kähler action
reduces to a product of rational power of some prime p or em/n and a root of unity [K9], [L2].
This might be too strong a condition and weaker condition allows also powers of p mapped to
real sector and vice versa by canonical identification. One could pose root of unity condition
for the phase of exp(SK) as a boundary condition at the ends of causal diamond (CD) stating
that some integer power of the exponent of Kähler action for the given value of αK is real.
If exp(K) contains em/n factor but no pn factors, the reality of the nth power of exp(iπK)
would reveal this. Single pn factor in absence of em/n factor could be detected by requiring
that the exponent exp(iyK) is real for some y (imaginary part of zero of zeta with piy a root
of unity).

2. The assumption that 1/αK corresponds to a nontrivial zero of zeta has strong constraints on
the values of the reduced Kähler action SK,red = αKSK for which the classical field equations
do not depend on αK at all. The reason is that the SK must be proposal to 1/αK to achieve
number theoretical universality. Number theoretical universality thus implies that preferred
extremals depend on 1/αK - this is something very quantal. The proportionality 1/αK to
heff = n × h is highly suggestive. It does not destroy number theoretical universality for
given preferred extremal.

3. 1/αK has form 1/αK = s = a+ib = (1/2k)(1/2+iy/2) for nontrivial poles, 1/αK = s = −n/k
for trivial poles of 1/ζ(2s), and 1/αK = s = 1/k for the pole of ζ. k = 1/2 is the physically
preferred choice.

Kähler action can be written as a sum of Euclidian and Minkowskian contributions: K =
KE + iKM . For non-trivial poles in the case of 1/αK = ks one has

K = s× (KE + iKM ) =
1

k
×
[
KE

2
− yKM + i(

KM

2
+ yKE)

]
. (2.2)

Here Kred = KE +iKM is reduced Kähler action. This option generalizes directly the original
proposal.
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4. For trivial poles s = −n/k and s = 1/k one has

K =
s

k
×Kred =

s

k
× (KE + iKM ) . (2.3)

5. For real poles universality holds true without additional conditions since the multiplication
of 1/αK by the scaling factor −n2/n1 does not spoil number theoretical universality. One
can of course consider this condition. It predicts that the Kred is scaled by n1/n2 in the
transition n2 → n1. For nontrivial poles Kred is scaled by the complex ratio s2/s1.

An attractive possibility is that the hierarchy of Planck constants corresponds to this RG
evolution. n would correspond to the number of sheets in the n-sheeted covering for which
sheets co-incide at the ends of space-time at the boundaries of CD. Therefore p-adic and
heff = n×h hierarchies would find a natural interpretation in terms of zeros of ζF . To avoid
confusion let us make clear that the values of n = heff/h would not correspond to trivial
poles.

Number theoretical universality could be realized in terms of RG invariance leaving the vacuum
functional invariant but deforming the vacuum extremal. The hierarchy of Planck constants and
p-adic length scale hierarchy could be interpreted as RG flows along real axis and critical line.

1. The grouping of poles to 4 RG orbits corresponding to non-trivial poles y > 0 and y < 0, to
poles s = −n/k < 0, and s = 1/k looks natural. The differential equations for RG evolution
of Kähler action would be replaced with a difference equation relating the values of Kähler
action for two subsequent critical poles of ζF .

2. Number theoretical universality allows to relate Minkowskian and Euclidian contributions
KM and KE to each other. Earlier I have not even tried to deduce any correlation between
them although the boundary conditions at light-like wormhole throats at which the signature
of the induced metric changes, probably give strong constraints.

The strongest form of the number theoretical universality condition assumes

Kred = Kred,E + iKred,M = αKK1 =
K1

s
= K(αK = 1) , s =

1

αK
. (2.4)

K1 satisfies the number theoretic universality meaning that exp(K1) = expK(αK = 1)
reduces to a product of powers primes, root of e and root of unity.

This ansatz has the very remarkable property that αK disappears from the vacuum functional
completely so that the RG action can be regarded as a symmetry leaving vacuum function
invariant. This operation however changes the preferred extremal and reduced Kähler action
so that the situation is non-classical. RG orbit would start from the pole s = 1 and contain
complex poles.

3. The large CP breaking suggested by complexity of αK would disappear at the level of vacuum
functional and appears only at the level of preferred extremals. If this is to conform with
the quantum classical correspondence, correlation functions, which must break CP symmetry
receive this breaking from preferred extremals. s = 1/2k and complex poles belong to the
same orbit. This ansatz is not necessary for poles s = 1/k and s = −n/k for which number
theoretic universality conditions are satisfied irrespective of the value of s.

4. A more realistic looking solution is obtained by assuming that complex poles correspond to
separate orbit or even that positive and negative values of y correspond to separate orbits.
RG flow would begin from the lowest zero of zeta at either side of real axis. This gives

Kred =
αK

αK,0
×Kred(αK,0) . (2.5)
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Also now the vacuum functional is invariant and preferred extremal changes in RG evolu-
tion. In accordance with quantum classical correspondence one has however a breaking of
CP symmetry also at the level of vacuum functional due to the complexity of αK,0 unless
Kred(αK,0) is proportional to αK,0.

Remark: The above arguments must be modified if one includes to the action cosmological
volume term strongly suggested by twistor lift of TGD.

3 About Coupling Constant Evolution

p-Adic mass calculations inspired the hypothesis that the continuous coupling constant evolution
in QFTs reduces in TGD framework to a discrete p-adic coupling constant evolution but assuming
that αK is absolute RG invariant. Therefore the hypothesis that the evolution of 1/αK defined by
the non-trivial poles of ζF corresponds to the p-adic coupling constant evolution deserves a serious
consideration.

1. p-Adic length scale hypothesis in the strong form states that primes p ' 2k, k prime, corre-
spond to physically preferred p-adic length scales. This would suggest that non-trivial zeros
s1, s2, s3, .. taken in increasing order for magnitude correspond to primes k = 2, 3, 5, 7... as
suggested also in [L2], [K9]. This allows to assign to each zero sn a unique prime: p↔ y(p)
and this suggests more precise of the earlier hypothesis to state that piy(p) is root of unity.
The class of zeros associated with p would contain single zero.

Discrete p-adic length scale evolution would thus correspond to the evolution of non-trivial
zeros. The evolution associated with the hierarchy of Planck constants could only multiple
Kähler action with integer. To make this more concrete one must consider detailed physical
interpretation.

2. 1/αK corresponds to U(1) coupling of standard model: αK = α(U(1)) ≡ 1/α1. Kähler action
could be seen as analogous to a Hamiltonian associated with electroweak U(1) symmetry.
U(1) gauge theory is not asymptotically free and this correspond to the fact that Im(1/αK) =
y approaches in UV to the lowest zero y = 14.12... In IR y diverges, which conforms with
U(1) gauge theory symmetry.

Electromagnetic coupling corresponds to

1

αem
=

1

αKcos2(θW )
. (3.1)

The challenge is to understand also the evolution of cos2(θW ) allowing in turn to understand
the entire electroweak evolution.

3. The values of electroweak couplings at the length scale of electron (k = 127 or at 4 times
longer length scale k = 131 (L(131) = .1 Angstrom) are well-known and this provides a killer
test for the model. Depending on whether one assumes fine structure constant to correspond
to L(127) associated with electron or to 4 times long length scale L(131) one has too options.
L(131) allows to reproduce fine structure constant with a value of p = sin2(θW ) deviating
only .7 per cent from its measured value in this length scale! If this is not a mere nasty
accident, Riemann zeta might code the entire electroweak physics and perhaps even strong
interactions!

The first guess is that UV asymptotia for the Weinberg angle is same as for GUTS: p→ 3/8
for p = 2 giving 1/αem → 22.61556016. IR asymptotia corresponds to p → 0 implying
1/αem = 1/αK . Notice that the evolution is rather fast in extreme UV. In extreme IR it
becomes slow. It turns out that the UV behavior of Weinberg angle does not conform with
this näıve expectation.

4. Since p-adic length scale is proportional to 1/p1/2 it is enough to obtain RG evolution for cou-
pling constnt as function of p. One obtains reasonably accurate understanding about the evo-
lution by deducing an estimate for pdy/dp . This is obtained as pdy/dp = (dy/dN)(dN/dk)p(dk/dp).
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• p ' 2k implies k ' log(p)/log(2) and pdk/dp ' 1/log(2).

• The approximate formula for the number N(y) of zeros smaller than y is given by

N(y) ∼ u× log(u) , u =
y

2π

giving

dN

dy
∼ 1

2π
× (log(u)− 1), u =

y

2π
.

• The number π(k) of primes smaller than k is given by

N(k) ∼ k

log(k)

giving

dN(y)

dk
∼ 1

log(k)
− 1

log(k)2
.

By combining the formulas, one obtains

p
dy

dp
= β =

2π

log(2)
× (

1

log(y/2π)
− 1)× (

1

log(k)
− 1

log(k)2
) , k =

log(p)

log(2)
.

(3.2)

The beta function for the evolution as function of p-adic length scale differs by factor 2 from
this one. Note that also double logarithms appear in the formula. Note that beta function
depends on y logarithmically making the equation rather nonlinear. This dependence can be
shifted to the left hand side and by replacing y which appropriation chosen function of it one
obtains

p
dN(y)

dp
= β1 =

1

log(k)
− 1

log(k)2
, k =

log(p)

log(2)
.

(3.3)

5. Coupling constant evolution would take place at the level of single space-time sheet. Obser-
vations involve averaging over space-time sheet sizes characterized by p-adic length scales so
that a direct comparison with experimental facts is not quite easy and requires a concrete
statistical model.

The entire electroweak U(1) coupling constant evolution would be predicted exactly from num-
ber theory. Physics would represent mathematics rather than vice versa. Concerning experimental
testing a couple of remarks are in order.

1. An open question is how much many-sheetedness of space-time affects situation: one expects
kind of statistical average of say Weinberg angles over p-adic length scales coming from a
superposition over space-time sheets of many-sheeted space-time. Space-time with single
sheet is not easy to construct experimentally although mathematically it is extremely simple
system as compared to the space-time of GRT.

2. The discreteness of the coupling constant evolution at fundamental level is one testable
prediction. There is no continuous flow but sequence of phases with fixed point behavior
with discrete phase transitions between them. At QFT limit one expects that continuous
coupling constant evolution emerges is statistical average.

3. Later it will be found that the entire electroweak evolution can be predicted and this predic-
tion is certainly testable.
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3.1 General Description Of Coupling Strengths In Terms Of Complex
Square Root Of Thermodynamics

The above picture is unsatisfactory in the sense that it says nothing about the evolution of other
electroweak couplings and of color coupling strength. Does number theory fix also them rather
than only U(1) coupling? And what about color coupling strength αs?

Here quantum TGD as a complex square root of thermodynamics vision helps.

1. Kähler action reduces for preferred extremals to Abelian Chern-Simons action localized at
the ends of space-time surfaces at boundaries of causal diamond (CD) and possibly contains
terms also at light-like orbits of partonic 2-surfaces. This corresponds to almost topological
QFT property of TGD.

2. Kähler action contains additional boundary terms which serve as analogs for Lagrangian
multipler terms fixing the numbers of various particles in thermodynamics. Now they fix the
values of isometry charges for instance, or force the symplectic charges for a sub-algebra to
vanish.

Lagrangian multiplies can be written in the form µi/T in ordinary thermodynamics: µi de-
notes the chemical potentials assignable to particle of type i. Number theoretical universality
strongly favors similar representation now. For instance, this would give

1

αem
=
µem

αK
, µem =

1

cos2(θW )
. (3.4)

In the same manner SU(2) coupling strength given by

1

αW
=
µW

αK
=
cot2(θW )

αK
(3.5)

would define cot2(θW ) as analog of chemical potential.

3. In the case of weak interactions Chern-Simons term for induced SU(2) gauge potentials as
a boundary term would be the analog of Kähler action having interpretation as Lagrangian
multiplier term. In color degrees of freedom also an analog of Chern-Simons term would
be in question and would be associated with the classical color gauge field defined by HAJ ,
where HA is Hamiltonian of color isometry in CP2 and J is induced Kähler form.

4. The conditions for number theoretical universality would become more complex as also RG
invariance interpreted in terms of number theoretical universality.

This picture assuming a linear relationship between generic coupling strength α and αK in
terms of chemical potential is not yet general enough.

3.2 Does ζF With GL(2, Q) Transformed Argument Dictate The Evolu-
tion Of Other Couplings?

It seems that one cannot avoid dynamics totally. The dynamics at (quantum) criticality is however
universal. This raises the hope that the evolution of coupling constant is universal and does not
depend on the details of the dynamics at all. This could also explain the marvellous successes of
QED and standard model

At criticality the dynamics reduces to conformal invariance by quantum criticality, and this
inspires the idea about the values of coupling constant strength as poles of a meromorphic function
obtained from ζF by a conformal transformation of the argument. After all, what one must
understand is the relationship between 1/αW and 1/αK , and the linear relationship between them
can be seen as a simplifying assumption and an approximation.

The values of generic coupling strength - call it just α (to be not confused with αem) without
specifying the interaction - would still correspond to poles of ζF (s) but with a transformed argument
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s. Conformal transformation would relate various coupling constant evolutions to each other and
allow to combine them together in a unique manner. Discreteness is of course absolutely essential.
The analysis of the situation leads to a surprisingly simple picture about the coupling constant
evolutions for weak and color coupling strengths.

1. By the symmetry of ζF under the reflection with respect to x-axis one can restrict the consid-
eration to globally defined conformal transformations of the upper half plane identifiable as
Möbius tranformations w = (as+ b)/(cs+d) with the real matrix coefficients (a, b, c, d). One
can express the transformation as a product of an overall scaling by factor k and GL(2, R)
transformation with ad − bc = 1. Number theoretical universality demands that k and the
coefficients a, b, c, d of GL(2, R) matrix are real rationals. Number theoretically GL(2, Q) is
attractive and one can consider also the possibility that the transformation matrix GL(2, Z)
matrix with a, b, c, d integers. SL(2, Z) is probably too restrictive option.

2. The Möbius transformation w = (as + b)/(cs + d) acts on zeros of ζ mapping the discrete
coupling constant evolution for 1/αK to that for 1/αW or 1/αs. The transformed coupling
constant depends logarithmically on p-adic length scale via 1/αK supporting the interpre-
tation in terms of RG flow induced by that for 1/αK - something very natural since Kähler
action is in special role in TGD framework since it determines the dynamics of preferred
extremals.

3. Asymptotically (long length scales) one has w → a/c for a 6= 0 so that both at critical line
and real axis one has accumulation of critical points to w = a/c! Thus for the option allowing
only very large value of coupling strength in IR one has

w = K × as+ b

cs+ d
, ad− bc = 1 (Option 1) . (3.6)

a/c = 0 (a = 0) corresponds to a diverging coupling strength (for color interactions and
for weak interactions for vanishing Weinberg angle) and corresponds to w = K × b/cs + d.
ad− bc = 1 gives b = −c = 1 and if one accepts the IR divergence of coupling constant, one
has

w =
K

−s+ d
(Option 2) . (3.7)

The only free parameters are the rational K > 0 and integer d. w has pole at s = d mapped
to 1 by ζF .

To gain physical insight consider the situation at real axes.

1. The real poles s = −n/k and s = 1/k are mapped to poles on real axes and the reflection
symmetry with respect to x-axis is respected. Negative poles would be thus mapped to
negative poles for d ∈ 0, 1 and k < 0. One could also require that the pole s = 1 is mapped
to positive pole. For option 2 it is mapped to w = +∞.

2. For option 1 this is true if one has cs + d < 0 and as + b > 0. The other manner to satisfy
the conditions is cs + d > 0 and as + b < 0 for s = −1,−2, .... By replacing the (a, b, c, d)
with (−a,−b,−c,−d) these conditions can be transformed to each other so that it is enough
to consider the first conditions. The first form of the condition requires c > 0 and a < 0.

The condition that s = 1/k goes to a positive pole gives c/k + d > 0 and a/k + b > 0.
Altogether this gives for the two Options the conditions

w = K × as+ b

cs+ d
< 0 ,

k > 0 , a < 0 , c > 0 ,
c

k
+ d > 0 ,

a

k
+ b > 0 . (Option 1) ,

(3.8)
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and

w =
K

−s+ 1
k

< 0 , k > 0 . (Option 2)

(3.9)

3. For option 2 s = 1/k phase is mapped to w = +∞. Coupling strength vanishes in this phase:
this brings in mind the asymptotic freedom for QCD realized at extreme UV? In long scales
α would behave like 1/αK and diverge suggesting that Option 2 provides at least an idealized
description of QCD. The scaling parameter K would remain the only free parameter.

For option 1 α can become arbitrary large in long scales but remains finite. The analog
of asymptotically free phase is replaced with that having non-vanishing inverse coupling
strength w = (a+ b)/(c+d). The interpretation could be in terms of weak coupling constant
evolution. The non-vanishing of the parameter a would distinguish between weak and strong
coupling constant evolution.

By feeding in information about the evolution of weak and color coupling strengths, one can
deduce information about the values of K and a.

Whether the analogs of weak and Chern-Simons actions can satisfy the number theoretical
universality, when the transformation is non-linear is far from obvious since the induced gauge
fields are not independent.

3.3 Questions About Coupling Constant Evolution

The simplest hypothesis conforming with the general form of Yang-Mills action is 1/αK = s,
where s is zero of zeta. With the identification 1/αK = 1/αU(1) this predicts the evolution of
U(1) coupling and one obtains excellent prediction in p-adic length scale k = 131 (L(131 ' 10−11

meters).

3.3.1 How general is the formula for 1/αK?

Is the simplest linear form for 1/αK general enough? Consider first the most general form of 2π/αK

taking as input the fact that its imaginary is equal to 1/αU(1) and corresponds to imaginary part
y of zero of zeta at critical line.

Linear Möbius transformations w = (as + b)/d with real coefficients do not affect Im[s] and
therfore the inverse of the imaginary part of the Kähler coupling strength which corresponds to th
inverse of the measured U(1) coupling strength. The general formula for complex Kähler coupling
strength would be

w = s+
b

d
(3.10)

in the case of SL(2, Q) giving Re[1/αK ] = 1/2 + b/d. This would correspond to the analog of the
inverse temperature appearing in the real exponent of Kähler function. For SL(2, Z) on obtains

w = s+ b , b ∈ Z . (3.11)

This gives Re[1/αK ] = 1/2 + b.

3.3.2 Does the reduction to Chern-Simons term give constraints

The coefficient of non-Abelian Chern-Simons action is quantized to integer and one can wonder
whether this has any implications in TGD framework.
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1. The Minkowskian term in Kähler action reduces to Abelian Chern-Simons term for Kähler
action. In non-Abelian case the coefficient of Chern-Simons action (see http://tinyurl.

com/y7nfaj67) is k1/4π, where k1 is integer.

In Abelian case the triviality of gauge transformations does not give any condition on the
phase factor so that in principle no conditions are obtained. One can however look what
this condition gives. The coefficient of Chern-Simons term coming from in Kähler action
is 1/(8παK). For non-Abelian Chern-Simons theory with n fermions one obtains action
k → k − n/2. Depending on gauge group k1 can vanish modulo 2 or 4. For the zeros at the
real axes this would give the condition

s

2
= s+

b

d
= Re[

1

αK
] = 2k1 , s = −2n < 0 or s = 2 , (3.12)

which is identically satisfied for integer valued b/d. Thus it seems that SL(2, Z) is forced by
the Chern-Simons argument in the case of Kähler action, which is however not too convincing
for U(1).

For non-trivial zeros it is not at all clear whether one certainly cannot apply the condition
since there is also a contribution ySE to the imaginary part. In any case, the condition would
be

Re[s]

2
= 1/2 +

b

d
= Re[

1

αK
] = 2k1 . (3.13)

b/d must be half odd integer to satisfy the condition so that one would have SL(2, Z) instead
of SL(2, Q). This is however in conflict with the Chern-Simons condition at real axis.

2. w = s + b/d implies that the trivial poles s = −2n, n > 0, at the real axes are shifted to
s = −2n+ b/d and become fractional. The poles at s = 2 is shifted to 2 + b/d.

In the non-Abelian case one expects also Chern-Simons term but now emerging as an analog
of Lagrange multiplier term rather than fundamental action reducing to Chern-Simons term. For
w = (as+ b)(cs+d) the poles at real axis are mapped to rational numbers w = (am+ b)/(cm+d),
m = −2n or m = 2. Chern-Simons action would suggest integers. Gauge transformations would
transform the action by a phase which is a root of unity. Vacuum functional is ZEO an analog
of wave function as a square root of action exponential. Can one allow the wave function to be a
finitely-many valued section in bundle?

3.3.3 Does the evolution along real axis corresponds to a confining or topological
phase?

At real axis the imaginary part of s vanishes. Since it corresponds to the inverse of the gauge
coupling strength, one can ask whether the proper interpretation is in terms of confining phase
in which gauge coupling is literally infinite and it does not make sense to speak of perturbation
theory. Instead one would have a phase in which Minkowski part of the Kähler action contributes
only to the imaginary Chern-Simons term but not to the real part of the action. Topological QFT
also based on Chern-Simons action also suggests itself.

The vanishing of gauge coupling strength is not a catastrophe now since the real part is non-
vanishing. What looks strange that this phase is obtained also for Kähler coupling strength. Could
this interpreted in terms of the fact that induced gauge potentials are not independent dynamical
degrees of freedom but expressible in terms of CP2 coordinates.

The spectrum of 1/αK at real axis has the −2n+ b
d and 2 + b

d and is integer or half-odd integer
valued by the conditions on Chern-Simons action. One could make the entire spectrum integer
value by a proper choice of b/d.

Integer valuedness forced by Chern-Simons condition leads to ask whether the situation could
relate to hierarchy of Planck constants. This cannot be the case. One can assign to each value of y

http://tinyurl.com/y7nfaj67
http://tinyurl.com/y7nfaj67
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p-adic coupling constant labelled by prime k (p ' 2k) a hierarchy of Planck constants heff = n×h.
If number theoretical universality is realized for n = 1, it is realized for all values of n and one can
say that one has 1/α = n/α fora generic coupling strength α.

p-Adic temperature T = 1/n using log(p) as a unit correspond to the temperature parameter
defined by αK : the values of both are inverse integers. p-Adic thermodynamics might therefore
provide a proper description for the confining phase as also the success of p-adic mass calculations
encourages to think.

The sign of 1/αK is not fixed for the simplest option. The shift by b
d could fix the sign to be

negative. There is however no absolute need for a fixed sign since in Minkowskian regions the sign of
Kähler action density depends on whether magnetic or electric fields dominate. In Euclidian regions
the sign is always positive. Since the real part of Kähler action receives contributions from both
Euclidian and Minkowskian regions it can can well have both signs so that for preferred extremals
the signs of the real part of Kähler coupling strength and proper Kähler action compensate each
other.

4 A Model For Electroweak Coupling Constant Evolution

In the following a model for electroweak coupling constant evolution using as inputs Weinberg
angle at p-adic length scale k = 127 of electron or at four times longer scale k = 131 and in weak
length scale k = 89 is developed.

4.1 Evolution Of Weinberg Angle

Concerning the electroweak theory, a key question is whether the notion of Weinberg angle still
makes sense or whether one must somehow generalize the notion. Experimental data plus the
prediction for 1/αU(1) as zero of zeta suggest that Weinberg angle varies. For instance, the value
of1/αU(1) for k = 89 corresponds to weak length scale and is 87.4 whereas fine structure constant
is around 127. This gives sin2(θW ) ∼ .312, which is larger than standard model value.

1. Assume that the coupling constant evolutions for 1/αem and 1/αW correspond to different
Möbius transformations acting in a nonlinear manner to s. Tangent of Weinberg angle is
defined as the ratio of weak and U(1) coupling constants: tan(θW ) = gW /gU(1) and it
expresses the vectorial character of electromagnetic coupling. One can write

sin2(θW ) =
1

1 +X
, X =

αU(1)

αW
. (4.1)

One can write the ansätze for for the coupling strengths as imaginary parts of complexified
ones:

1

αU(1)
= Im[s+ b] = y , s =

1

2
+ iy

1

αW
= Im[

aW s+ bW
cW s+ dW

] =
Dy

c2( 1
4 + y2) + cd+ d2)

,

D = ad− bc .

(4.2)

Here GL(2, Q) matrices are assumed and determinant D = ad− bc is allowed to differ from
unity. From this one obtains for the Weinberg angle the expression

sin2(θW (y)) = =
1

1 + [ c
2

D (y2 + 1
4 ) + d

c + (d
c )2]

, D = ad− bc .
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As the physical intuition suggests, Weinberg angle approaches zero at long length scales
(y → ∞). The value at short distance limit (the lowest zero y0 = 14.13 at critical line)
assignable to p = 2 is given by

sin2(θW (y1)) =
1

1 + c2

D [(y21 + 1
4 + d

c + d
c )2]

.

Note that Weinberg angle decreases monotonically with y. The choices for which c2/D are
equivalent but the parameters (a, b, c, d) can be chosen nearer to integers for large enough D.

2. How to fix the parameters D, c, d?

(a) The first guess D = ad − bc = 1 would reduces the unknown parameters to c, d. This
does not however allow even approximately integer valued parameters a, b, cd.

(b) The GUT value of Weinberg angle at this limit is sin2(θW ) = 3/8. TGD suggests that
the values of Weinberg angle correspond to Pythagorean triangles (see http://tinyurl.
com/o7c4pkt). The lowest primitive Pythagorean triangle (side lengths are coprimes,
(see http://tinyurl.com/j6ojlko) corresponds to the triplet (3,4,9) forming the trunk
of the 3-tree formed by the primitive Pythagorean triangles with 3 triangles emanating
at each node) and to sin2(θW ) = 9/25 slightly smaller than the GUT value. The
problem is that y0 is not a rational number and for rational values of c, d the equation
for Weinberg angule cannot be satisfied.

(c) An alternative more reliable option is to use as input Weinberg angle at intermediate
boson length scale k = 89 which corresponds to y(24) = 87.4252746. The value of fine
structure constant at Z0 boson length scale is about 1/αem(89) ' 127. From this one
would obtain

sin2(θW (k = 89)) = 1− y24
αem(89)

= 1−
αU(1)(24)

αem(89)
' 0.3116, . (4.3)

One can obviously criticize the rather large value of the Weinberg angle forced by the
value of y(24) as being smaller than the experimental value. Experiments however
suggests that Weinberg angle starts to increase after Z0 pole. Gauge theory limit
corresponds to a limit at which the sheets of many-sheeted are lumped together and
one obtains a statistical average and the contributions of longer scale might increase the
value of 1/αU(1)(24) and therefore reduce the value of the effective Weinberg angle.

(d) Another input is the value of fine structure constant either at k = 127 corresponding to
electron’s p-adic length scale or at k = 131 (L(131) = 10−11 meters and four times the
p-adic length scale of electron) fixed by the condition that fine structure constant αem =
α(U(1)cos

2(θW ) corresponds its low energy value 1/αem = 137.035999139 assigned often
to electron length scale. From y(32(= 1/αU(1) = 105.446623 or y(31) = 103.725538 and
1/αem(131) = 137.035999139 one can estimate the value of Weinberg angle as

sin2(θW (k = 131)) = 1− y32
αem(131)

' 0.23052 or

sin2(θW (k = 130)) = 1− y32
αem(127)

.

(4.4)

It turns out that the first option does not work unless one assumes 1/alphaem(k = 89) ≤
125.5263 rather than 1/alphaem(k = 89) ' 127. The deviation is about 1-2 per cent.
Second option works with a minimal modification for 1/alphaem(k = 89) ' 127.

http://tinyurl.com/o7c4pkt
http://tinyurl.com/o7c4pkt
http://tinyurl.com/j6ojlko
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(e) The value of y(1) is y1 = 14.13472. The two latter conditions give rise to the following
series of equations

X(k) = cot2(θW )(k) =
c2

D
(y2(k) +A) , A =

1

4
+
d

c
+ (

d

c
)2 ,

X(24)

X(K)
≡ Y =

cot2(θW )(24)

cot2(θW )(K)
=
y2(24) +A

y2(K) +A
,

A =
Y (y2(K)− y2(24))

1− Y
.

(4.5)

Here K is either K = 31 or K = 32 corresponding to the p-adic length scale k = 127 or
131. It turns out that only K = 31 works fo 1/αem(89) = 127.

Also following parameters can be expressed in terms of the data.

c2

D
=

cot2(θW )(K)

y2(K) +A
,

d

c
=

1

2

(
−1 +

√
A
)

,

sin2(θW )(1) =
1

1 +X(1)
, X(1) =

c2

D

(
y2(1) +A

)
.

(4.6)

If the parameters a, b, c, d are integers, the equations cannot be satisfied exactly. For
K = 32 it turns out that parameter A is negative for 1/alphaem(k = 89) ≤ 125.5263 .
For K = 31 still negative and small so that A = 0 is the natural choice breaking slightly
the conditions. Table 1 represent both options.

(f) For D = 1 one has c2 ' 0.0002894, which is very near to zero and not an integer. c
must be non-vanishing to obtain a running Weinberg angle. For the general value of D
the role c is taken by c2D as an invariant fixed by the input data. c → c = 2 requires
D = 1 → int(4/c2) = 138. D = 139 almost equally good. One has d/c = −0.5 for
A = 0 so that one would have d = −1, c = 2 for mimimum option. The condition
ad− bc = −a− 2b = D allows to estimate the values of the integer valued parameters a
and b and get additional constraint on integer D. The values are not completely unique
without additional conditions, say b = 1. This would give a = −D + 2 = −137 for
D = 139 (one cannot avoid association with the famous “137”!).

3. Consider now the physical predictions. The evolution of Weinberg angle is depicted in the
tables 1 and 2 for k = 127 model whereas tables 3 and 4 give the predictions of k = 131 model.
The value of Weinberg angle at electron scale k = 127 is predicted to be sin2(θw) ' 0.2430
deviating from its measured value by 5 per cent. For k = 131 the Weinberg angle deviates
.7 per cent from the measured value but the value of 1/αem(k = 89) is about 1 per cent too
small.

The expression for the predicted value of Weinberg angle at p-adic length scale p = 2 is
sin2(θW )p=2 ' 0.9453368487, which is near to its maximal value and much larger than the
sin2(θW )p=2 ' 0.375 of GUTs. This prediction was a total surprise but could be consistent
with the new physics predicted by TGD predicting several scaled up copies of hadron physics
above weak scale.

A related surprise at the high energy end was that 1/αem begins to increase again at k = 13
and is near to fine structure constant at k = 11! As if asymptotic freedom would apply to
all couplings except U(1) coupling. This behavior is due to the approach of cos2(θW ) to
zero. One can of course ask whether sin2(θW ) = 1 could be obtained for a suitable choice
of the parameters. This can be achieved only for y(1) = 0 which is not possible since A the
parameter A cannot be negative.
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To sum up, experimental input allows to fix electroweak coupling constant evolution completely.
The problematic feature of k = 127 model is the possibly too large value of Weinberg theta at
low energies. The predicted scaled up copies of hadron physics could explain why Weinberg angle
must increase at high energies. At electron length scale the 5 per cent too high value is somewhat
disturbing. The many-sheeted space-time requiring lumping together of sheets to get space-time
of General Relativity might help to understand why measured Weinberg angle is smaller than
predicted. Average over sheets of different sizes could be in question.

4.2 Test For The Model Of Electroweak Coupling Constant Evolution

One can check whether the values of 100 lowest non-trivial zeros are consistent with their assign-
ment with primes k in p ' 2k and whether the model is consistent with the value of fine structure
constant 1/αem = 137.035999139 and experimental value P = .2312 of Weinberg angle assigned
either with electron’s p-adic length scale k = 127 or k = 131 (0.1 Angstroms).

The tables below summarize the values of 1/αK identified as imaginary part of Riemann zero
and αem = αK(1 − P ) for the model already discussed. P is .7 per cent smaller than the experi-
mental value P = .2312 for k = 131. This agreement is excellent but it turns out that the model
works only if fine structure constant corresponds to αem(k) in electron length scale k = 127.

For k = 127 one obtains fine structure constant correctly for P = 0.243078179077 about 10
per cent larger than the experimental value. The predicted value of αK at scale k = 127 changes
from αK = αem to α(U(1)) due the presence of cos2(θW ) = .77. One can wonder whether this
is consistent with the p-adic mass calculations and the condition on CP2 coming from the string
tension of cosmic strings.

The predicted value of αK changes at electron length scale by the introduction of cos(θW )
factor. The formula for the p-adic mass squared involves second order contribution which cannot
be predicted with certainty. This contribution is 20 per cent at maximum so that the change of
αK by 10 per cent can be tolerated.

Galactic rotation velocity spectrum gives also constraint on the string tension of cosmic strings
and in this manner also to the value of the inverse 1/R of CP2 radius to which p-adic mass scales
are proportional. The size scale or large voids corresponds roughly to k = 293. From Table 2
one has 1/αK = 167.2. If the condition αK ' αem holds true in long length scales, the scaling of
1/αK = 1/αem used earlier would be given by r ' 167/137 and would increase the string tension of
cosmic strings by factor 1.2. This could be compensated by scaling R2

CP2
by the same factor. CP2

mass scale would be scaled by factor 1/
√

1.2 ' .9. Also this can be tolerated. Note that maximal
value cosmic string tension is assumed making sense only for the ideal cosmic strings with 2-D M4

projection. Thickening of cosmic strings reduces their tension since magnetic energy per length is
reduced.
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n y k sin2(θW ) 1/αem

hline 1 14.1347251 2 0.945336 258.5784
2 21.0220396 3 0.886600 185.3802
3 25.0108575 5 0.846706 163.1566
4 30.4248761 7 0.788698 143.9880
5 32.9350615 11 0.761068 137.8428
6 37.5861781 13 0.709786 129.5121
7 40.9187190 17 0.673584 125.3579
8 43.3270732 19 0.647955 123.0727
9 48.0051508 23 0.599889 119.9796
10 49.7738324 29 0.582401 119.1907
11 52.9703214 31 0.551851 118.1982
12 56.4462476 37 0.520249 117.6574
13 59.3470440 41 0.495203 117.5663
14 60.8317785 43 0.482855 117.6301
15 65.1125440 47 0.449024 118.1767
16 67.0798105 53 0.434344 118.5877
17 69.5464017 59 0.416691 119.2275
18 72.0671576 61 0.399493 120.0105
19 75.7046906 67 0.376117 121.3444
20 77.1448400 71 0.367315 121.9326
21 79.3373750 73 0.354389 122.8874
22 82.9103808 79 0.334500 124.5836
23 84.7354929 83 0.324876 125.5111
24 87.4252746 89 0.311321 126.9464
25 88.8091112 97 0.304627 127.7144
26 92.4918992 101 0.287691 129.8480
27 94.6513440 103 0.278326 131.1552
28 95.8706342 107 0.273213 131.9102
29 98.8311942 109 0.261303 133.7912
30 101.317851 113 0.251824 135.4198
31 103.725538 127 0.243078 137.0359
32 105.446623 131 0.237073 138.2133
33 107.168611 137 0.231264 139.4088
34 111.029535 139 0.218919 142.1486
35 111.874659 149 0.216337 142.7587

Table 1: Table represents the first 35 zeros of zeta identified as values of αK = α(U(1)), the
corresponding primes k (p ' 2k), the predicted values of both Weinberg angle and of αem =
α(U(1))cos2(θW ) assuming the proposed model for sin2(θW ).
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n y k sin2(θW ) 1/αem

hline 36 114.320220 151 0.209095 144.5436
37 116.226680 157 0.203677 145.9543
38 118.790782 163 0.196690 147.8767
39 121.370125 167 0.189990 149.8379
40 122.946829 173 0.186049 151.0495
41 124.256818 179 0.182861 152.0633
42 127.516683 181 0.175248 154.6123
43 129.578704 191 0.170659 156.2431
44 131.087688 193 0.167407 157.4452
45 133.497737 197 0.162390 159.3794
46 134.756509 199 0.159853 160.3964
47 138.116042 211 0.153349 163.1322
48 139.736208 223 0.150345 164.4624
49 141.123707 227 0.147838 165.6068
50 143.111845 229 0.144348 167.2548
51 146.000982 233 0.139481 169.6662
52 147.422765 239 0.137170 170.8597
53 150.053520 241 0.133037 173.0796
54 150.925257 251 0.131706 173.8183
55 153.024693 257 0.128579 175.6036
56 156.112909 263 0.124167 178.2452
57 157.597591 269 0.122123 179.5214
58 158.849988 271 0.120436 180.6009
59 161.188964 277 0.117374 182.6243
60 163.030709 281 0.115040 184.2239
61 165.537069 283 0.111970 186.4094
62 167.184439 293 0.110016 187.8511
63 169.094515 307 0.107811 189.5277
64 169.911976 311 0.106886 190.2468
65 173.411536 313 0.103056 193.3360
66 174.754191 317 0.101639 194.5256
67 176.441434 331 0.099898 196.0238
68 178.377407 337 0.097952 197.7472
69 179.916484 347 0.096444 199.1206
70 182.207078 349 0.094262 201.1698

Table 2: Table represents the zeros yn of zeta in the range n ∈ [35, 70] identified as values of
αK = α(U(1)), the corresponding primes k (p ' 2k), the predicted values of both Weinberg angle
and of αem = α(U(1))cos2(θW ) assuming the proposed model for sin2(θW ).
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n y k sin2(θW ) 1/αem

hline 1 14.1347251 2 0.943414 249.7949
2 21.0220396 3 0.882868 179.4744
3 25.0108575 5 0.841896 158.1927
4 30.4248761 7 0.782535 139.9074
5 32.9350615 11 0.754350 134.0732
6 37.5861781 13 0.702190 126.2089
7 40.9187190 17 0.665488 122.3238
8 43.3270732 19 0.639563 120.2072
9 48.0051508 23 0.591074 117.3933
10 49.7738324 29 0.573475 116.6964
11 52.9703214 31 0.542785 115.8544
12 56.4462476 37 0.511110 115.4580
13 59.3470440 41 0.486058 115.4744
14 60.8317785 43 0.473724 115.5892
15 65.1125440 47 0.439988 116.2700
16 67.0798105 53 0.425376 116.7369
17 69.5464017 59 0.407825 117.4423
18 72.0671576 61 0.390747 118.2878
19 75.7046906 67 0.367570 119.7045
20 77.1448400 71 0.358853 120.3232
21 79.3373750 73 0.346062 121.3225
22 82.9103808 79 0.326403 123.0862
23 84.7354929 83 0.316902 124.0459
24 87.4252746 89 0.303530 125.5263
25 88.8091112 97 0.296931 126.3164
26 92.4918992 101 0.280251 128.5057
27 94.6513440 103 0.271035 129.8435
28 95.8706342 107 0.266007 130.6152
29 98.8311942 109 0.254301 132.5350
30 101.317851 113 0.244992 134.1945
31 103.725538 127 0.236408 135.8390
32 105.446623 131 0.230518 137.0359
33 107.168611 137 0.224822 138.2504
34 111.029535 139 0.212726 141.0304
35 111.874659 149 0.210197 141.6489

Table 3: Table represents the first 35 zeros of zeta identified as values of αK = α(U(1)), the
corresponding primes k (p ' 2k), the predicted values of both Weinberg angle and of αem =
α(U(1))cos2(θW ) assuming the k = 131 model for sin2(θW ).
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n y k sin2(θW ) 1/αem

hline 36 114.320220 151 0.203108 143.4576
37 116.226680 157 0.197806 144.8861
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61 165.537069 283 0.108383 185.6594
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64 169.911976 311 0.103443 189.5162
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66 174.754191 317 0.098346 193.8152
67 176.441434 331 0.096655 195.3201
68 178.377407 337 0.094766 197.0512
69 179.916484 347 0.093302 198.4305
70 182.207078 349 0.091184 200.4884

Table 4: Table represents the zeros yn of zeta in the range n ∈ [35, 70] identified as values of
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and of αem = α(U(1))cos2(θW ) assuming the k = 131 model for sin2(θW ).
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