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Abstract

Shnoll and collaborators have discovered strange repeating patterns of random fluctuations
of physical observables such as the number n of nuclear decays in a given time interval. Peri-
odically occurring peaks for the distribution of the number N(n) of measurements producing
n events in a series of measurements as a function of n is observed instead of a single peak.
The positions of the peaks are not random and the patterns depend on position and time vary-
ing periodically in time scales possibly assignable to Earth-Sun and Earth-Moon gravitational
interaction.

These observations suggest a modification of the expected probability distributions but it is
very difficult to imagine any physical mechanism in the standard physics framework. Rather,
a universal deformation of predicted probability distributions could be in question requiring
something analogous to the transition from classical physics to quantum physics.

TGD gives hints about the nature of the modification.

1. TGD inspired quantum measurement theory proposes a description of the notion of finite
measurement resolution in terms of inclusions of so called hyper-finite factors of type
II1 (HFFs) and closely related quantum groups parameterized by quantum phase qm =
exp(iπ/m). Canonical identification mapping p-adic integers to to their real counterparts
is central element of TGD. For m = p one can consider also the quantum variant of p-adic
integer n mapped to nR by canonical identification. There are 2 candidates for quantum-
p-adics depending on whether the pinary digits are interpreted as quantum integers as
such or mapped to a product of quantum counterparts of their prime factors.

2. Adelic physics provides a possible unification of real number based physics as physics
of sensory experience and various p-adics physics as physics of cognition and predicts
a hierarchy of Planck constants heff = nh0 and suggests the identification of preferred
p-adic prime p as a ramified prime of extension of rationals associated with the adele.

p-Adicization or perhaps even quantum-padicization could explain the findings of Shnoll.

1. The universality of the modified distribution P (n) would reduce to the interpretation of
the integer n in the distribution P (n|λ) of counts as a p-adic integer or its counterpart
mapped by canonical identification to a real number nR appearing as argument of P (n|λ).
Same can be applied to n!. The fractality implied by the quantum criticality of TGD
Universe suggests that P (n) should be approximately scaling invariant under n→ pkn .

2. TGD can be regarded formally as complex square root of thermodynamics, which suggest
the representation P (n) = |Ψ(n)|2, where Ψ(n) would be wave function in the space of
counts expressible as product of classical part and “quantum factor”. One could have
wave functions in the space of counts n expressible as superpositions of “plane waves”
qknm , with k playing the role of momentum.

A more concrete model relies on wave function proportional to (kn)qp ∝ qknm + q−kn
m

- analog to a superposition of plane waves with momenta k propagating to opposite
directions in the space of counts reduced effectively to a box 0 ≤ n < p = m representing
modulo p counter. One would have effectively wave functions in finite field Gp. The
symmetries of quantum factor would correspond to a multiplication or shift of k by
element r of Fp.

Various additional rational-valued parameters characterizing the probability distribution
can be mapped to (possibly quantum-) p-adics mapped to reals by canonical identifica-
tion. The parameters taking care of the converge such as the parameter λ in Poisson
distribution must be mapped to a power of p in p-adic context.

The model can be applied to explain the findings of Shnoll.

1. The model makes rather detailed predictions about the periodically occurring positions
of the peaks of P (n) as function of p based on number theoretical considerations and
in principle allows to determine these parameters for given distribution. There is p-
periodicity due to the fact that the lowest pinary digit of nR gives first approximation
to nR.

2. The slow variation of the p-adic prime p and integer m = p characterizing quantum
integers could explain the slow variation of the distributions with position and time. The
periodic variations occurring with both solar and sidereal periods could be understood
in two manners.

The value of p could be characterized by the sum anet of gravitational accelerations
assignable to Earth-Sun and Earth-Moon systems and could vary. If the value of p is
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outcome of state function process, it is not determined by deterministic dynamics but
should have a distribution. If this distribution is peaked around one particular value,
one can understand the findings of Shnoll.

3. An alternative explanation would be based on slow dependence of quantum factor of
Ψ(n) on gravitational parameters and on time. For instance, the momentum k defining
the standing wave in the space of counts modulo p could change so that the peaks of the
diffraction pattern would be permuted.

1 Introduction

As I wrote the first version of this chapter about Shnoll effect for about decade ago [L12], I did
not yet have the recent vision about adelic physics [L14, L15] as a unification of real physics and
various p-adics and real number based physics to describe the correlates of both sensory experience
and cognition.

The recent view is that the hierarchy of extensions of rational numbers induces a hierarchy
of extensions of p-adic number fields in turn defining adele. This hierarchy gives rise to dark
matter hierarchy labelled by a hierarchy of Planck constants and also evolutionary hierarchy. The
hierarchy of Planck constants heff = n× h0 is and essential element of quantum TGD and adelic
physics suggests the identification of n as the dimension of extension of rationals. n could be seen
as a kind of IQ for the system.

What is also new is the proposal that preferred p-adic primes labelling physical systems could
correspond to so called ramified primes, call them p, of extension of rationals for which the ex-
pression of the rational p-adic prime as product of primes of extension contains less factors than
that the dimension n of extension so that some primes of extension appear as higher powers. This
is analog for criticality as the appearance of multiple roots of a polynomial so that the derivative
vanishes at the root besides the polynomial itself.

Before continuing it is good to make some confessions. Already in the earlier approach [L12]
I considered two options for explaining the Shnoll effect: either in terms of p-adic fractality or in
terms of quantum phase q of both. I however too hastily concluded that the p-adic option fails
and choose the quantum phase option.

In the following both options are seen as parts of the story relying on a principle: the approxi-
mate scaling invariance of probability distribution P (n) for fluctuations under scalings by powers
of p-adic prime p implying that P (n) is approximately identical for the divisions for which the
interval ∆ defining division differs by a power of p.

Second new idea is the lift of P (n) to wave function Ψ(n) in the space of counts. For quantum
phase qm, m = p, Ψm would have quantum factor proportional to a wave function in finite field
Fp, and the notion of counting modulo p suggests that the wave function corresponds to particle
in box - standing wave - giving rise to P (n) representing diffraction pattern.

1.1 Basic facts about Shnoll effect

Usually one is not interested in detailed patterns of the fluctuations of physical variables, and
assumes that possible deviations from the predicted spectrum are due to the random character of
the phenomena studied. Shnoll and his collaborators have however studied during last four decades
the patterns associated with random fluctuations and have discovered a strange effect described in
detail in [E1] , [E1, E4, E5, E2, E6, E3]. The examples of [E1]. [E1] give the reader a clear picture
about what is involved.

1. Some examples studied by Shnoll and collaborators are fluctuations of chemical and nuclear
decay rates, of particle velocity in external electric field, of discharge time delay in a neon
lamp RC oscillator, of relaxation time of water protons using the spin echo technique, of
amplitude of concentration fluctuations in the Belousov-Zhabotinsky reaction. Shnoll effect
appears also in financial time series [E7] which gives additional support for its universality.
Often the measurement reduces to a measurement of a number of events in a given time
interval τ . More generally, it is plausible that in all measurement situations one divides the
value range of the studied observable to intervals of fixed length and counts the number of
events in each interval to get a histogram representing the distribution N(n), where n is the
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number of events in a given interval and N(n) is the number of intervals with n events. These
histograms allow to estimate the probability distribution P (n), which can be compared with
theoretical predictions for the spectrum of fluctuations of n. Typical theoretical expectations
for the fluctuation spectrum are characterized by Gaussian and Poisson distributions.

2. Contrary to the expectations, the histograms describing the distribution of N(n) has a dis-
tribution having several maxima and minima (see the figures in the article of Shnoll and
collaborators (see http://tinyurl.com/6kehe9b). Typically -say for Poisson distribution -
one expects single peak. As the duration of the measurement period increases, this structure
becomes gets more pronounced: standard intuition would suggest just the opposite to take
place. The peaks also tend to be located periodically. According to [E1] [E1] the smoothed
out distribution is consistent with the expected distribution in the case that it can be pre-
dicted reliably.

3. There are also other strange features involved with the effect. The anomalous distribution
for the number n of events per fixed time interval (or more general value interval of measured
observable) seems to be universal as the experiments carried out with biological, chemical, and
nuclear physics systems demonstrate. The distribution seems also to be same at laboratories
located far away from each other. The comparison of consecutive histograms shows that
the histogram shape is likely to be similar to the shape of its nearest temporal neighbors.
The shapes of histograms tend to recur with periods of 24 hours, 27 days, or 365 days. The
regular time variation of consecutive histograms, the similarity of histograms for simultaneous
independent processes of different nature and occurring in different geographical positions,
and the above mentioned periods, suggest a common reason for the phenomenon possibility
related to gravitational interactions in Sun-Earth and Earth-Moon system.

In the case that the observable is number n of events per given time interval, theoretical
considerations predict a distribution characterized by some parameters. For instance, for Poisson
distribution the probabilities P (n) are given by the expression

P (n|λ) = exp(−λ)
λn

n!
. (1.1)

The mean value of n is λ > 0 and also variance equals to λ. The replacement of distribution with
a many-peaked one means that the probabilities P (n|λ) are modified so that several maxima and
minima result. This can occur of course by the randomness of the events but for large enough
samples the effect should disappear.

The universality and position independence of the patterns suggest that the modification
changes slowly as a function of geographic position and time. The interpretation of the periodicities
as periods assignable to gravitational interactions in Sun-Earth system is highly suggestive. It is
however very difficult to imagine any concrete physical models for the effect since distributions look
the same even for processes of different nature. It would seem that the very notion of probability
somehow differs from the ordinary probability based on real numbers and that this deformation of
the notion of probability concept somehow relates to gravitation.

1.2 Quantum group inspired model for Shnoll effect

Usually quantum groups are assigned with exotic phenomena in Planck length scale. In TGD
they are assignable to a finite measurement resolution [K6]. TGD inspired quantum measurement
theory describes finite measurement resolution in terms of inclusions of hyper-finite factors of type
II1 (HFFs) and quantum groups related closely to the inclusions and appear also in the models of
topological quantum computation [B1] based on topological quantum field theories [A4].

Consider first the original version of the proposed model. If I would rewrite it now correcting
also the small errors, the summary would be as follows. This slightly revised model can be included
as such to the new model.

1. The possibility that direct p-adic variants of real distribution functions such as Poisson dis-
tribution might allow to understand the findings was discussed also in the original version.

http://tinyurl.com/6kehe9b
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The erratic conclusion was that this cannot the case. In fact, for λ = 1/pk the sum of prob-
abilities P (n) without normalization factor is finite, and the appriximate scaling symmetry
P (n) ' P (prn) emerges for k = 1. p-Adicity predicts approximate p-periodicity correspond-
ing to the periodic variation of nR with the lowest pinary digit of n.

2. It was argued that one should replace the integer n! in P (n) with quantum integer [A3] (n!)qm ,
q = exp(iπ/m), identified as the product of quantum integers rqm = (qr − q−r)/(q − q−1),
r < n.

This however leads to problems since rqm can be negative. The problem can be circumvented
by interpreting n! as p-adic number and expanding it in powers of p with pinary digits xk < p.
For m = p the replacement of xk with quantum integer yields positive pinary digits.

The resulting quantum variant of p-adic integer can be mapped to its real counterpart by a
generalization of canonical identification x =

∑
xnp

n →
∑
xnp

−n. Whatever the detailed
definition, quantum integers are non-zero and positive. The quantum replacement r → rqm
of the integers appearing in rational parameters in P (n|λi) might therefore make sense. It
however does not make sense in the exponents like λn and λ = pk, k > 1, 2, .., is forced by
convergence condition.

3. I proposed also another modification of quantum integers xqm , x < p = m − 1 appearing
in as pinary digits by decomposing x into a product of primes s < p and replacing s with
quantum primes sqp so that also the notion of quantum prime would make sense: one might
talk about quantum arithmetics [K4, K3]. This is possible but is not necessary.

1.3 Adelic model for Shnoll effect

At the first re-reading the original model looked rather tricky, and this led to a revised model feeding
in the adelic wisdom [L14, L15]. One implication hierarchy of Planck constants heff/h0 = n with
n identified as the dimension of Galois extension.

One also ends up to the proposal that preferred p-adic primes p correspond to so called ramified
primes of the extension of rationals inducing the extensions of p-adic number fields defining the
adele. This kind of prime would naturally define a small-p p-adicity associated with Shnoll effect,
which would thus serve as a direct signature of adelic physics.

1. The first observation in conflict with the original belief is that one can actually define purely
p-adic variant of the Poisson distribution P (n|λ) by replacing 1/n! with its image (n!)R
under canonical identification. For instance, for Poisson distribution one must have λ = p−k,
k = 1, 2, .. for both real and p-adic distributions to nake sense. The sum of the probabilities
P (n) is finite. Poisson distribution with trivial quantum part is determined uniquely.

2. One can also consider quantization P (n) = |Ψ(n)|2, suggested by the vision about quantum
TGD as complex square root of thermodynamics and hierarchy of Planck constants making
possible macroscopic quantum coherence in arbitrarily long scales. The complexity of Ψ(n)
could genuine quantum interpretation. Quantum factor of Ψ(n) allows interpretation as a
wave function in finite field Fp representing the space of counts modulo p. The existence
of quantum p-adics requires m = p. Scaling by p is not a symmetry but multiplication by
0 < k < p and shift by 0 ≤ k < p act as symmetries analogous to rotations and translations
acting on waves functions in Euclidian 3-space.

3. The objections against Shnoll effect lead to an additional condition - or should one say
principle - stating that the P (n) is approximately invariant under scalings n → pkn. This
could be seen as a manifestation of p-adic fractality in turn reflecting quantum criticality of
TGD Universe.

4. Taking n as the observable simplifies p-adicization crucially since the highly non-unique p-
adicization of classical observables is avoided. One could speak of quantum measurement in
the space of counts n defining universal observables. In quantum measurements the results
are typically expressed as numbers of counts in given bin so that this kind of p-adicization
is physically natural. The division of measurement interval would define an ensemble and
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n would be measured in each interval. State function reduction would localize Ψ(n) to n in
each interval.

This picture leads to an alternative and simpler view about Shnoll effect. The scaling invariance
is an essential additional condition now.

1. The factorials n! appearing in P (n) = (dnf/dxn)/n! identified as coefficients of Taylor series
of its generating function developed in pinary expansion for p = m. In this expansion one
must invert powers of p in (n!)R and could also replace the coefficients of powers of p with
quantum integers or replace even primes in their prime composition with quantum primes.
For given norm (n!)R has period p approximately.

2. The n:th derivative X(n) = dnf/dxn appearing as coefficient of 1/n! is replaced with
X(n)R/X(n)p giving approximate periodicity and scaling invariance n→ pn.

3. Quantum phase is associated with the ansatz stating P (n) = |Ψ(n)|2. In the “diffractive”
situation quantum counterpart corresponds to |(kn)qm |2, 0 < k < p − 1. This gives rise to
periodicity with period m = p.

The universal modifications of the probability distributions P (n|λi) considered predict patterns
analogous to the ones observed by Shnoll. The p-adic prime p = m characterizes the deformation
of the probability distribution and implies approximate p-periodicity, which could explain the
periodically occurring peaks of the histograms for N(n) as function of n.

One can imagine several explanations for the dependence of the time series distribution P (n)
on the direction of the momentum of alpha particle [E2, E6] and on the dependence of P (n) on
time.

1. The change of ramified prime p induced by the change of the extension of rationals would
affect the periods. An interesting question is whether the effects understood in terms of the
effect of the measurement apparatus on many-sheeted space-time topology and geometry on
p. Can one speak about measurement of p and of extension of rationals?

2. The extension of rationals (and thus p) need not change. The “quantum factor” of Ψ in
P (n) = |Ψ(n)|2 has part depending on qp. The dependence on qp could change without
change in p so that the extension of rationals need not change. One could speak about
measurement of an observable related to the quantum factor of Ψ. A more concrete model
relies on wave function proportional to (kn)qp ∝ qknm + q−knm - analog to a superposition of
plane waves with momenta k propagating to opposite directions in the space of counts and
producing in P (n) diffraction pattern proportional to (qn)2qp . Change of momentum k by
scaling or shift induced by variation of the gravitational parameters or time evolution could
be in question.

The p-adic primes p in question are rather small, not much larger than 100 and the periods of
P (n) provide a stringent test for the proposal. If p corresponds to ramified prime as adelic physics
suggests, it can be indeed small.

1.4 Quantum gravitational model of the Shnoll effect

One can criticize the above described models as too formal. What comes to mind is that the
states split into several states with different decay rates. The basic problem is to understand how
extremely weak gravitational interaction can have such drastic effects on the states of even nuclei.

The third number theoretic model is much simpler and is based on the notion of the spectrum
of effective Planck constants. The rates depend on the value of effective Planck constant and this
could explain the decomposition of peaks to several ones. Gravitational quantum coherence in
astrophysical scales is predicted and the gravitational Planck constant of even the Milky Way can
affect the rates. In this framework the Shnoll effect could be seen as a direct empirical evidence
for the hierarchy of Planck constants.

To sum up, I cannot avoid the thought that fluctuations regarded usually as a mere nuisance
could be actually a treasure trove of new physics. While we have been busily building bigger
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and bigger particle accelerators, the truth would have been staring directly at our face and even
winking eye to us.

For the reader not familiar with TGD the article series in Prespace-time journal [L6, L7, L10,
L11, L8, L5, L9, L1] and the two articles about TGD inspired theory of consciousness and of quan-
tum biology in Journal of Consciousness Research and Exploration [L4, L3, L2] are recommended.
Also the online books at my homepage provide the needed background.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L13].

2 Adelic view about Shnoll effect

In the sequel the adelic model for Shnoll effect is developed. The earlier model - with errors
corrected - can be seen as a variant of this model.

2.1 General form for the deformation of P (n|λ)
Could Shnoll effect be a direct manifestation of adelic physics [L14, L15]? In TGD framework
adelic physics is motivated as physics of cognition and sensory experience, and this could explain
why Shnoll effect is associated even with financial time series. Instead of starting to make ad hoc
guesses, consider first what kind of constraints adelic physics could pose on the deformation.

1. The basic idea is that since the effect is universal, the form of the probability distribution
P (n|λi) should be modified in a universal manner, which depends on the experimental situ-
ation only very weakly.

2. Adelic physics suggests that the deformation of probability distributions P (n|λi) could de-
pend on small p-adic prime p identifiable as ramified prime and on integer m defining defining
quantum phase qm = exp(i2pi/m) and giving rise to effective angle resolution in terms of
allowed phases as roots of unity.

The first guess is that m could give rise to the periodic occurrence of the maxima and minima
in the deformed distribution due to the m-periodicity of nqm . p-Adic prime p would define
finite length scale resolution: it turns that also the map of factorials n! interpreted as p-adic
numbers by canonical identification to their counterparts gives an approximately p-periodic
modulation of P (n).

3. According to the standard definition quantum integers are real and given by nq = (qn −
q−n)/(q − q−1). The problem is that nqm vanishes if n is divisible by m so that one cannot
replace the factorials appearing in Poisson distribution (say) with their quantum counter-
parts. The solution of the problem is the interpretation of n as p-adic integer and the
replacement of pinary coefficients with quantum integers nqp (m = p), which are positive.
One could also decompose them into a product of prime factors and replace them with their
quantum counterparts nqp .

In the power λ−n one could consider the replacement of n with nqp but this does not work in
the p-adic case because p−nq in general does not belong to a finite extension of p-adics used.
In the p-adic case λ = 1/pk turns out to be the only possible option. For k = 1 one obtains
approximate scaling invariance n→ pn.

4. The hierarchy of Planck constants makes possible quantum coherence in all scales. This
inspires the idea that the probabilities P (n) are moduli squared for a complex probability
amplitude Ψ(n): P (n) = |Ψ(n)|2. Ψn could have having “quantum factor” Ψq containing a
phase depending on n.

The simplest option is that quantum factor is has phase U(n) = qnm or its power. This does not
give any effect visible in P (n). A more general options is a quantum factor Ψq =

∑
ckq

k
m. In

this case on obtains interference effects in the modulus squared. Complex quantum integer
nq = (qn − q−n)/(1 − q) as a multiplicative factor would give rise to a diffractive factor
sin2(nπ/m)/sin2(π/m) in P (n).

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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Speaking about amplitude for fluctuations and quantum diffraction in an ensemble defined
by a division of the range of observable or a division of time interval to smaller intervals
is of course quite a generalization of quantum mechanical thinking but it is interesting to
look whether this could lead to sensible predictions. One could however whether the slow
variations of the fluctuation patterns could correspond to different outcomes for quantum
measurements measuring p-adic prime P and m.

Usually objections are the best manner to proceed and now the objections leads to an ap-
proximate scaling invariance n→ p of P (n) suggested also by the p-adic fractality implied by the
quantum criticality of TGD Universe.

1. The first objection is that the findings of Shnoll are special in the sense that the replacement
of observable with its diffeomorph cannot preserve the character of distribution P (n). One
can however claim that in practice the choice of observables is highly unique from physical
constraints. Only simple scalings of the observable can be considered in same cases.

2. Second objection is that replacing the interval ∆O for observable with ∆O/m cannot leave the
general shape of the distribution invariant. The näıve guess is that one has P (n)→ P (nm)
for large enough values of n. This condition in a suitably restricted form can be posed as
a constraint. The natural assumption is that the condition holds true only for the p-adic
scalings m = pk.

This condition can be used as a constraint on P (n). P (n) would depend on n only through
functions of n invariant under p-adic scalings n→ pn. An example about scaling invariant is
provided by the function xR = nR/np, where np is the p-adic norm of n and nR is obtained
by canonical identification n =

∑
nkp

k → nkp
k → nR =

∑
nkp

→nkp
−k.

Any function of xR is invariant under p-adic scalings and one can construct analogs for
Gaussian, Poisson distribution, etc... by replacing n with xR. Periodicity with period p is
obtained if one replaces the p-adic unit nnp with nnp mod p. Since the higher pinary digits
do not affect strongly the behavior of xR, approximate p-periodicity is obtain in any case.

3. The factorial n! appears in probability distributions having Taylor series as a generating
function. A little calculation below using Legendre’s theorem shows that apart from an
approximately periodic multiplicative function of n with period p one has p−n/(n!)R =
p−s(n), where s(n) is the sum of the pinary digits of n in the expansion in powers of p.
s(n) is invariant under scalings n → pkn. Therefore the deformed Poisson distribution
is unique from the approximate scaling invariance and given apart from normalization by
P (n) = p−n/(n!)R = p−s(n).

4. What about more general scalings n → kn? Under the scalings n → kn for k not divisible
by p, the norm of n is invariant. The rough scaling behavior of P (n) is however un-affected.
The lowest pinary digit is replaced in n → n + 1 with n + k mod p so that approximate
p-periodicity is still present.

Consider next quantum phases.

1. The dependence on the quantum phase qm = expi(ipi/m), m = p, cannot be invariant under
p-adic scalings. The reason is that scaling by p takes all powers of qp to unit and is thus not
a bijection.

One can however consider different kind of symmetries. The integers n mod p form finite
field Gp in which multiplication and sum define transformations analogous to rotations and
translations acting naturally as symmetries in the space of probability amplitudes defined
in the space of counts n mod p - modulo arithmetics means finite phase resolution for n
represented as a phase. The wave functions can be interpreted as elements of finite-field
algebra analogous to group algebra consisting of probability amplitudes in group.

One can interpret the plane waves qknp as analogs of plane waves with momentum k. Multipli-
cation and translations by r would correspond naturally to symmetries analogous to rotations
and translations in Euclidian space.
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2. Ψ(n) would have “quantum factor” expressible as a wave function in the space of counts
n. For plane wave qknp , the plane wave would not be visible in P (n). The superposition

qknp + q−knp of two plane waves propagating in opposite directions in the space of counts
modulo p is proportional to quantum integer (kn)qp = sin2(knπ/p)/sin(π/p) defining the
analog of diffraction pattern. One has the analog of standing wave in a box having n = 0
and n = p as its boundaries.

This is really nice mathematics but is “quantum factor” really needed? Can one do using
just the deformation of say Poisson distribution or its quantum analog obtained by replacing n!
interpreted as p-adic integer with its quantum counterpart? Or is “quantum factor” all that is
needed? Or does this depend on situation? The following is just a list about the questions, which
pop into mind and reflect my confusion more than my understanding.

1. The “quantum factor” of Ψ(n) - to be distinguished from “classical factor” depending on n
without any analysis to pinary digits interpreted as p-adic or quantum p-adic integers - can
be regarded as a wave function in finite field Fp for the lowest pinary digit of n. n2qp gives
the probability for the count n mod p. The modulo p condition for the pinary digit of n
can be interpreted as particle in box condition 0 < n mod p < p so that states correspond
to standing waves propagating in the space of counts and representable as sums of plane
waves with wave vector 0 ≤ k < p propagating in opposite directions. This implies that
quantum part of P (n) is universal and give by n2qp = sin2(knπ/p)/sin2(π/p). Diffractive
pattern results. Also p-periodicity is obtained from modulo p arithmetics. Approximate
scale invariance n→ pkn is not obtained. This could explain Shnoll effect.

“Quantum factor” alone is non-realistic since the probabilities for large values of n must be
small. Should one interpret the “classical factor” of Ψ as a wave function for the remaining
pinary digits defining nrem? This would give the needed decrease for large values of n: p−s(k)

for Poisson distribution. Now approximate scaling p-adic scaling invariance would be true as
also p-periodicity in the lowest pinary digit.

3. Does it make sense to talk about separate wave functions for the lowest pinary digits as wave
functions for nrem = n mod pk − m mod pk−1 so that one would have product P (n) ∝∏
k(nk)2qp of single digit wave functions? Physical intuition tells that the lowest digits are

the most important ones and cannot be independent. Could one consider lowest k pinary
digits as single entity with m = pk and generalize quantum group picture by using quantum
integers nq

pk
with pk-periodicity?

4. Note that for p > n one would have only single pinary digit and P (n) ∝ n2qp = sin2(nπ/p)/sin2(π/p)?
For n > p but near to it P (n) one would have single maximum: this would be nearer to what
one expects with Gaussian intuition. Could one think of the analog of p-adic length scale
hierarchy so that the increase of p would lead from quantum description to a classical de-
scription? Do ramified primes of extension determine this kind of hierarchy? The number of
pinary digits in “quantum factor” would correlate with the measurement resolution for n.

2.2 Deformation of Poisson distribution as an example

Consider next the p-adic modification of P (n) based on canonical identification, which I gave
up in the original approach since I erratically concluded that the sum of probabilities without
normalization fails to converge.

1. Adelic physics suggests that prime p and quite generally, all preferred p-adic primes, could
correspond to ramified primes for the extension of rationals defining the adele. Ramified
prime divides discriminant D(P ) of the irreducible polynomial P (monic polynomial with
rational coefficients) defining the extension (see http://tinyurl.com/oyumsnk).

Discriminant D(P ) of polynomial whose, roots give rise to extension of rationals, is essen-
tially the resultant Res(P, P ′) for P and its derivative P ′ defined as the determinant of so
called Sylvester polynomial (see http://tinyurl.com/p67rdgb). D(P ) is proportional to

http://tinyurl.com/oyumsnk
http://tinyurl.com/p67rdgb
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the product of differences ri − rj , i 6= j the roots of p and vanishes if there are two identical
roots.

Remark: For second order polynomials P (x) = x2 + bx+ c one has D = b2 − 4c.

Ramified primes divide D. Since the matrix defining Res(P, P ′) is a polynomial of coefficients
of p of order 2n − 1, the size of ramified primes is bounded and their number is finite. The
larger coefficients P (x) has, the larger the value of ramified prime can be. Small discriminant
means small ramified primes so that polynomials having nearly degenerate roots have also
small ramifying primes. Galois ramification is of special interest: for them all primes of
extension in the decomposition of p appear as same power. For instance, the polynomial
P (x) = x2 + p has discriminant D = −4p so that primes 2 and p are ramified primes.

2. One can consider a p-adic modification of n! by expanding n! ≡ x as series x
∑
xnp

n in powers
of the ramified prime and mapping the result to a real number by canonical identification∑
xn →

∑
xnp

−n. The outcome is approximately periodic for large n since the lowest
pinary digit gives dominating contribution and is periodic with period p. There would be
two approximate periodicities for the peaks corresponding to p.

Remark: Canonical identification is applied in p-adic mass calculations [K1] [L17] and at
the level of scattering amplitudes it would map Lorenz invariants appearing in the scattering
amplitudes expressible in terms of rational functions with coefficients which are rational (or
in an extension of rationals) to their real counterparts.

3. Also the powers of λ should make sense p-adically, and the replacement of λ by a power of
p indeed makes sense p-adically. In the case of Poisson distribution this would predict

P (n) ∝ p−nk

(n!)R
.

for λR = p−k.

4. n! contains some power νp(n!) of p given by Legendre’s formula (see http://tinyurl.com/

jdvwaph):

νp(n!) =

∞∑
i=1

[
n

pi
] ,

where [x] denotes the value of floor function replacing xt with the largest integer smaller than
x. The p-adic norm of the n! equals to p−νp(n!) so that the sum of probabilities converges
for all values of k of one has ν(n!) < p. It seems that this is the case quite generally. In fact,
there is in the same sources also another formula for νp(n!) making this manifest.

νp(n!) =
n− sp(n)

p− 1
.

Here sp(n) is the sum of pinary digits of n expressed as power series of p. For k = 1 the n:th
term is p−sp(n) divided by the canonical images of a p-adic number with unit p-adic norm.

Since sp(n) increases in step-wise manner, one obtains asymptotically a periodically modu-
lated series with period p since the canonical image of n! approaches periodic function. The
generalization to any P (n) expressible as n:th term in a Taylor series of some function serving
as generating function for P (n) is obvious.

As already explained, one can modify this distribution by adding to Ψ(n) =
√
P (n) “quantum

factor” as a wave function in the space of counts modulo p forming a finite field and particle in
box analogy gives essentially (kn)qp as quantum factor characterized by momentum k leading to
diffraction patter described by (kn)2qp . This standing wave quantum factor could be universal and
describe modulo p counter.

http://tinyurl.com/jdvwaph
http://tinyurl.com/jdvwaph
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3 Explanation for some findings of Shnoll

One should be able to undertand both the many-peaked character of the distributions as well
as their spatial and temporal variation involving correlations with the gravitational physics of
Sun-Earth and Earth-Moon systems.

The really difficult problem is to understand how astrophysical objects could affect microscopic
physics in even nuclear scales where physics is local.

In the sequel two kinds explanations inspired by number theory are considered. The first
model is rather formal. The second model relies on the notion of gravitatonal Planck constant
introduced by Nottale and explains the rate variations as being induced by the variation of the
Planck constant.

3.1 The temporal and spatial dependence of the distributions

One should also understand the variation of the shape of the distribution with time and its spatial
variation.

1. The correlation of the fluctuation periods with astrophysical periods assignable to Earth-
Sun system (diurnal period and period of Earth’s orbit) suggests that the gravitational
interaction of the measurement apparatus with Sun is involved. Also the period 27.28 days
which corresponds to sidereal period of Moon measured in the system defined by distant star.
In [E1] , [E1] this period is somewhat confusingly referred to as synodic period of Sun with
respect to Earth (recall that synodic period corresponds to a period for the appearance of
third object (say Moon) in the same position relative to two other objects (say Earth and
Moon)). Therefore also Moon-Earth gravitational force seems to be involved. Moon-Earth
and Earth-Sun gravitational accelerations indeed have roughly the same order of magnitude.

That gravitational accelerations would determine the effect conforms with Equivalence Prin-
ciple. The most natural dimensionless parameter characterizing the situation is |∆agr|/agr

expressible in terms of ∆R/R and ∆r/r, where R resp r denotes the distance between Earth
and Sun resp. Earth and Moon, and the ratio R/r and cosine for the angle θ between the
direction vectors for the positions of Moon and Sun from Earth. The observed palindrome
effect [E3] is consistent with the assumed dependence of the effect on the distances of Earth
from Sun and Moon. Also the smallness of the effect as one approaches North Pole conforms
with the fact that the variations of distances fro Sun and Moon become small at this limit.

2. In 24 hour time scale it is enough to take into account only the Earth-Sun gravitational
interaction. One could perform experiments at different positions at Earth’s surface to see
whether the variation of distributions correlates with the variation of the gravitational po-
tential. The maximal amplitude of ∆R/R is 2RE/R ' .04 so that for ∆p/p = k∆R/R one
would have ∆p/p = .04k. Already for p ∼ 100 the variation range would be rather small.
For ∆m/m one expects that analogous estimate holds true.

3. One observes in alpha decay rates periodicities which correspond to both sidereal and solar
day [E2]. The periodicity with respect to solar day can be understood in terms of the periodic
variation of Sun-Earth distance. The periodicity with respect to sidereal day would be due
to the diurnal variation of the Earth-Moon distance. Similar doubling of periodicities are
predicted in other relevant time scales.

4. In the case of alpha decay the effect reveals intricacies not explained by the simplest model
[E2, E6]. In this case one studies random fluctuations for the numbers of alpha particles
emitted in a fixed direction. Collimators are used to select the alpha particles in a given
direction and this is important for what follows. Two especially interesting situations cor-
respond to a detector which is located to North, East, or West from the sample. What is
observed that the effect is different for East and West directions and there is a phase shift
of 12 hours between East and West. In Northern direction the effect vanishes. Also other
experiments reveal East-West asymmetry called local time effect by the authors [E4, E5].

The distribution for the counts of alpha particles in a given angle depend on time and the
time dependence is sensitive to the direction angle of the alpha particle. This might be however
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only apparent since collimators are used to select alpha particles in given direction. The authors
speak about anisotropy of space-time and Finsler geometry [A1] could be considered as a possible
model. In this approach the geometry of space-time would be something totally independent of
measurement apparatus.

One can identify a candidate for a scalar on which the magnitude of effect should depend.

1. At quantitative level the distribution for counts in a given direction can depend on angles
defined by the vectors formed from relevant quantities. These include at least the tangential
rotational velocity v = ω × r of the laboratory at the surface of Earth, the direction of
the velocity vα of alpha particle with respect to sample actually reflecting the geometry of
collimators, the net gravitational acceleration anet caused by Earth, Sun, and Moon, and the
direction of acceleration g in the Earth’s gravitational field.

2. The first task is to construct from these vectors a scalar or a pseudo-scalar (if one is ready
to allow large parity breaking effects), which vanishes for North-East direction, has opposite
signs for East and West direction and has at least approximately a behavior consistent with
the phase shift of 12 hours between East and West. The constraints are satisfied by the scalar

X = E · anet , E =
(v × g)× vα
|(v × g)× vα|

. (3.1)

Unit vector E changes sign in East-West permutation and also with a period of 12 hours
meaning the change of the roles of East and West with this period in the approximation that
the net acceleration vector is same at the opposite sides of Earth. The approximation makes
sense if the change of sign induces much large variation than the change of the Earth-Sun
and Earth-Moon distances. If the parameters of the model are even functions of X, the
predicted effect can be consistent with the experimental findings in the approximation that
anet is constant in 24 hour time scale.

This could explain the difference in the fluctuations associated with alpha particles emitted
in East and West direction and the fact that there is no effect in North direction. v×g points
to North and North direction for valpha has E = 0 so that the magnitude of E proportional
to the sine of the angle between North and vα should dictate the magnitude of the effect.

3.2 TGD based model for the Shnoll effect in alpha decay

In TGD framework the space-time is topologically non-trivial and dynamical in macroscopic scales
and the presence of collimators making possible to select alpha particles in a given direction
affect the geometry of many-sheeted space-time sheets describing the measurement apparatus and
therefore the details of the interaction with the gravitational fields of Earth, Sun, and Moon. As
a consequence, the value of p = m should reflect the geometry of the measurement apparatus
and depend only apparently on the direction of vα. If this interpretation is correct, a selection of
events from a sample without collimators should yield distributions without any dependence on
the direction of vα.

The situation is sensitive to the value of p = m in the model described above. The changes
should be such that the parameters of the smoothed out real probability distribution are not
affected much. For instance, in the case of q-Poisson distribution the value of p = m should change
in such a way that 〈n〉 = λ is not unaffected much. The change of p would affect the positions of
the peaks but small changes of p would not mean too dramatic changes. Periodic time dependence
of these parameters would explain the findings of Shnoll. Gravitational interactions in Sun-Earth-
Moon system and therefore the periodic variations of Sun-Earth and Earth-Moon distances is the
first guess for the cause of the periodic variations.

In the case of alpha decay Shnoll effect is associated with temporal fluctuations in the number
n of the measured events in time interval ∆T characterized by P (n). P (n) is reported to depend
on the gravitational accelerations assignable to Earth-Moon and Earth-Sun systems. It is claimed
that this dependence on gravitational parameters is quite general. In TGD framework this looks
natural since gravitational flux tubes and gravitational Planck constant hgr play a central role in
TGD inspired biology. These accelerations have same order of magnitude.



3.2 TGD based model for the Shnoll effect in alpha decay 13

There are two possible sources for the effect in the proposed model.

1. Classical option: the representation P (n) = |Ψ(n)|2 is not assumed. If one accepts the
proposed scaling invariant ansatz, the only parameter affecting the p-adic part of the defor-
mation determined by canonical identification is the value of p. Thus the change of p and
presumably of also extension of rationals would be involved. p-periodicity is approximate.

2. Quantum option: P (n) = |Ψ(n)|2 is assumed. The existence of quantum p-adics requires
p = m so that the space of counts modulo p is finite field Gp. The quantum factor of wave
function Ψ(n) in the space of counts the most general quantum phase dependent combination∑
ck(kn)qp in Ψ(m), the parameters ck appear as additional quantal parameters besides

the parameters fixing the original distribution P (n) (Gaussian, Poisson,..). For quantum
factor the p-periodicity in n is exact. Particle in box description for modulo p counter
property suggests standing wave interpretation so that wave function would be |(kn)q|2 with
k having interpretation as an analog of momentum. The outcome would be diffraction pattern
sin2(knπ/p)/sin(π/p). The value of k could be seen as analogous to Gp-valued momentum
varying from measurement to measurement.

In this case the slow variations of P (n) could reflect slow change of ck even when P remains
unaffected. For instance, a scaling of complex quantum integer nq to (kn)q, 0 < k < p
would induce permutation of the peaks of the diffraction pattern. The interpretation would
be as finite field permutation induced by multiplication. Also finite field translation of nq
to (n + k)q. This is the minimal option and suggests that genuine quantum effect is in
question: the value of k could be seen as analogous to Zm-valued momentum varying from
measurement to measurement.

Suppose that the emitted alpha particle propagates along a magnetic flux tube. A natural
question is whether the direction of anet corresponds to a direction of flux tubes at which the
gravitational effects of Sun and Moon sum up.

Classical option: The parameters λi - such as the parameter defining Poisson distribution -
determining P (n|λi) could depend on X but only through P (X) in the model obeying the scaling
invariance n→ pn.

The dependence could be through p = p(X) would affect the approximate p-periodicity. A
purely p-adic deformation would require that the ramified prime p depends on X so that gravita-
tional effects modify decay rates directly via the relative direction of the alpha particle flux tubes
and various kinds of gravitational flux tubes. The extension of rationals assignable to the flux
tubes along which alpha particles propagate would depend on X. Alpha particle interactions with
gravitational flux tubes via wormhole contacts and this should determine the value of p.

Quantum option: If P and extension are not affected, only the diffractive quantum degrees
of freedom remain under consideration.This would provide the minimal model. In quantum sector
the quantum part of the distribution could depend on X, say by a scaling of the momentum
k → r(X)k or shift k → k+ r(X) modifying the diffraction pattern. Since the change is slow, shift
looks more plausible option having interpretation as a discrete version of slow classical dynamics.
Now the peaks of diffraction pattern would be permuted.

1. The dependence of the scaling factor r(X) on the parameter X appearing in n → r(X)n
in quantum factor would be given by piecewise constant function and discontinuities would
occur at certain values of X. X is of form

X = vvαganet × cos(θ1)sin(θ2)sin(θ3) .

Here θ3 is the angle between v and g, θ2 is the angle between v×g and vα and θ1 is the angle
between E and anet. X has dimension (v2/T 2)2.

2. If only the relative directions matter, one could try to assign the ineger r(X) to the quantity

X0 = cos(θ1)sin(θ2)sin(θ3) .

X0 does not depend on the absolute values of various parameters such as vα, which is pre-
sumably the observable measured.
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3. Some unit should be chosen for the trigonometric functions involved. cos(2π/m) resp.
sin(2π/m) is the firstP guess for the unit of cos(θ1) resp. sin(θi), i = 2, 3 so that n(X0)
would be given by

n(X0) = [
cos(θ1)sin(θ2)sin(θ3)

cos(2π/m)sin2(2π/m)
] .

To sum up, the minimal model for the Shnoll effect would be based on the modification of
diffractive part by scaling n→ r(X)n so that diffraction peaks are permuted but also the change
of p = m can be consider.

3.3 What can one say about values about the period of P (n)?

The basic prediction is that the presence of an approximate period p = m identified as ramified
prime for extension of rationals. In one of the experiments (see http://tinyurl.com/6kehe9b

Fig.1 of [E1], [E1] ) the histogram for N(n) has peaks, which seem to occur periodically with a
separation ∆n of about 100 units. If these periods correspond to P , its value must be smaller
than 100. The nearest primes are p = 89, 97, 101, 113. In Fig. 2 of same reference one has also
periodicity and p must be near 10. Hence there are good hopes that the proposed model might be
able to explain the findings.

There is an intriguing empirical finding possibly related to the value of p and to the dependence
on gravitational fields bringing in basic periods of solar system.

1. The fluctuations appear with temporal periods of 24 hours, 27 days and 365 days. Quite
recently I learned about 160 minute period which appears in astrophysics in very wide range
starting from solar oscillations and ending to the physics of quasars [L16]. TGD inspired in-
terpretation relies on the observation that Fe2+ cyclotron frequency in endogenous magnetic
field Bend = .2 Gauss playing key role in TGD inspired quantum biology is 10 Hz and in
the interstellar magnetic field with average value of 2 nTesla this frequency corresponds to a
period of 160 minutes. Cosmic alpha rhythm could be in question!

2. What is intriguing that 24 hours corresponds to 32-multiple and 27 days to 35-multiple of
this period! Does this mean that p = 3-adicity is involved with Shnoll effect p = 3 would be
a ramified prime of the extension in question. 3-adicity is also observed to be characterize
big steps in evolution besides 2-adicity [K2].

3.4 Are these models too formal?

The proposed rather formal models in principle have the potential of explaining the findings of
Shnoll but detailed numerical work is required to find whether the model works also at the level
of details.

1. Taking n as the observable simplifies p-adicization crucially since the p-adicization of classical
observables is avoided. One could speak of quantum measurement in the space of counts n
defining a universal observable. In quantum measurements the results are typically expressed
as numbers of counts in given bin so that this kind of p-adicization is physically natural.

The division of measurement interval would define an ensemble and n would be measured in
each interval. State function reduction would localize Ψn to n in each interval.

2. The universality of the modified distributions would reduce to the interpretation of the integer
n in the distribution P (n|λ) as a p-adic integer mapped by canonical identification to a real
number nR appearing as argument of P (n|λ). Same can be applied to n!.

It is essential that the sum of probabilities without normalization factor converges and that
the distribution is approximately scaling invariant under n → pkn. Approximate scaling
invariance can be interpreted in terms of fractality implied by the quantum criticality of
TGD Universe.

http://tinyurl.com/6kehe9b
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3. One can consider also the quantum variant of p-adic integer n mapped to nR by canonical
identification. The parameter m defining quantum group and being possible for possible
“quantum factor” in the complex square root of P (n) having interpretation as wave function
satisfies m = p from the condition that the canonical images of quantum p-adics are posi-
tive. There are 2 candidates for quantum-padics depending on whether the pinary digits are
interpreted as quantum integers as such or mapped to a product of quantum primes.

Various additional rational-valued parameters characterizing the probability distribution can
be mapped to (possibly quantum-) p-adics mapped to reals by canonical identification. The
parameters taking care of the converge such as the parameter λ in Poisson distribution must
be mapped to a power of p in p-adic context.

4. The small value of p-adic prime p involved can be understood in TGD framework in terms
of adelic physics suggesting that preferred primes are so called ramified primes of extension
of rationals. For given irreducible polynomial determining the extension one can calculate
the ramified primes from the discriminant of the polynomial.

Model can be applied to the results of Shnoll.

1. The model makes rather detailed predictions about the periodically occurring positions of the
peaks of P (n) as function of p based on number theoretical considerations and in principle
allows to determine these parameters for given distribution.

2. The value of p could be characterized by the sum anet of gravitational accelerations assignable
to Earth-Sun and Earth-Moon systems and could vary. If the value of p is outcome of
state function process, it is not determined by deterministic dynamics but should have a
distribution. If this distribution is peaked around one particular value, one can understand
the findings of Shnoll.

The periodic variations occurring with both solar and sidereal periods could be understood
in two ways. The slow variation of p = m could explain the slow variation of the distributions
with position and time. An alternative explanation would be based on slow dependence of
quantum factor of Ψ(n) on gravitational parameters and on time. For instance, one could
have wave functions proportional (kn)qm , k = 1, , ...p, so that the change of k would permute
the diffraction peaks.

3. Various effects such as the dependence of the probability distributions on the direction of
alpha particles selected using collimators and 12 hour phase shift between the directions
associated with East and West direction could be perhaps understood as direct evidence for
the effects of measurement apparatus on the many-sheeted space-time affecting either the
value of p or the “quantum factor”: say the dependence of k on the momentum parameter
X defined earlier.

However, one has good reasons to argue that these models are very formal and the connection
with the empirical findings is rather loose.

3.5 Shnoll effect and quantum gravitation

Thanks for Ed Oberg for sending an email in which he mentioned Shnoll effect. I have discussed the
Shnoll effect from the TGD point of view in [L20]. Now I must say that the number theoretical ideas
involved with explanation look a little bit too formal an approach when one wants to understand
the splitting of the distribution for the number of counts per time interval in say alpha decays. A
more direct connection with physics would be badly needed. Therefore I decided to take a fresh
look on Shnoll effect with inspiration coming from the increase of the understanding of quantum
gravitation in the TGD framework [L18, L19].

1. For instance, alpha decay rates are studied: overall decay rates or in fixed direction for
alpha rays. Number of counts per time interval τ varies. Poisson distribution becomes
many-peaked.
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2. Is there a dependence on the period τ? How many peaks? Are the numbers of peaks the
same for various values of τ? The natural assumption is that there are several rates. If so,
the number N at the maximum of the peak I is N = rate(I)× τ .

3. There are periodicities of the peak structure related to sidereal time and solar time. There
are correlations with the dynamics of the Sun, Earth, and even galaxy. There is also a
dependence on the direction of the alpha ray.

4. The splitting of the decay rates as the emergence of almost degenerate states of nuclei would
be the simplest explanation. The astrophysical correlations suggest that this should be due
to the gravitational effects.

The recent TGD view of quantum gravitation could provide a simple explanation.

1. A splitting of the state of the emitting nucleus to N states occurs such that the N states have
different decay rates. Where does this degeneracy come from? Could the degenerate states
be dark variants of the ordinary nucleus in the TGD sense and therefore have different values
of heff . The gravitational Planck constants ~gr for astrophysical objects are suggested by
the observed astrophysical correlations.

2. Why would these almost degenerate states of nuclei have different alpha decay rates? These
rates are determined by nuclear physics. In the TGD framework, the only variable parameter
is effective Planck heff which affects the rates in higher order in perturbation expansion.
Lowest order is not affected. In higher orders the effect is non-trivial and could be large for
strong interactions.

3. The quantum gravitational effects characterized by ~gr are expected to be the largest ones.
Could the almost degenerate nuclei be attached to gravitational flux tubes of different as-
trophysical objects and have different effective/gravitational Planck constants? Sun, Earth,
Moon, galaxy, and planest come first in mind.

4. The Shnoll effect depends on the directions and distances of the Sun and Moon and there
is a periodic variation. The dependence on the sidereal time suggests that even galactic
gravitational fields matter. Since the attachment of the local system to the gravitational
flux tube is required, the probability for the presence of a gravitational flux tube connecting
Earth and the gravitational source is what matters. The probability is proportional to the
density of flux tubes per unit area and decreases with the distance between the Earth and
the source. This could explain the periodic variations of the rates.

5. This model applies also to electromagnetic interactions and could explain the Shnoll effect in
chemistry. The basic prediction is that the splitting of the Poisson distribution is qualitatively
similar independent of the system studied.

It is perhaps fair to conclude that the explanation of the Shnoll effect in terms of gravitational
quantum coherence in astrophysical scales is the more plausible option. The study of fluctuations
could open a completely new field of research and a very abstract form of quantum theory. From
TGD point of view this could mean theoretical and experimental work to deduce and test the
predictions of adelic physics.

4 Appendix: p-Adic primes as ramified primes, quantum
p-adics, and quantum primes

The following describes still rather speculative ideas about the physical role of number theory
inspired by adelic physics.
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4.1 Preferred p-adic primes as ramified primes?

As I wrote the first version of this chapter, I had not yet developed the vision about adelic physics.
Adelic physics corresponds to a hierarchy of extensions of rationals inducing extensions of p-adic
number fields and the proposal is that ramified primes of extension correspond to preferred p-adic
primes.

1. Adelic physics suggests that prime p and quite generally, all preferred p-adic primes, could
correspond to ramified primes for the extension of rationals defining the adele. Ramified
prime divides discriminant D(P ) of the irreducible polynomial P (monic polynomial with
rational coefficients) defining the extension (see http://tinyurl.com/oyumsnk).

Discriminant D(P ) of polynomial whose, roots give rise to extension of rationals, is essen-
tially the resultant Res(P, P ′) for P and its derivative P ′ defined as the determinant of so
called Sylvester polynomial (see http://tinyurl.com/p67rdgb). D(P ) is proportional to
the product of differences ri − rj , i 6= j the roots of p and vanishes if there are two identical
roots.

Remark: For second order polynomials P (x) = x2 + bx+ c one has D = b2 − 4c.

2. Ramified primes divide D. Since the matrix defining Res(P, P ′) is a polynomial of coefficients
of p of order 2n − 1, the size of ramified primes is bounded and their number is finite. The
larger coefficients P (x) has, the larger the value of ramified prime can be. Small discriminant
means small ramified primes so that polynomials having nearly degenerate roots have also
small ramifying primes. Galois ramification is of special interest: for them all primes of
extension in the decomposition of p appear as same power. For instance, the polynomial
P (x) = x2 + p has discriminant D = −4p so that primes 2 and p are ramified primes.

Remark: All polynomials having pair of complex conjugate roots have p = 2 as ramified
prime.

3. What does ramification mean algebraically? The ringO(K)/(p) of integers of the extensionK
modulo p = πeii can be written as product

∏
iO/π

ei
i (see http://tinyurl.com/y6yskkas).

If p is ramified, one has ei > 1 for at least one i. Therefore there is at least one nilpotent
element in O(K)/(p).

Could one interpret nilpotency quantum physically?

1. For Galois extensions one has ei = e > 1 for ramified primes. e divides the dimension of
extension. For the quadratic extensions ramified primes have e = 2. Quadratic extensions
are fundamental extensions - kind of conserved genes -, whose further extensions give rise to
physically relevant extensions.

On the other hand, fermionic oscillator operators and Grassmann number used to describe
fermions “classically” are nilpotent. Could they correspond to nilpotent elements of order
ei = e = 2 in O(K)/(p)? Fermions are building bricks of all elementary particles in TGD.
Could this number theoretic analogy for the fermionic statistics have a deeper meaning?

2. What about ramified primes with ei = e > 2? Could they correspond to para-statistics (see
http://tinyurl.com/y4mq6j22) or braid statistics (see http://tinyurl.com/psuq45j)?

Both parabosonic and parafermionic fields of order n have the representation Ψ =
∑n
i=1 Ψi.

For parafermion field one has {Ψi(x),Ψi(y)} = 0 and [Ψi(x),Ψj(y)] = 0, i 6= j, when x and
y have space-like separation. For parabosons the roles of commutator and anti-commutator
are changed.

The states containing N identical parafermions are described by a representation of sym-
metric group SN with N rows with at most n columns (anti-symmetrization). For states
containing N identical parabosons one has N columns and at most n rows. For parafermions
the wave function is symmetric in horizontal direction but the modes are different so that
Bose-Einstein condensation is not possible.

For parafermion of order n operator
∑n
i=1 Ψi one has (

∑n
i=1 Ψi)

n =
∏

Ψ1Ψ2...Ψn and higher
powers vanish so that one would have n+ 1-nilpotency. Therefore the interpretation for the

http://tinyurl.com/oyumsnk
http://tinyurl.com/p67rdgb
http://tinyurl.com/y6yskkas
http://tinyurl.com/y4mq6j22
http://tinyurl.com/psuq45j
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nilpotent elements of order e in O(K)/(p) in terms of parafermion of order n = e− 1 might
make sense.

It seems impossible to build a nilpotent operator from parabosonic field Ψ =
∑
i Ψi: the

reason is that the powers Ψn
i are non-vanishing for arbitrarily high values of n.

3. Braid statistics differs from para-statistics and is assigned with quantum groups. It would
naturally correspond to quantum phase exp(iπ/p) assignable to the exchange of particles by
braid operation regarded as a homotopy permuting braid strands. Could ramified prime p
would correspond to braid statistics and the index ei = e characterizing it to parafermion
statistics of order e− 1? This possibility cannot be excluded since this exotic physics would
be associated in TGD framework to dark matter assigned to algebraic extensions of rationals
whose dimension n equals to heff/h0.

Why the primes, which do not split maximally in given extension would be physically special?

1. Do ramified primes possess exceptional evolutionary fitness and are ramified primes present
for lower-dimensional extensions present also for higher-dimensional extensions? If higher
extensions are formed as extensions of already existing extensions, this is the case. Hierarchy
of polynomials of polynomials would to this kind of hierarchy with ramified primes of starting
point polynomials analogous to conserved genes.

2. Quadratic extensions are the simplest ones and could serve as starting point extensions.
Polynomials of form x2 − c are the simplest among them. Discriminant is now D = −4c.

3. Why c = Mn = 2n − 1 allowing p = 2 and Mersenne prime p = Mn as ramified primes
would be favored? Extension of rationals defined by x = 2n is non-trivial for odd n and is
equivalent with extension containing

√
2. c = Mn = 2n − 1 as a small deformation of c = 2n

gives an extension having both 2 as Mn as ramified primes.

For c = Mn the number of ramified primes is smallest possible and equal to 2: why minimal
number of ramified primes would give rise to a fittest extension? Why smallest number of
fermionic p-adic mass scales assignable to the ramified primes would be the fittest option?

The p-adic length scale corresponding ro Mn would be maximal and mass scale minimal.
Could one think that other quadratic extension are unstable against transforming to Mersenne
extensions with smallest p-adic mass scale?

4.2 p-Adic topology and canonical identification

p-Adic physics has become gradually a central part of quantum TGD [K5] and the notion of p-adic
probability has already demonstrated its explanatory power in the understanding of elementary
particles masses using p-adic thermodynamics [K1]. This encourages the attempt to understand
Shnoll effect in terms of an appropriate modification of probability concept based on p-adic num-
bers.

p-Adic topology [A2] is characterized by p-adic norm given by |x|p = p−k for x = pk(x0 +∑
k>0 xkp

k), x0 > 0. This notion of nearness differs radically from its real counterpart. For
instance, numbers differing bya large power of p are p-adically near to each other. Therefore
p-adic continuity means short range chaos and long range correlations in real sense. One might
hope that p-adic notion of nearness allow the existence of p-adic variants of standard probability
distributions characterized by rational valued parameters and transcendental numbers existing
also p-adically such that these distributions can be mapped to their real counterparts by canonical
identification mapping sum of probabilities to the sum of the images of the probabilities.

In the case of p-adic thermodynamics [K1] the map of real integers to p-adic integers and vice
versa relies on canonical identification and its various generalizations and canonical identification
is also now a natural starting point.

1. The basic formula for the canonical identification for given prime p characterizing p-adic
number field Qp is obtained by using for a real number x pinary expansion x =

∑
xnp

−n,
xn ∈ {0, p− 1} analogous to decimal expansion. The map is very simple and given by
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∑
n

xnp
−n → I(x) =

∑
n

xnp
n . (4.1)

The map from reals to p-adics is two-valued in the case of real numbers since pinary expansion
itself is non-unique (p = (p−1)

∑
k≥0 p

−k as the analog of 1=.99999.. for decimal expansion).
The inverse of the canonical identification has exactly the same form. Canonical identification
maps p-adic numbers to reals in a continuous manner and also the inverse map is continuous
apart from the 2-valuedness eliminated if one introduces pinary cutoff which is indeed natural
when finite measurement resolution is assumed.

2. The first modification of canonical identification replaces pinary expansion of real number in
powers of p with expansion in powers of pk: x =

∑
xnp

−nk, xn ∈ {0, pk − 1} and reads as

∑
n

xnp
−nk → Ik(x) =

∑
n

xnp
nk . (4.2)

3. A further variant applies to rational numbers. By using the unique representation q = r/s
of given rational number as ratio of co-prime integers one has

Ik(q =
r

s
) =

Ik(r)

Ik(s)
. (4.3)

4.3 Quantum integers

TGD based motivation for the notion of quantum integer comes from the fact that the so called
hyper-finite factors of type II1 (HFFs) play a key role in quantum TGD and allow to formulate the
notion of finite measurement resolution in terms of inclusions of HFFs [K6] to which the quantum
groups assignable to roots of unity are closely related. The findings of Shnoll would therefore relate
to the delicacies of quantum measurement theory with finite measurement resolution.

In TGD framework one can consider modifications of the notion of quantum integer [A3]. One
can ask what is the quantum counterpart of p-adic integer. One an also wonder whether prime
decomposition of ordinary integers could generalize in some manner. Ordinary integers are positive
and on can ask whether quantum integers should also have this property.

The quantum group is parameterize quantum phase

q = qm = exp(iφm) , φm =
π

m
. m ≥ 3 (4.4)

appear in TGD framework and the long standing intuitive expectation has been that there might
exist a deep connection between p-adic length scale hypothesis and quantum phases defined by
roots of unity defining algebraic extensions of p-adic numbers.

4.3.1 The standard definition of quantum integer has problems

The first thing to do is to see whether the standard notions of quantum integer and quantum
factorial [A3] could allow to get rid of the problems.

The definition of quantum integers for q = qm is given by

nqm =
qnm − qnm
qm − qm

=
sin(nφm)

sin(φm)
. (4.5)

For n� m one has

nqm ' n . (4.6)
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These quantum integers are real. This property makes quantum integers a good candidate if
one wants to generalize the notion of Poisson distribution and more generally, any probability
distribution P (n|λi) parameterized by rationals. The rule would be very simple: replace all integers
by their quantum counterparts: n→ nq.

The proposal has however some problematic features.

1. nq is negative for n mod 2m > m so that in the case of Poisson distribution modified
by replacing n! by its quantum counterpart one would have negative probabilities in real
context. In the p-adic context there is no well-defined notion of negative number so that one
might avoid this difficulty if one can map p-adic probabilities to positive real probabilities.
Quantum integers have unit norm p-adically so that p-adic Poisson distribution makes sense
for Np(λ) < 1.

2. nqm vanishes for n = m always. Therefore nq! defined as a product of quantum integers
smaller than n vanishes for all n > m. One way out is to restrict the values of n to satisfy
n < m. This number theoretic cutoff would mean in the p-adic case that the sum of p-adic
probabilities is finite without the condition Np(λ) < 1.

4.3.2 Quantum p-adicity guarantees positivity of quantum integers

The elegant solution to the negativity problem comes from a simple observation. If one has m = p,
the quantum integers nqm = (qn − q−n)(q − q−1) (qp = expiπ/p) are positive for n < p, vanish for
n = p and become negative at n = p + 1. Scaling invariance n → np is not obtained. One has
however more general invariance. For m = p, the integers 0 ≤ k < p and therefore the phases qkm
behave elements of finite field Gp and the scaling r mod p 6= 0 for the quantum factor of Ψ acts
as a permutation in the set formed by them. One has Zp invariance. Also translations n→ n+ r
act as symmetries of Gp.

This suggest the interpretation of n as a p-adic integer so that one can write n =
∑
nkp

k.
Assume m = p. The pinary coefficients 0 ≤ nk < p = m satisfy nk < m so that their quantum
counterparts are positive. One can regard them as numbers in algebraic extensions of p-adic
numbers defined by the qm. One can call these numbers quantum p-adics.

One can also map quantum p-adics to reals by using identification map as such. The same map
is used also for algebraic extensions of p-adic numbers. There are however restrictions on p and m:
m must be such that qm does not allow representation as non-vanishing ordinary p-adic number.
For p = m the condition is satisfied.

4.3.3 Should quantum integers allow a factorization to quantum primes

.
Physics as a generalized number theory vision [K5] suggests a way to circumvent above described

problems.

1. Quantum integers defined in the standard manner do not respect the decomposition of inte-
gers to a product of factors- that is one does not have

(mn)q = mqnq . (4.7)

The preferred nature of the quantum phases associated with primes in TGD context however
suggests that one should guarantee this property by hand by simply defining the quantum
integer as a product of quantum integers associated with its prime factors:

nq ≡
∏

(pi)
ni
q for n =

∏
pni
i . (4.8)

This would guarantee that the notion of primeness and related notions crucial for p-adic
physics would make sense also for quantum integers. Note that this deformation would not
be made for the exponents of integers for which sum is the natural operation.
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2. This definition has problems. The quantum primes can have negative sign and if m is prime,
quantum prime pqm vanishes. For m = p allowing the definition of quantum p-adics and their
real counterparts, one can restrict prime decomposition to the primes appearing as factors
of the pinary digits k < p of quantum primes.

Acknowledgements: I am grateful for Dainis Zeps for references related to Shnoll effect.
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