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Abstract

This chapter contains the purely mathematical speculations about the hierarchy of Planck
constants (actually only effective hierarchy if the recent interpretation is correct) as separate
from the material describing the physical ideas, key mathematical concepts, and the basic
applications. These mathematical speculations emerged during the first stormy years in the
evolution of the ideas about Planck constant and must be taken with a big grain of salt. I feel
myself rather conservative as compared to the fellow who produced this stuff for 7 years ago.
This all is of course very relative. Many readers might experience this recent me as a reckless
speculator.

The first speculative question is about possible relationship between Jones inclusions of
hyperfinite factors of type II1 (hyper-finite factors are von Neuman algebras emerging natu-
rally in TGD framework). The basic idea is that the discrete groups assignable to inclusions
could correspond to discrete groups acting in the effective covering spaces of embedding space
assignable to the hierarchy of Planck constants.

There are also speculations relating to the hierarchy of Planck constants, Mc-Kay cor-
respondence, and Jones inclusions. Even Farey sequences, Riemann hypothesis and and N-
tangles are discussed. Depending on reader these speculations might be experienced as irri-
tating or entertaining. It would be interesting to go this stuff through in the light of recent
understanding of the effective hierarchy of Planck constants to see what portion of its survives.

1 Introduction

I decided to separate the purely mathematical speculations about the hierarchy of Planck constants
(actually only effective hierarchy if the recent interpretation is correct) from the material describing
the physical ideas, key mathematical concepts, and the basic applications. These mathematical
speculations emerged during the first stormy years in the evolution of the ideas about Planck
constant and must be taken with a big grain of salt. I feel myself rather conservative as compared
to the fellow who produced this stuff for 7 years ago. This all is of course very relative. Many
readers might experience this recent me as a reckless speculator.

The first highly speculative topic discussed in this chapter is about possible connection of the
hierarchy of Planck constants with Jones inclusions.

1. The connection with Jones inclusions was originally a purely heuristic guess based on the
observation that the finite groups characterizing Jones inclusion characterize also pages of
the Big Book. The key observation is that Jones inclusions are characterized by a finite
subgroup G ⊂ SU(2) and that this group also characterizes the singular covering or factor
spaces associated with CD or CP2 so that the pages of generalized embedding space could
indeed serve as correlates for Jones inclusions. The elements of the included algebra M are
invariant under the action of G and M takes the role of complex numbers in the resulting
non-commutative quantum theory.

2. The understanding of quantum TGD at parton level led to the realization that the dynamics
of Kähler action realizes finite measurement resolution in terms of finite number of modes
of the induced spinor field. This automatically implies cutoffs to the representations of
various super-conformal algebras typical for the representations of quantum groups closely
associated with Jones inclusions [K2]. The Clifford algebra spanned by the fermionic oscillator
operators would provide a realization for the factor space N/M of hyper-finite factors of type
II1 identified as the infinite-dimensional Clifford algebra N of the configuration space and
included algebra M determining the finite measurement resolution. The resulting quantum
Clifford algebra has anti-commutation relations dictated by the fractionization of fermion
number so that its unit becomes r = ~/~0. SU(2) Lie algebra transforms to its quantum
variant corresponding to the quantum phase q = exp(i2π/r).

3. Jones inclusions appear as two variants corresponding to N :M < 4 and N :M = 4. The
tentative interpretation is in terms of singular G-factor spaces and G-coverings of M4 or CP2

in some sense. The alternative interpretation in terms of two geodesic spheres of CP2 would
mean asymmetry between M4 and CP2 degrees of freedom.
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4. Number theoretic Universality suggests an answer why the hierarchy of Planck constants is
necessary. One must be able to define the notion of angle -or at least the notion of phase
and of trigonometric functions- also in p-adic context. All that one can achieve naturally is
the notion of phase defined as root of unity and introduced by allowing algebraic extension
of p-adic number field by introducing the phase if needed. In the framework of TGD in-
spired theory of consciousness this inspires a vision about cognitive evolution as the gradual
emergence of increasingly complex algebraic extensions of p-adic numbers and involving also
the emergence of improved angle resolution expressible in terms of phases exp(i2π/n) up
to some maximum value of n. The coverings and factor spaces would realize these phases
geometrically and quantum phases q naturally assignable to Jones inclusions would realize
them algebraically. Besides p-adic coupling constant evolution based on hierarchy of p-adic
length scales there would be coupling constant evolution with respect to ~ and associated
with angular resolution.

There are also speculations relating to the hierarchy of Planck constants, Mc-Kay correspon-
dence, and Jones inclusions. Even Farey sequences, Riemann hypothesis and and N-tangles are
discussed. Depending on reader these speculations might be experienced as irritating or entertain-
ing. It would be interesting to go this stuff through in the light of recent understanding of the
effective hierarchy of Planck constants to see what portion of its survives.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [?].

2 Jones Inclusions And Generalization Of The Embedding
Space

The original motivation for the generalization of the embedding space was the idea that the pages
of the Big Book would provide correlates for Jones inclusions. In the following an attempt to
formulate this vision more precisely is carried out.

2.1 Basic Facts About Jones Inclusions

Here only basic facts about Jones inclusions are discussed. Appendix contains a more detailed
discussion of inclusions of HFFs.

2.1.1 Jones inclusions defined by subgroups of SL(2, C)× SU(2)

Jones inclusions with M : N < 4 have representation as RG0 ⊂ RG with G a discrete subgroup of
SU(2). SO(3) or SU(2) can be interpreted as acting in CP2 as rotations. On quantum spinors
the action corresponds to double cover of G.

A more general choice for G would be as a discrete subgroup Ga ×Gb ⊂ SL(2, C) × SU(2) ×
SU(2). Poincare invariance suggests that the subgroup of SL(2, C) reduces either to a discrete
subgroup of SU(2) and in the case that the rotation are genuinely 3-dimensional (E6, E8), the
only possible interpretation would be as isotropy group of a particle at rest. When the group acts
on plane as in case of An and D2n, it could be also assigned to a massless particle.

If the group involves boosts it contains an infinite number of elements and it is not clear whether
this kind of situation is physically sensible. In this case Jones inclusion could be interpreted as an
inclusion for the tensor product of G invariant algebras associated with CD and CP2 degrees of
freedom and one would haveM : N =M : N (Ga)×M : N (Gb). Since the index increases as the
order of G increases one has reasons to expect that in the case of Ga = SL(2, C) Na =∞ implies
larger M : N (Ga) > 4.

A possible interpretation is that the values M : N ≤ 4 are analogous to bound state energies
so that a discrete rotation group acting in the relative rotational degrees of freedom can act as a
symmetry group whereas the valuesM : N > 4 are analogous to ionized states for which particles
are almost freely moving with respect to each other with a constant velocity.

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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When one restricts the coefficients to G-invariant elements of Clifford algebra the Clifford field
is G-invariant under the natural action of G. This allows two interpretations. Either the Clifford
field is G invariant or that the Clifford field is defined in orbifold CD/Ga × CP2/Gb. CD/Ga is
obtained by replacing hyperboloid Ha (t2 − x2 − y2 − z2 = a2) with Ha/Ga. These spaces have
been considered as cosmological models having 3-space with finite volume [K9] (also a lattice like
structure could be in question).

2.1.2 The quantum phases associated with sub-groups of SU(2)

It is natural to identify quantum phase as that defined by the maximal cyclic subgroup for finite
subgroups of SU(2) and infinite subgroups of SL(2, C). Before continuing a brief summary about
quantum phases associated with finite subgroups of SU(2) is in order. E6 corresponds to N = 24
and n = 3 and E8 to icosahedron with N = 120, n = 5 and Golden mean and the minimal value
of n making possible universal topological quantum computer [K1].

Dn and An have orders 2n and n + 1 and act as symmetry groups of n-polygon and have
n-element cyclic group as a maximal cyclic subgroup. For double covers the orders are twice this.
Thus An resp. D2n correspond to q = exp(iπ/n) resp. q = exp(iπ/2n). Note that the restriction
n ≥ 3 means geometrically that only non-trivial polygons are allowed.

2.2 Jones Inclusions And The Hierarchy Of Planck Constants

The anyonic arguments for the quantization of Planck constant suggest that one can assign separate
scalings of Planck constant to CD and CP2 degrees of freedom and that these scalings in turn
reflect as scalings of M4± and CP2 metrics. This is definitely not in accordance with the original
TGD vision based on uniqueness of embedding space but makes sense if space-time and embedding
space are emergent concepts as the hierarchy of number theoretical von Neumann algebra inclusions
indeed suggests. Indeed, the scaling factors of CD and CP2 metric remain non-fixed by the general
uniqueness arguments since Cartesian product is in question.

2.2.1 Hierarchy of Planck constants and choice of quantization axis

Jones inclusions seem to relate in a natural manner to the selection of quantization axis.

1. In the case of CD the orbifold singularity is for all groups Ga except E6 and E8 the time-
like plane M2 corresponding to a radial ray through origin defining the quantization axis
of angular momentum and intersecting light-cone boundary along a preferred light-like ray.
For E6 and E8 (tetrahedral and icosahedral symmetries) the singularity consists of planes
M2 related by symmetries of G sharing time-like line M1 and in this case there are several
alternative identifications of the quantization axes as axis around which the maximal cyclic
subgroup acts as rotations.

2. From this it should be obvious that Jones inclusions represented in this manner would relate
very closely to the selection of quantization axes and provide a geometric representation for
this selection at the level of space-time and WCW . The existence of the preferred direction
of quantization at a given level of dark matter level should have observable consequences.
For instance, in cosmology this could mean a breaking of perfect rotational symmetry at
dark matter space-time sheets. The interpretation would be as a quantum effect in cosmo-
logical length scales. An interesting question is whether the observed asymmetry of cosmic
microwave background could have interpretation as a quantum effect in cosmological length
and time scales.

2.2.2 Do factor spaces and coverings correspond to the two kinds of Jones inclusions?

What could be the interpretation of the singular coverings and and factor spaces? If both geodesic
spheres of CP2 are allowed M : N = 4 could correspond to the allowance of cosmic strings and
other analogous objects. This option is however asymmetric with respect to CD and CP2 and the
more plausible option is that the two kinds of Jones inclusions correspond to singular factor spaces
and coverings.
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1. Jones inclusions appear in two varieties corresponding toM : N < 4 andM : N = 4 and one
can assign a hierarchy of subgroups of SU(2) with both of them. In particular, their maximal
Abelian subgroups Zn label these inclusions. The interpretation of Zn as invariance group is
natural for M : N < 4 and it naturally corresponds to the coset spaces. For M : N = 4 the
interpretation of Zn has remained open. Obviously the interpretation of Zn as the homology
group defining covering would be natural.

2. For covering spaces one would however obtain the degrees of freedom associated with the dis-
crete fiber and the degrees of freedom in question would not disappear completely and would
be characterized by the discrete subgroup of SU(2). For anyons the non-trivial homotopy of
plane brings in non-trivial connection with a flat curvature and the non-trivial dynamics of
topological QFTs. Also now one might expect similar non-trivial contribution to appear in
the spinor connection of ĈD×̂Ga and ĈP 2×̂Gb. In conformal field theory models non-trivial
monodromy would correspond to the presence of punctures in plane. This picture is also
consistent with the G singlets of the quantum states despite the fact that fermionic oscillator
operators belong to non-trivial irreps of G.

2.2.3 Coverings and factors spaces form an algebra like structure

It is easy to see that coverings and factor spaces defining the pages of the Big Book form an algebra
like structure.

1. For factor spaces the unit for quantum numbers like orbital angular momentum is multiplied
by na resp. nb and for coverings it is divided by this number. These two kind of spaces are
in a well defined sense obtained by multiplying and dividing the factors of Ĥ by Ga resp. Gb
and multiplication and division are expected to relate to Jones inclusions with M : N < 4
and M : N = 4, which both are labeled by a subset of discrete subgroups of SU(2).

2. The discrete subgroups of SU(2) with fixed quantization axis possess a well defined multipli-
cation with product defined as the group generated by forming all possible products of group
elements as elements of SU(2). This product is commutative and all elements are idempo-
tent and thus analogous to projectors. Trivial group G1, two-element group G2 consisting
of reflection and identity, the cyclic groups Zp, p prime, and tetrahedral, octahedral, and
icosahedral groups are the generators of this algebra.

By commutativity one can regard this algebra as an 11-dimensional module having natural
numbers as coefficients (“rig” ). The trivial group G1, two-element group G2 generated by re-
flection, and tetrahedral, octahedral, and icosahedral groups define 5 generating elements for this
algebra. The products of groups other than trivial group define 10 units for this algebra so that
there are 11 units altogether. The groups Zp generate a structure analogous to natural num-
bers acting as analog of coefficients of this structure. Clearly, one has effectively 11-dimensional
commutative algebra in 1-1 correspondence with the 11-dimensional “half-lattice” N11 (N denotes
natural numbers). Leaving away reflections, one obtains N7. The projector representation suggests
a connection with Jones inclusions. An interesting question concerns the possible Jones inclusions
assignable to the subgroups containing infinitely manner elements. Reader has of course already
asked whether dimensions 11, 7 and their difference 4 might relate somehow to the mathematical
structures of M-theory with 7 compactified dimensions. One could introduce generalized config-
uration space spinor fields in WCW labeled by sectors of H with given quantization axes. By
introducing Fourier transform in N11 one would formally obtain an infinite-component field in
11-D space.

2.2.4 Connection between Jones inclusions, hierarchy of Planck constants, and finite
number of spinor modes

The original generalization of the embedding space to accommodate the hierarchy of Planck con-
stants was based on the idea that the singular coverings and factor spaces associated with the
causal diamond CD and CP2, which appears as factors of CD×CP2 correspond somehow to Jones
inclusions, and that the integers na and nb characterizing the orders of maximal cyclic groups
of groups Ga and Gb associated with the two Cartesian factors correspond to quantum phases
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q = exp(i2π/ni) in such a way that singular factor spaces correspond to Jones inclusions with
index M : N < 4 and coverings to those with index M : N = 4.

Since Jones inclusions are interpreted in terms of finite measurement resolution, the mathemat-
ical realization of this heuristic picture should rely on the same concept realized also by the fact
that the number of non-zero modes for induced spinor fields is finite. This allows to consider two
possible interpretations.

1. The finite number of modes defines an approximation to the hyper-finite factor of type II1
defined by WCW Clifford algebra.

2. The Clifford algebra spanned by fermionic oscillator operators is quantum Clifford algebra
and corresponds to the somewhat nebulous object N/M associated with the inclusionM⊂
N and coding the finite measurement resolution to a finite quantum dimension of the Clifford
algebra. The fact that quantum dimension is smaller than the actual dimension would reflect
correlations between spinor components so that they are not completely independent.

If the latter interpretation is correct then second quantized induced spinor fields should obey
quantum variant of anti-commutation relations reducing to ordinary anti-commutation relations
only for na = nb = 0 (no singular coverings nor factor spaces). This would give the desired
connection between inclusions and hierarchy of Planck constants. It is possible to have infinite
number of quantum group like structure for ~ = ~0.

There are two quantum phases q and one should understand what is the phase that appears
in the quantum variant of anti-commutation relations. A possible resolution of the problem relies
on the observation that there are two kinds of number theoretic braids. The first kind of number
theoretic braid is defined as the intersection of M+ (or light-like curve of δM4

+ in more general
case) and of δM4

+ projection of X2. Second end of braid is defined as the intersection of CP2

projection of X2 of homologically non-trivial sphere S2
II of CP2. The intuitive expectation is that

these dual descriptions apply for light-like 3-surfaces associated resp. co-associative regions of
space-time surface and that both descriptions apply at wormhole throats. The duality of these
descriptions is guaranteed also at wormhole throats if physical Planck constant is given by ~ = r~0,
r = ~(M4)/~(CP2), so that only the ratio of the two Planck constants matters in commutation
relations. This would suggest that it is q = exp(i2π/r), which appears in quantum variant of
anti-commutation relations of the induced spinor fields.

2.2.5 The action of Ga ×Gb on WCW spinors and spinor fields

The first question is what kind of measurement resolution is in question. In zero energy ontology
the included states would typically correspond to insertion of zero energy states to the positive or
negative part of the physical state in time scale below the time resolution defined by the time scale
assignable to the smallest CD present in the zero energy state. Does the description in terms of
G invariance apply in this case or does it relate only to time and length scale resolution whereas
hierarchy of Planck constants would relate to angle resolution? Assume that this is the case.

The second question is how the idea aboutM as an included algebra defining finite measurement
resolution and G invariance as a symmetry definingM as the included algebra relate to each other.

1. One cannot say that G creates states, which cannot be distinguished from each other. Rather
G-invariant elements of M create states whose presence in the state cannot be detected.

2. For covering space option M represents states which are invariant under discrete subgroup
of SU(2) acting in the covering. States with integer spin would be below measurement res-
olution and only factional spins of form j/n would be observable. For factor space option
M would represents states which are invariant under discrete subgroup of SU(2) acting in
H-say states with spin. States with spin which is multiple of n would be below measurement
resolution. The situation would be very similar to each other. Number theoretic consider-
ations and the fact that the number of fermionic oscillator operators is finite suggest that
for coverings the condition Lz < 1 and for factor spaces the condition Lz < n is satisfied
by the generators of Clifford algebra regarded as irreducible representation of G. For factor
spaces the interpretation could be in terms of finite angular resolution ∆φ ≤ 2π/n excluding
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angular momenta Lz ≥ n. For coverings the resolution would be related to rotations (or
rather, braidings) as multiples of 2π: multiples m2π m ≥ n cannot be distinguished from
m mod n multiples.

3. The minimal assumption is that integer orbital angular momenta are excluded for coverings
and n-multiples are excluded for factors spaces. The stronger assumption would be that there
is angular momentum cutoff. This point is however very delicate. The states with j > n can
be obtained as tensor products of representations with j = m. If entanglement is present
one cannot anymore express the state as a product of M element and N element so that
the states j > n created in this manner would not be equivalent with those with j mod n.
The replacement of the ordinary tensor product with Connes tensor product would indeed
generate automatically entangled states and one could interpret Connes tensor product as a
way to create only the allowed states.

4. For quantum groups allow only finite number of representations up to some maximum spin
determined by the integer n characterizing quantum phase q. This would mean angular mo-
mentum cutoff leaving only a finite number of representations of quantum group [K2]. This
fits nicely with what one obtains in the case of factor spaces. For coverings the new element
is that the unit of spin becomes 1/n: otherwise the situation seems to be similar. Quantum
group like structure is obtained if the fermionic oscillator operators satisfy the quantum ver-
sion of anti-commutation relations. The algebra would be very similar except that the orbital
angular momentum labeling oscillator operators has different unit. Oscillator operators are
naturally in irreducible representations of G and only the non-trivial representations of G
are allowed.

5. Besides Jones inclusions corresponding to M : N < 4 there are inclusions with M : N = 4
to which one can also assign quantum phases. It would be natural to assign covering spaces
and factor spaces to these two kinds of inclusions. For the minimal option excluding only
the orbital angular momentum which are integers or multiples of n the fraction of excluded
states is very small for coverings so that M : N = 4 is natural for this option. M : N < 4
would in turn correspond naturally to factor spaces.

6. Since the two kinds of number theoretic braids correspond to points which belong to M2

or S2, one might argue that several quantum anti-commutation relations must be satisfied
simultaneously. This is not the case since the eigen modes of DC−S and hence also oscillator
operators code information about partonic surface X2 itself and also about X4(X3

l ) rather
than being purely local objects. In the case of covering space the oscillator operators can
be arranged to irreducible representations of G and in the case of factor space the oscillator
operators are G-invariant.

One must distinguish between G invariance for WCW spinors and spinor fields.

1. In the case of factor spaces 3-surface are G invariant so that there is no difference between
spinors and spinor fields as far as G is considered. Irreducible representations of G would
correspond to the superpositions ofG-transforms of oscillator operators for a fixedG-invariant
X3
l .

2. For covering space option G-invariance would mean that 3-surface is a mere G-fold copy
of single 3-surface. There is no obvious reason to assume this. Hence one cannot separate
spinorial degrees of freedom from WCW degrees of freedom since G affects both the spin
degrees of freedom and the 3-surface. Irreducible representations of G would correspond
to genuine WCW spinor fields involving a superposition of G-transforms of also X3

l . The
presence of both orbital and spin degrees of freedom could provide alternative explanation
for why M : N = 4 holds true for covering space option.

If the fermionic oscillator algebra is interpreted as a representation for N/M, allowed fermionic
oscillator operators belong to non-trivial irreps of G. One can however ask whether the many-
fermion states created by these operators are G-invariant for some physical reason so that one
would have kind of G-confinement forcing the states to be many-fermion states with standard unit
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of quantum numbers for coverings and integer multiples of n for factor spaces. This would conform
with the ideas that anyonicity is a microscopic property not visible at the level of entire state
and that many-fermion systems in the anyonic state resulting in strong coupling limit for ordinary
value of ~ are in question. The processes changing the value of Planck constant would be phase
transitions involving all fermions of the G-invariant state and would be slow for this reason. This
would also contribute to the invisibility of dark matter.

2.3 Questions

2.3.1 What is the role of dimensions?

Could the dimensions of CD and CP2 and the dimensions of spaces defined by the choice of
the quantization axes play a fundamental role in the construction from the constraint that the
fundamental group is non-trivial?

1. Suppose that the sub-manifold in question is geodesic sub-manifold containing the orbits of
its points under Cartan subgroup defining quantization axes. A stronger assumption would
be that the orbit of maximal compact subgroup is in question.

2. For M2n Cartan group contains translations in time direction with orbit M1 and Cartan
subgroup of SO(2n − 1) and would be Mn so that M̂2n would have a trivial fundamental
group for n > 2. Same result applies in massless case for which one has SO(1, 1)×SO(2n−2)
acts as Cartan subgroup. The orbit under maximal compact subgroup would not be in
question.

3. For CP2 homologically non-trivial geodesic sphere CP1 contains orbits of the Cartan sub-
group. For CPn = SU(n + 1)/SU(n) × U(1) having real dimension 2n the sub-manifold
CPn−1 contains orbits of the Cartan subgroup and defines a sub-manifold with codimension
2 so that the dimensional restriction does not appear.

4. For spheres Sn−1 = SO(n)/SO(n−1) the dimension is n−1 and orbit of SO(n−1) of point
left fixed by Cartan subgroup SO(2)× .. would for n = 2 consist of two points and Sn−2 in
more general case. Again co-dimension 2 condition would be satisfied.

2.3.2 What about holes of WCW ?

One can raise analogous questions at the level of WCW geometry. Vacuum extremals correspond
to Lagrangian sub-manifolds Y 2 ⊂ CP2 with vanishing induced Kähler form. They correspond to
singularities of WCW (“world of classical worlds” ) and WCW spinor fields should vanish for the
vacuum extremals. Effectively this would mean a hole in configuration space, and the question
is whether this hole could also naturally lead to the introduction of covering spaces and factor
spaces of the WCW s. How much information about the general structure of the theory just this
kind of decomposition might allow to deduce? This kind of singularities are infinite-dimensional
variants of those discussed in catastrophe theory and this suggests that their understanding might
be crucial.

2.3.3 Are more general inclusions of HFFs possible?

The proposed scenario could be criticized because discrete subgroups of SU(2) are in a preferred
position. The Jones inclusions considered correspond to quantum spinor representations of various
quantum groups SU(2)q, q = exp(i2π/n). This explains the result M : N ≤ 4. These representa-
tions are certainly in preferred role as far as WCW spinor fields are considered but it is possible to
assign a hierarchy of inclusions of HFFs labeled by quantum phase q with arbitrary representation
of an arbitrary compact Lie group. These inclusions would be analogous to discrete states in the
continuum M : N > 4.

Since the inclusions are characterized by single quantum phase q = exp(i2π/n) in the case of
compact Lie groups (Appendix), one can ask whether more general discrete groups than subgroups
of SU(2) should be allowed. The inclusions of HFFs associated with higher dimensional Lie groups
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have M : N > 4 and are analogous to bound states in continuum (Appendix). In the case of CP2

this would allow to consider much more general sub-groups.
The question is therefore whether some principle selects subgroups of SU(2). There are indeed

good arguments supporting the hypothesis that only discrete Abelian subgroups of SU(2) are
possible.

1. The notion of number theoretic braid allows only the only subgroups of rotation group leaving
M2 invariant and sub-groups of SU(3) leaving geodesic sphere S2

i invariant. This would drop
groups having genuinely 3-D action. In the case of SU(3) discrete subgroups of SO(3) or
U(2) remain under consideration. The geodesic sphere of type II is however analogous to
North/South pole of S2 and second phase factor associated with the coordinates (ξ1, ξ2)
becomes redundant since (|ξ1|2 + |ξ2|2)1/2 becomes infinite at S2

II so that ξ1/ξ2 becomes
appropriate coordinate. Hence action of U(2) reduces to that of SU(2) since ξ1 and ξ2

correspond to same value of color hyper charge associated with U(1).

2. A physically attractive possibility is that Ga × Gb leaves the choice of quantization axes
invariant. This condition makes sense also for coverings. This would leave only Abelian
groups into consideration and drop D2n, E6, and E8. It is quite possible that only these
groups define sectors of the generalized embedding space. This means that Gb = Zn1 ×
Zn2 ⊂ U(1)I × U(1)Y ⊂ SU(2)× U(1)Y and even more general subgroups of SU(3) (if non-
commutativity is allowed) are a priori possible. Again the first argument reduces the list to
cyclic subgroups of SU(2).

3. The products of groups Zn are also number theoretically in a very special position since they
relate naturally to the finite cyclic extensions and also to the maximal Abelian extension of
rationals. With this restriction on Ga ×Gb one can consider the hypothesis that elementary
particles correspond are maximally quantum critical systems left invariant by all groups
Ga×Gb respecting a given choice of quantization axis and implying that darkness is associated
only to field bodies and Planck constant becomes characterizer of interactions rather than
elementary particles themselves.

3 Some Mathematical Speculations

3.1 The Content Of Mckay Correspondence In TGD Framework

The possibility to assign Dynkin diagrams with the inclusions of II1 algebras is highly suggestive
concerning possible physical interpretations. The basic findings are following.

1. For β =M : N < 4 Dynkin diagrams code for the inclusions and correspond to simply laced
Lie algebras. SU(2), D2n+1, and E7 are excluded.

2. Extended ADE Dynkin diagrams coding for simply laced ADE Kac Moody algebras appear
at β = 4. Also SU(2) Kac Moody algebra appears.

3.1.1 Does TGD give rise to ADE hierarchy of gauge theories

The first question is whether any finite subgroup G ⊂ SU(2) acting in CP2 degrees of freedom could
somehow give rise to multiplets of the corresponding gauge group having interactions described by
a gauge theory. Orbifold picture suggests that might be the case.

1. The “sheets” for the space-time sheet forming an N(G)-fold cover of CD are in one-one
correspondence with group G. This degeneracy gives rise to additional states and these states
correspond to the group algebra having basis given by group characters χ(g). One obtains
irreducible representations of G with degeneracies given by their dimensions. Altogether
one obtains N(G) states in this manner. In the case of A(n) the number of these states
is n + 1, the number of the states of the fundamental representation of SU(n + 1). In
the same manner, for D2n the number of these states equals to the number of states in
the fundamental representation of D2n. It seems that the rule is quite general. Thus these
representations would in the case of fermions give the states of the fundamental representation
of the corresponding gauge group.
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2. From fermion and anti-fermion states one can construct in a similar manner pairs giving
N(G)2 states defining in the case of A(n) n2 − 1-dimensional gauge boson multiplet plus
singlet. Also other groups must give boson multiplet plus possible other multiplets. For
instance, for D(4) the number of states is 64 and boson multiplet is 8-dimensional so that
many other spin 1 states result.

3. These findings give hopes that the orbifold multiplets could be modelled by a gauge theory
based on corresponding gauge group. What is nice that this huge hierarchy of gauge theories
is associated with dark matter so that the predictivity and falsifiability are not lost unlike in
M-theory.

3.1.2 Does one obtain also a hierarchy of conformal theories with ADE Kac Moody
symmetry?

Consider next the question Kac Moody interactions correspond to extended ADE diagrams are
possible.

1. In this case the notion of orbifold seems to break down since the symmetry related points
form a continuum SU(2) and space-time surface would become 6-dimensional if the CD
projection is 4-dimensional. If one takes space-time as something which emerges, one could
take this possibility half seriously. A more natural natural possibility is that CD projection
is 2-dimensional geodesic sphere in which case one would have string like objects so that
conformal field theory with Kac-Moody algebra would emerge naturally.

2. The new degrees of freedom would define 2-dimensional continuum and it would not be com-
pletely surprising if conformal field theory based on ADE Kac Moody algebra could describe
the situation. One possibility is that these continua for different inclusions correspond to
SU(2) decompose to an N(G)-fold covers of S2/G orbifold so that also now groups G would
be involved with the Jones inclusions, which might provide a hint about how to construct
them. S2/G would play the role of stringy world sheet for the conformal field theory in
question. This effective re-arrangement of the topology S2 might be due to the fact that con-
formal fields possess G symmetry which effectively groups points of S2 to n(G)-multiplets.
The localized representations of the Lie group corresponding to G would correspond to the
multiplets obtained from the representations of group algebra of G as in previous case.

3. The formula for the scaling factor of CD metric would give infinite scaling factor if one
identifies the scaling factor as maximal order of cyclic subgroup of SU(2). As a matter
fact there is no finite cyclic subgroup of this kind. The solution to the problem would be
identification of the scaling factor as the order of the maximal cyclic subgroup of G so that
the scaling factors would be same for the two situations related by McKay correspondence.

3.1.3 Generalization to CD degrees of freedom

One can ask whether the proposed picture generalizes formally also the case of CD.

1. In this case quantum groups would correspond to discrete subgroups G ⊂ SL(2, C). Kac
Moody group would correspond to G-Kac Moody algebra made local with respect to SL(2, C)
orbit in CD divided by G. These orbits are 3-dimensional hyperboloids Ha with a constant
value of light cone proper time a so that the division by G gives fundamental domain Ha/G
with a finite 3-volume.

2. The 4-dimensionality of space-time would require 1-dimensional CP2 projection. Vacuum ex-
tremals of Kähler action would be in question. Robertson-Walker metric have 1-dimensional
CP2 projection and carry non-vanishing density of gravitational mass so that in this sense
the theory would be non-trivial. G would label different lattice like cosmologies defined by
tessellations with fundamental domain Ha/G.

3. The multiplets of G would correspond to collections of points, one from each cells of the
lattice like structure. Macroscopic quantum coherence would be realized in cosmological
scales. If one takes seriously the vision about the role of short distance p-adic physics as a
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generator of long range correlations of the real physics reflected as p-adic fractality, this idea
does not look so weird anymore.

Complexified modular group SL(2, Z + iZ) and its subgroups are interesting as far as p-
adicization is considered. The principal congruence subgroups Γ(N) of SL(2, Z + iZ) which
are unit matrices modulo N define normal subgroups of the complex modular group and are
especially interesting candidates for groups G ⊂ SL(2, C). The group Γ(N = pk) labeling
fundamental domains of the tessellation Ha/Γ(N = pk) defines a mathematically attractive
candidate for a point set associated with the intersections of p-adic space-time sheets with
real space-time sheets. Also analogous groups for algebraic extensions of Z are interesting.

The simplest discrete subgroup of SL(2, C) with infinite number of elements would corre-
sponds to powers of boost to single direction and correspond at the non-relativistic limit
to multiples of basic velocity. This could also give rise to quantization of cosmic recession
velocities. There is evidence for the quantization of cosmic recession velocities (for a model
in which single object produces quantized redshifts see [K5] ) and it is interesting to see
whether they could be interpreted in terms of the lattice like periodicity in cosmological
length scales implied by the effective reduction of physics to M4

+/Gn. In [E1] the values
z = 2.63, 3.45, 4.47 of cosmic red shift are listed. These correspond to recession veloci-
ties v = (z2 − 1)/(z2 + 1) are (0.75, 0.85, 0.90). The corresponding hyperbolic angles are
given by η = acosh(1/(1 − v2)) and the values of η are (1.46, 1.92, 2.39). The differences
η(2)− η(1) = .466 and η(3)− η(2) = .467 are same within experimental uncertainties. One
has however η(n)/(η(2)− η(1)) = (3.13, 4.13, 5.13) instead of (3, 4, 5). A possible interpreta-
tion is in terms of the velocity of the observer with respect to the frame in which quantization
of η happens.

3.1.4 Quantitative support for the interpretation

A more detailed analysis of the situation gives support for the proposed vision.

1. A given value of quantum group deformation parameter q = exp(iπ/n) makes sense for
any Lie algebra but now a preferred Lie-algebra is assigned to a given value of quantum
deformation parameter. At the limit β = 4 when quantum deformation parameter becomes
trivial, the gauge symmetry is replaced by Kac Moody symmetry.

2. The prediction is that Kac-Moody central extension parameter should vanish for β < 4.
There is an intriguing relationship to formula for the quantum phase qKM associated with
(possibly trivial) Kac-Moody central extension and the phase defined by ADE diagram

qKM = exp(iφ) , φ1 = π
k+hv ,

qJones = exp(iφ) , φ = π
h

In the first formula sum of Kac-Moody central extension parameter k and dual Coxeter
number hv appears whereas Coxeter number h appears in the second formula. Internal
consistency requires

k + hv = h . (3.1)

It is easy see that the dual Coxeter number hv and Coxeter number h given by h = (dim(g)−
r)/r, where r is the dimension of Cartan algebra of g, are identical for ADE algebras so that
the Kac-Moody central extension parameter k must indeed vanish. For SO(2n+ 1), Sp(n),
G2, and F4 the condition h = hv does not hold true but one has h(n) = 2n = hv + 1 for
SO(2n + 1), h(n) = 2n = 2(hv − 1) for Sp(n), h = 6 = hv + 2 for G2, and h = 12 = hv + 3
for F4.

What is intriguing that G2, which seems to play a fundamental role in the dual formulation
of quantum TGD based on the identification of space-times as surfaces in hyper-octonionic
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space M8 [K10] is not allowed. As a matter fact, G2 → SU(3) reduction occurs also in the
dual formulation based on G2/SU(3) coset model and is required by the separate conser-
vation of quark and lepton numbers predicted by TGD. ADE groups would be associated
with the interaction between space-time sheets rather than entire dynamics and need not
have anything to do with the Kac-Moody algebra associated with color and electro-weak
interactions appearing in the construction of physical states [K7].

3. There seems to be a concrete connection with conformal field theories. This connection
would allow to understand the emergence of quantum groups appearing naturally in these
theories. Quite generally, the conformal central extension parameter for unitary Virasoro
representations resulting by Sugawara construction from Kac Moody representations satisfies
either of the conditions

c ≥ kdim(g)

k + hv
+ 1 ,

c =
kdim(g)

k + hv
+ 1− 6

(h− 1)h
. (3.2)

For k = 0, which should be interesting for β < 4, the second formula reduces to

c = 1− 6

(h− 1)h
. (3.3)

The formula gives the values of c for minimal conformal field theories with finite number of
conformal fields and real conformal weights. Indeed, h in this formula seems to correspond
to the same h as appearing in the expression β ≡M : N = 4cos2(π/h) .

β = 3, h = 6 corresponds to 3-state Potts model with c = 4/5 which should thus have a
gauge group for which Coxeter number is 6: the group should be either SU(6) or SO(8).
Two-state Potts model, that is Ising model with β = 2, h = 4 would correspond to c = 1/2
and to a gauge group SU(4) or SO(4). For h = 3 (“one-state Potts model” ) with group
SU(3) one would have c = 0 and vanishing conformal anomaly so that conformal degrees of
freedom would become pure gauge degrees of freedom.

These observations give support for the following picture.

1. Quite generally, the number of states of the generalized β-state Potts model has an interpre-
tation as the dimension β = M : N of M as N -module. Besides the models with integer
number of states there is an infinite number of models for which the number of states is not
an integer. The conditions c ≤ 1 guaranteeing real conformal weights and β ≤ 4 correspond
to each other for these models.

2. β > 4 Potts models would be formally obtained by allowing h to be imaginary in the defining
formula for M : N . In this case c would be however complex so that the theory would not
be unitary.

3. For minimal models with (β < 4, c < 1) Kac-Moody central extension parameter is vanishing
so that Kac Moody algebra indeed acts like gauge symmetries and gauge symmetries would be
in question. (β = 4, c = 1) would define a “four-state Potts model” with infinite-dimensional
unitary group acting as a gauge group. On the other hand, the appearance of extended ADE
Dynkin diagrams suggests strongly that this limit is not realized but that β = M : N = 4
corresponds to k = 1 conformal field theory allowing Kac Moody symmetries for any ADE
group, which as simply-laced groups allows vertex operator construction. The appearance of
kdim(g)/(k+g) in the more general formula would thus code the Kac Moody group whereas
for β < 4 ADE diagram codes for the preferred gauge group characterizing the minimal CFT.
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4. The possibility that any ADE gauge group or Kac-Moody group can characterize the inter-
action between space-time sheets conforms with the idea about Universe as a Topological
Quantum Computer able to simulate any conceivable quantum dynamics. Of course, one
cannot exclude the possibility that only electro-weak and color symmetries are realized in
this manner.

3.1.5 Ga as a symmetry group of magnetic body and McKay correspondence

The group Ga ⊂ SU(2) ⊂ SL(2, C) means exact rotational symmetry realized in terms of CD
coverings of CP2. The 5 and 6-cycles in biochemistry (sugars, DNA, ....) are excellent candidates
for these symmetries. For very large values of Planck constant, say for the values ~(CD)/~(CP2) =
GMm/v0 = (na/nb)~0, v0 = 2−11, required by the model for planetary orbits as Bohr orbits [K8],
Ga is huge and corresponds to either Zna

or in the case of even value of na to the group generated
by Zn and reflection acting on plane and containing 2na elements.

The notion of magnetic body seems to provide the only conceivable candidate for a geometric
object possessing Ga as symmetries. In the first approximation the magnetic field associated with
a dark matter system is expected to be modellable as a dipole field having rotational symmetry
around the dipole axis. Topological quantization means that this field decomposes into flux tube
like structures related by the rotations of Zn or D2n. Dark particles would have wave functions
de-localized to this set of these flux quanta and span group algebra of Ga. Magnetic flux quanta are
indeed assumed to mediate gravitational interactions in the TGD based model for the quantization
of radii of planetary orbits and this explains the dependence of ~gr on the masses of planet and
central object [K8].

For the model of dark matter hierarchy appearing in the model of living matter one has na =
211k, k = 1, 2, 3, .., 7 for cyclotron time scales below life cycle for a magnetic field Bd = .2 Gauss at
k = 4 level of hierarchy (the field strength is fixed by the model for the effects of ELF em fields on
vertebrate brain at harmonics of cyclotron frequencies of biologically important ions [K6] ). Note
that Bd scales as 2−11k from the requirement that cyclotron energy is constant.

ADE correspondence between subgroups of SU(2) and Lie groups in ADE hierarchy encourages
to consider the possibility that TGD could mimic ADE hierarchy of gauge theories. In the case of
Ga this would mean that many fermion states constructed from single fermion states, which are
in one-one correspondence with the elements of Ga group algebra, would define multiplets of the
gauge group corresponding to the Dynkin diagram characterizing Ga: for instance, SU(na) in the
case of Zna . Fermion multiplet would contain na states and gauge boson multiplet n2a − 1 states.
This would provide enormous information processing capacity since for na = 211k fermion multiplet
would code exactly 11k bits of information. Magnetic body could represent binary information
using the many-particle states belonging to the representations of say SU(na) at its flux tubes.

3.2 Jones Inclusions, The Large N Limit Of SU(N) GaugeTheories and
AdS/CFT Correspondence

The framework based on Jones inclusions has an obvious resemblance with larger N limit of SU(N)
gauge theories and also with the celebrated AdS/CFT correspondence [B1] so that a more detailed
comparison is in order.

3.2.1 Large N limit of gauge theories and series of Jones inclusions

The large N limit of SU(N) gauge field theories has as definite resemblance with the series of
Jones inclusions with the integer n ≥ 3 characterizing the quantum phase q = exp(iπ/n) and the
order of the maximal cyclic subgroup of the subgroup of SU(2) defining the inclusion. Recall that
all ADE groups except D2n+1 and E7 are allowed (SU(2) is excluded since it would correspond to
n = 2).

The limiting procedure keeps the value of g2N fixed. Rather remarkably, this is equivalent
with keeping αN constant but assuming ~ to scale as n = N . Thus the quantization of Planck
constants would provide a physical laboratory for the testing of large N limit.

The observation suggesting a description of YM theories in terms of closed strings is that
Feynman diagrams can be interpreted as being imbedded at closed 2-surfaces of minimal genus



3.2 Jones Inclusions, The Large N Limit Of SU(N) GaugeTheories and AdS/CFT
Correspondence 15

guaranteeing that the internal lines meet except in vertices. The contribution of genus g diagrams
is proportional to Ng−1 at the large N limit. The interpretation in terms of closed partonic 2-
surfaces is highly suggestive and the Ng−1 should come from the multiple covering property of
CP2 by N CD-points (or vice versa) with the finite subgroup of G ⊂ SU(2) defining the Jones
inclusion and acting as symmetries of the surface.

3.2.2 Analogy between stacks of branes and multiple coverings of CD and CP2

An important aspect of AdS/CFT dualities is a prediction of an infinite hierarchy of gauge groups,
which as such is as interesting as the claimed dualities. The prediction relies on the notion Dp-
branes. Dp-branes are p + 1-dimensional surfaces of the target space at which the ends of open
strings can end. In the simplest situation one considers N parallel p-branes at the limit when
the distances between branes characterized by an expectation value of Higgs fields approach zero
to obtain what is called N-stack of branes. There are N2 different strings connecting the branes
and the heuristic idea is that they correspond to gauge bosons of U(N) gauge theory. Note that
the requirement that AdS/CFT dualities exist forces the introduction of branes and the optimistic
interpretation is that a non-perturbative effect of still unknown M-theory is in question. In the
limit of an ideal stack one assumes that U(N) gauge theory at the brane representing the stack is
obtained. The branes must also carry a p-form defining gauge potential for a closed p + 1-form.
This Ramond charge is quantized and its value equals to N .

Consider now the group Ga×Gb ⊂ SL(2, C)×SU(2) ⊂ SU(3) defining double Jones inclusion
and implying the scalings ~(M4) → n(Gb)~(M4) and ~(CP2) → n(Ga)~(CP2). These space-time
surfaces define n(Ga)-fold multiple coverings of CP2 and n(Gb)-fold multiple coverings of CD. In
CP2 degrees of freedom the collection of Gb-related partonic 2-surfaces (/3-surfaces/4-surfaces) is
highly analogous to the stack of branes. In CD degrees of freedom the stack of copies of surface
typically correspond to along a circle (An, D2n or at vertices of tetrahedron or isosahedron.

In TGD framework the interpretation strings are not needed to define gauge fields. The group
algebra of G realized as discrete plane waves at G-orbit gives rise to representations of G. The
hypothesis supported by few examples is that these additional degrees of freedom allow to construct
multiplets of the gauge group assignable to the ADE diagram characterizing the inclusion.

3.2.3 AdS/CFT duality

AdS/CFT duality is a further aspect of the brane construction. The dual description of the
situation is in terms of a string theory in a background in which N -brane acts as a macroscopic
object giving rise to a black-hole like object in (say) 10-dimensional target space. This background
has the form AdS5×X5, where AdS5 is 5-dimensional hyperboloid of M6 and thus allows SO(4, 2)
as isometries. X5 is compact constant curvature space. S5 gives rise to N = 4 SUSY in M4 with
M4 interpreted as a brane. The first support for the dualities comes from the symmetries: for
instance, the N = 4 super-symmetrized isometries of AdS5 × S5 are same as the symmetries of
4-dimensional N = 4 SUSY for p = 3 branes. N-branes can be used as models for black holes in
target space and black-hole entropy can be calculated using either target space picture or conformal
field theory at brane and the results turn out be the same.

Does the TGD equivalent of this duality exists in some sense?

1. As far as partonic 2-surfaces identified as 1-branes are considered, conformal field theory
description is trivially true. In TGD framework the analog of Ramond charges are the
integers na and nb characterizing the multipliticies of the maximal Abelian subgroups having
clear topological meaning. This conforms with the observation that large N limit of the gauge
field theories can be formulated in terms of closed surfaces at which the Feynman diagrams
are imbedded without self crossings. It seems that the integers na and nb characterizing the
Jones inclusion naturally take the role of Ramond charge: this does not of course exclude
the possibility they can be expressed as fluxes at space-time level as will be indeed found.

2. Conformal field theory description can be generalized in the sense that one replaces the
n(Ga) × n(Gb) partonic surfaces with single one and describes the new states as primary
fields arranged into representations of the ADE group in question. This would mean that
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the standard model gauge group extends by additional factor which is however non-trivially
related to it.

3. If one can accept the idea that the conformal field theory description for partons gives rise
to M4 gauge theory as an approximate description, it is not too difficult to imagine that also
ADE hierarchy of gauge theories results as a description of the exotic states. One can say
that CFT in p-brane is replaced now with CFT on partonic 2-surface (1-brane) analogous to
a closed string.

4. In the minimal interpretation there is no need to add strings connecting the branches of
the double covering of the partonic 2-surface whose function is essentially that of making
possible gauge bosons as fermion anti-fermion pairs. One could of course imagine gauge
fluxes as counterparts of strings but just the fact that G-invariance dictates the configurations
completely forces to question this kind of dynamics.

5. There is no reason to expect the emergence of N = 4 super-symmetric field theory in M4 as
in the case of super-string models. The reasons should be already obvious: super-conformal
generators G anti-commute to L0 proportional to mass squared rather than four-momentum
and the spectrum extended by Ga ×Gb degeneracy contains more states.

One can of course ask whether higher values of p could make sense in TGD framework.

1. It seems that the light-like orbits of the partonic 2-surfaces defining 2-branes do not bring in
anything new since the generalized conformal invariance makes it possible the restriction to
a 2-dimensional cross section of the light like causal determinant.

2. The idea of regarding space-time surface X4 as a 3-brane in H in which some kind of con-
formal field theory is defined is in conflict with the basis ideas of TGD. The role of X4

interior is to provide classical correlates for quantum dynamics to make possible quantum
measurement theory and also introduce correlations between partonic 2-surfaces even in the
case that partonic conformal dynamics reduces to a topological string theory. It is quantum
classical correspondence which corresponds to this duality.

3.2.4 What is the counterpart of the Ramond charge in TGD?

The condition that there exist a p-form defining p+ 1-gauge field with p-charge equal to na or nb
is a rather stringent additional condition also in TGD framework. For n <∞ this kind of charge
is defined by Jones inclusion and represented topologically so that Ramond charge is not needed
in n < ∞ case. By the earlier arguments one must however be able to assign integers na and nb
also to G = SU(2) inclusions with Kac-Moody algebra characterized by an extended ADE diagram
with the phases qi = exp(iπ/ni) relating to the monodromy of the theory. Since Jones inclusion
does not define in this case the value of n < ∞ in any obvious manner, the counterpart of the
Ramond charge is needed.

1. For partonic 2-surfaces ordinary gauge potential would define this form and the condition
would state that magnetic flux equals to n so that the anyonic partonic two-surfaces would be
homologically non-trivial in CP2 degrees of freedom. String ends would define basic example
of this situation. This would be the case also in M4

+ degrees of freedom: the partonic 2-surface
would essentially wind na times around the tip of δCD and the gauge field in question would
be monopole magnetic field in δCD. This kind of situation need not correspond to anything
cosmological since future and past light-cones appear in the basic definition of the scattering
amplitudes.

2. For p = 3 Chern-Simons action for the induced CP2 Kähler form associated with the partonic
2-surface indeed defines this kind of charge. Ramond charge should be simply N . CP2 type
extremals or their small deformations satisfy this constraint and are indeed very natural in
elementary particle physics context but too restrictive in a more general context.
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Note that the light-like orbits of non-deformed CP2 type extremals have light-like random curve
as an M4 projection and the conformal symmetries of M4 obviously respect light-likeness property.
Hence SO(4, 2) symmetry characterizing AdS5/CFT is not excluded but would be broken by p-
adic thermodynamics and by TGD based Higgs mechanism involving the identification of inertial
momentum as average value of non-conserved gravitational momentum parallel to the light-like
zitterbewegung orbit.

3.2.5 Can one speak about black hole like structures in TGD framework?

For AdS/CFT correspondence there is also a dynamical coupling to the target space metric. The
coupling to H-metric is present also now since the overall scalings of the CD resp. CP2 metrics
by nb resp. by na are involved. This applies to when multiple covering is used explicitly. In the
description in which one replaces the multiple covering by ordinary M4×CP2, the metric suffers a
genuine change and something analogous to the black-hole type metrics encountered in AsS/CFT
correspondence might be encountered.

Consider as an example an na-fold covering of CP2 points by M4 points (ADE diagram Ana−1).
The n-fold covering means only n2π rotation for the phase angle ψ of CP2 complex coordinate
leads to the original point. The replacement ψ → ψ/na gives rise to what would look like ordinary
M4 × CP2 but with a modified CP2 metric. The metric components containing ψ as index are
scaled down by 1/na or 1/n2a. Notice that Ψ effectively disappears from the dynamics at the large
na limit.

If one uses an effective description in which covering is eliminated the metric is indeed affected
at the level of embedding space black hole like structures at the level of dynamic space might make
emerge also in TGD framework at large N limit since the masses of the objects in question become
large and CP2 metric is scaled by N so that CP2 has very large size at this limit. This need
not lead to any inconsistencies if these phases are interpreted as dark matter. At the elementary
particle level p-adic thermodynamics predicts that p-adic entropy is proportional to thermal mass
squared which implies elementary particle black-hole analogy.

3.2.6 Other dualities

Also quantum classical correspondence defines in a loose sense a duality justifying the basic as-
sumptions of quantum measurement theory. The light-like orbits of 2-D partons are characterized
by a generalization of ordinary 2-D conformal invariance so that CFT part of the duality would be
very natural. The dynamical target space would be replaced with the space-time surface X4 with
a dynamical metric providing classical correlates for the quantum dynamics at partonic 2-surfaces.
The duality in this sense cannot be however exact since classical dynamics cannot fully represent
quantum dynamics.

Classical description is not expected to be unique. The basic condition on space-time surfaces
assignable to a given configuration of partonic 2-surfaces associated with the surface X3

V defining
S-matrix element are posed by quantum classical correspondence. Both hyper-quaternionic and
co-hyper-quaternionic space-time surfaces are acceptable and this would define a fundamental
duality.

A concrete example about this HQ-coHQ duality would be the equivalence of space-time de-
scriptions using 4-D CP2 type extremals and 4-D string like objects connecting them. If one
restricts to CP2 type extremals and string like objects of from X2 × Y 2, the target space reduces
effectively to M4 and the dynamical degrees of freedom correspond in both cases to transversal M4

degrees of freedom. Note that for CP2 type extremals the conditions stating that random light-
likeness of the M4 projection of the CP2 type extremal are equivalent to Virasoro conditions. CP2

type extremals could be identified as co-HQ surfaces whereas stringlike objects would correspond
to HQ aspect of the duality.

HQ-coHQ provides dual classical descriptions of same phenomena. Particle massivation would
be a basic example. Higgs mechanism in a gauge theory description based on CP2 type extremals
would rely on zitterbewegung implying that the average value of gravitational mass identified
as inertial mass is non-vanishing and is discussed already. Higgs field would be assigned to the
wormhole contacts. The dual description for the massivation would be in terms of string tension
and mass squared would be proportional to the distance between G-related points of CP2.
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These observations would suggest that also a super-conformal algebra containing SL(2, R) ×
SU(2)L ×U(1) or its compact version exists and corresponds to a trivial inclusion. This is indeed
the case [A3]. The so called large N = 4 super-conformal algebra contains energy momentum
current, 2+2 super generators G, SU(2) × SU(2) × U(1) Kac-Moody algebra (both SU(2) and
SL(2, R) could be interpreted as acting on M4 spin degrees of freedom, and 2 spin 1/2 fermionic
currents having interpretation in terms of right handed neutrinos corresponding to two H-chiralities.
Interestingly, the scalar generator is now missing.

3.3 Could Mckay Correspondence And Jones Inclusions Relate To Each
Other?

The understanding of Langlands correspondence for general reductive Lie groups in TGD frame-
work seems to require some physical mechanism allowing the emergence of these groups in TGD
based physics. The physical idea would be that quantum dynamics of TGD is able to emulate
the dynamics of any gauge theory or even stringy dynamics of conformal field theory having
Kac-Moody type symmetry and that this emulation relies on quantum deformations induced by
finite measurement resolution described in terms of Jones inclusions of sub-factors characterized
by group G leaving elements of sub-factor invariant. Finite measurement resolution would would
result simply from the fact that only quantum numbers defined by the Cartan algebra of G are
measured.

There are good reasons to expect that infinite Clifford algebra has the capacity needed to
realize representations of an arbitrary Lie group. It is indeed known that that any quantum group
characterized by quantum parameter which is root of unity or positive real number can be assigned
to Jones inclusion [A5]. For q = 1 this would gives ordinary Lie groups. In fact, all amenable groups
define unique sub-factor and compact Lie groups are amenable ones.

It was so called McKay correspondence [A8] which originally stimulated the idea about TGD as
an analog of Universal Turing machine able to mimic both ADE type gauge theories and theories
with ADE type Kac-Moody symmetry algebra. This correspondence and its generalization might
also provide understanding about how general reductive groups emerge. In the following I try to
cheat the reader to believe that the tensor product of representations of SU(2) Lie algebras for
Connes tensor powers of M could induce ADE type Lie algebras as quantum deformations for
the direct sum of n copies of SU(2) algebras This argument generalizes also to the case of other
compact Lie groups.

3.3.1 About McKay correspondence

McKay correspondence [A8] relates discrete finite subgroups of SU(2) ADE groups. A simple
description of the correspondences is as follows [A8].

1. Consider the irreps of a discrete subgroup G ⊂ SU(2) which correspond to irreps of G and can
be obtained by restricting irreducible representations of SU(2) to those of G. The irreducible
representations of SU(2) define the nodes of the graph.

2. Define the lines of graph by forming a tensor product of any of the representations appearing
in the diagram with a doublet representation which is always present unless the subgroup
is 2-element group. The tensor product regarded as that for SU(2) representations gives
representations j − 1/2, and j + 1/2 which one can decompose to irreducibles of G so that
a branching of the graph can occur. Only branching to two branches occurs for subgroups
yielding extended ADE diagrams. For the linear portions of the diagram the spins of corre-
sponding SU(2) representations increase linearly as .., j, j + 1/2, j + 1, ...

One obtains extended Dynkin diagrams of ADE series representing also Kac-Moody algebras giving
An, Dn, E6, E7, E8. Also A∞ and A−∞,∞ are obtained in case that subgroups are infinite. The
Dynkin diagrams of non-simply laced groups Bn (SO(2n+ 1)), Cn (symplectic group Sp(2n) and
quaternionic group Sp(n)), and exceptional groups G2 and F4 are not obtained.

ADE Dynkin diagrams labeling Lie groups instead of Kac-Moody algebras and having one
node less, do not appear in this context but appear in the classification of Jones inclusions for
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M : N < 4. As a matter fact, ADE type Dynkin diagrams appear in very many contexts as one
can learn from John Baez’s This Week’s Finds [A2] .

1. The classification of integral lattices in Rn having a basis of vectors whose length squared
equals 2

2. The classification of simply laced semisimple Lie groups.

3. The classification of finite sub-groups of the 3-dimensional rotation group.

4. The classification of simple singularities. In TGD framework these singularities could be
assigned to origin for orbifold CP2/G, G ⊂ SU(2).

5. The classification of tame quivers.

3.3.2 Principal graphs for Connes tensor powers M

The thought provoking findings are following.

1. The so called principal graphs characterizing M : N = 4 Jones inclusions for G = SU(2)
are extended Dynkin diagrams characterizing ADE type affine (Kac-Moody) algebras. Dn is
possible only for n ≥ 4.

2. M : N < 4 Jones inclusions correspond to ordinary ADE type diagrams for a subset of
simply laced Lie groups (all roots have same length) An (SU(n)), D2n (SO(2n)), and E6

and E8. Thus D2n+1 (SO(2n + 2)) and E7 are not allowed. For instance, for G = S3 the
principal graph is not D3 Dynkin diagram.

The conceptual background behind principal diagram is necessary if one wants to understand
the relationship with McKay correspondence.

1. The hierarchy of higher commutations defines an invariant of Jones inclusion N ⊂ M.
Denoting by N ′ the commutant of N one has sequences of horizontal inclusions defined
as C = N ′ ∩ N ⊂ N ′ ∩ M ⊂ N ′ ∩ M1 ⊂ ... and C = M′ ∩ M ⊂ M′ ∩ M1 ⊂ ....
There is also a sequence of vertical inclusions M′ ∩Mk ⊂ N ′ ∩Mk. This hierarchy defines
a hierarchy of Temperley-Lieb algebras [A7] assignable to a finite hierarchy of braids. The
commutants in the hierarchy are direct sums of finite-dimensional matrix algebras (irreducible
representations) and the inclusion hierarchy can be described in terms of decomposition of
irreps of kth level to irreps of (k− 1)th level irreps. These decomposition can be described in
terms of Bratteli diagrams [A4].

2. The information provided by infinite Bratteli diagram can be coded by a much simpler bi-
partite diagram having a preferred vertex. For instance, the number of 2k-loops starting
from it tells the dimension of kth level algebra. This diagram is known as principal graph.

Principal graph emerges also as a concise description of the fusion rules for Connes tensor
powers of M.

1. It is natural to decompose the Connes tensor powers [A8]Mk =M⊗N ...⊗NM to irreducible
M−M, N −M, M−N , or N − N bi-modules. If M : N is finite this decomposition
involves only finite number of terms. The graphical representation of these decompositions
gives rise to Bratteli diagram.

2. If N has finite depth the information provided by Bratteli diagram can be represented in
nutshell using principal graph. The edges of this bipartite graph connect M−N vertices
to vertices describing irreducible N − N representations resulting in the decomposition of
M−N irreducibles. If this graph is finite, N is said to have finite depth.
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3.3.3 A mechanism assigning to tensor powers Jones inclusions ADE type gauge
groups and Kac-Moody algebras

The earliest proposals inspired by the hierarchy of Jones inclusions is that in M : N < 4 case
it might be possible to construct ADE representations of gauge groups or quantum groups and
in M : N = 4 using the additional degeneracy of states implied by the multiple-sheeted cover
H → H/Ga × Gb associated with space-time correlates of Jones inclusions. Either Ga or Gb
would correspond to G. In the following this mechanism is articulated in a more refined manner
by utilizing the general properties of generators of Lie-algebras understood now as a minimal set
of elements of algebra from which the entire algebra can be obtained by repeated commutation
operator (I have often used “ Lie algebra generator” as an synonym for “Lie algebra element” ).
This set is finite also for Kac-Moody algebras.

1. Two observations

The explanation to be discussed relies on two observations.

1. McKay correspondence for subgroups of G (M : N = 4) resp. its variants (M : N < 4) and
its counterpart for Jones inclusions means that finite-dimensional irreducible representations
of allowed G ⊂ SU(2) label both the Cartan algebra generators and the Lie (Kac-Moody)
algebra generators of t+ and t− in the decomposition g = h ⊕ t+ ⊕ t−, where h is the Lie
algebra of maximal compact subgroup.

2. Second observation is related to the generators of Lie-algebras and their quantum counter-
parts (see Appendix for the explicit formulas for the generators of various algebras consid-
ered). The observation is that each Cartan algebra generator of Lie- and quantum group
algebras, corresponds to a triplet of generators defining an SU(2) sub-algebra. The Car-
tan algebra of affine algebra contains besides Lie group Cartan algebra also a derivation d
identifiable as an infinitesimal scaling operator L0 measuring the conformal weight of the
Kac-Moody generators. d is exceptional in that it does not give rise to a triplet. It cor-
responds to the preferred node added to the Dynkin diagram to get the extended Dynkin
diagram.

2. Is ADE algebra generated as a quantum deformation of tensor powers of SU(2) Lie algebras
representations?

The ADE type symmetry groups could result as an effect of finite quantum resolution described
by inclusions of HFFs in TGD inspired quantum measurement theory.

1. The description of finite resolution typically leads to quantization since complex rays of state
space are replaced as N rays. Hence operators, which would commute for an ideal resolution
cease to do so. Therefore the algebra SU(2) ⊗ ... ⊗ SU(2) characterized by n mutually
commuting triplets, where n is the number of copies of SU(2) algebra in the original situation
and identifiable as quantum algebra appearing inM tensor powers withM interpreted as N
module, could suffer quantum deformation to a simple Lie algebra with 3n Cartan algebra
generators. Also a deformation to a quantum group could occur as a consequence.

2. This argument makes sense also for discrete groups G ⊂ SU(2) since the representations of
G realized in terms of WCW spinor s extend to the representations of SU(2) naturally.

3. Arbitrarily high tensor powers of M are possible and one can wonder why only finite-
dimensional Lie algebra results. The fact that N has finite depth as a sub-factor means
that the tensor products in tensor powers of N are representable by a finite Dynkin diagram.
Finite depth could thus mean that there is a periodicity involved the kn tensor powers de-
composes to representations of a Lie algebra with 3n Cartan algebra generators. Thus the
additional requirement would be that the number of tensor powers of M is multiple of n.

3. Space-time correlate for the tensor powers M⊗N ...⊗N M

By quantum classical correspondence there should exist space-time correlate for the formation
of tensor powers of M regarded as N module. A concrete space-time realization for this kind of
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situation in TGD would be based on n-fold cyclic covering of H implied by the H → H/Ga ×Gb
bundle structure in the case of say Gb. The sheets of the cyclic covering would correspond to
various factors in the n-fold tensor power of SU(2) and one would obtain a Lie algebra, affine
algebra or its quantum counterpart with n Cartan algebra generators in the process naturally.
The number n for space-time sheets would be also a space-time correlate for the finite depth of N
as a factor.

WCW spinors could provide fermionic representations of G ⊂ SU(2). The Dynkin diagram
characterizing tensor products of representations of G ⊂ SU(2) with doublet representation sug-
gests that tensor products of doublet representations associated with n sheets of the covering could
realize the Dynkin diagram.

Singlet representation in the Dynkin diagram associated with irreps of G would not give rise
to an SU(2) sub-algebra in ADE Lie algebra and would correspond to the scaling generator. For
ordinary Dynkin diagram representing gauge group algebra scaling operator would be absent and
therefore also the exceptional node. Thus the difference between (M : N = 4) and (M : N < 4)
cases would be that in the Kac-Moody group would reduce to gauge group M : N < 4 because
Kac-Moody central charge k and therefore also Virasoro central charge resulting in Sugawara
construction would vanish.

4. Do finite subgroups of SU(2) play some role also in M : N = 4 case?

One can ask wonder the possible interpretation for the appearance of extended Dynkin diagrams
in (M : N = 4) case. Do finite subgroups G ⊂ SU(2) associated with extended Dynkin diagrams
appear also in this case. The formal analog for H → Ga × Gb bundle structure would be H →
H/Ga × SU(2). This would mean that the geodesic sphere of CP2 would define the fiber. The
notion of number theoretic braid meaning a selection of a discrete subset of algebraic points of the
geodesic sphere of CP2 suggests that SU(2) actually reduces to its subgroup G also in this case.

5. Why Kac-Moody central charge can be non-vanishing only for M : N = 4?

From the physical point of view the vanishing of Kac-Moody central charge for M : N < 4 is
easy to understand. If parton corresponds to a homologically non-trivial geodesic sphere, space-
time surface typically represents a string like object so that the generation of Kac-Moody central
extension would relate directly to the homological non-triviality of partons. For instance, cosmic
strings are string like objects of form X2 × Y 2, where X2 is minimal surface of M2 and Y 2 is
a holomorphic sub-manifold of CP2 reducing to a homologically non-trivial geodesic sphere in
the simplest situation. A conjecture that deserves to be shown wrong is that central charge k is
proportional/equal to the absolute value of the homology (Kähler magnetic) charge h.

6. More general situation

McKay correspondence generalizes also to the case of subgroups of higher-dimensional Lie
groups [A8]. The argument above makes sense also for discrete subgroups of more general compact
Lie groups H since also they define unique sub-factors. In this case, algebras having Cartan algebra
with nk generators, where n is the dimension of Cartan algebra of H, would emerge in the process.
Thus there are reasons to believe that TGD could emulate practically any dynamics having gauge
group or Kac-Moody type symmetry. An interesting question concerns the interpretation of non-
ADE type principal graphs associated with subgroups of SU(2).

7. Flavor groups of hadron physics as a support for HFF?

The deformation assigning to an n-fold tensor power of representations of Lie group G with
k-dimensional Cartan algebra a representation of a Lie group with nk-dimensional Cartan algebra
could be also seen as a dynamically generated symmetry. If quantum measurement is characterized
by the choice of Lie group G defining measured quantum numbers and defining Jones inclusion
characterizing the measurement resolution, the measurement process itself would generate these
dynamical symmetries. Interestingly, the flavor symmetry groups of hadron physics cannot be
justified from the structure of the standard model having only electro-weak and color group as
fundamental symmetries. In TGD framework flavor group SU(n) could emerge naturally as a
fusion of n quark doublets to form a representation of SU(n).
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3.4 Farey Sequences, Riemann Hypothesis, Tangles, And TGD

Farey sequences allow an alternative formulation of Riemann Hypothesis and subsequent pairs in
Farey sequence characterize so called rational 2-tangles. In TGD framework Farey sequences relate
very closely to dark matter hierarchy, which inspires “Platonia as the best possible world in the
sense that cognitive representations are optimal” as the basic variational principle of mathematics.
This variational principle supports RH.

Possible TGD realizations of tangles, which are considerably more general objects than braids,
are considered. One can assign to a given rational tangle a rational number a/b and the tangles
labeled by a/b and c/d are equivalent if ad − bc = ±1 holds true. This means that the rationals
in question are neighboring members of Farey sequence. Very light-hearted guesses about possible
generalization of these invariants to the case of general N -tangles are made.

3.4.1 Farey sequences

Some basic facts about Farey sequences [A1] demonstrate that they are very interesting also from
TGD point of view.

1. Farey sequence FN is defined as the set of rationals 0 ≤ q = m/n ≤ 1 satisfying the conditions
n ≤ N ordered in an increasing sequence.

2. Two subsequent terms a/b and c/d in FN satisfy the condition ad − bc = 1 and thus define
and element of the modular group SL(2, Z).

3. The number |F (N)| of terms in Farey sequence is given by

|F (N)| = |F (N − 1)|+ φ(N − 1) . (3.4)

Here φ(n) is Euler’s totient function giving the number of divisors of n. For primes one has
φ(p) = 1 so that in the transition from p to p+ 1 the length of Farey sequence increases by
one unit by the addition of q = 1/(p+ 1) to the sequence.

The members of Farey sequence FN are in one-one correspondence with the set of quantum
phases qn = exp(i2π/n), 0 ≤ n ≤ N . This suggests a close connection with the hierarchy of Jones
inclusions, quantum groups, and in TGD context with quantum measurement theory with finite
measurement resolution and the hierarchy of Planck constants involving the generalization of the
embedding space. Also the recent TGD inspired ideas about the hierarchy of subgroups of the
rational modular group with subgroups labeled by integers N and in direct correspondence with
the hierarchy of quantum critical phases [K4] would naturally relate to the Farey sequence.

3.4.2 Riemann Hypothesis and Farey sequences

Farey sequences are used in two equivalent formulations of the Riemann hypothesis. Suppose the
terms of FN are an,N , 0 < n ≤ |FN |. Define

dn,N = an,N −
n

|FN |
.

In other words, dn,N is the difference between the n: th term of the N : th Farey sequence, and
the n: th member of a set of the same number of points, distributed evenly on the unit interval.
Franel and Landau proved that both of the following statements

∑
n=1,...,|FN |

|dn,N | = O(Nr) for any r > 1/2 ,

∑
n=1,...,|FN |

d2n,N = O(Nr) for any r > 1 . (3.5)

are equivalent with Riemann hypothesis.
One could say that RH would guarantee that the numbers of Farey sequence provide the best

possible approximate representation for the evenly distributed rational numbers n/|FN |.
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3.4.3 Farey sequences and TGD

Farey sequences seem to relate very closely to TGD.

1. The rationals in the Farey sequence can be mapped to the roots of unity by the map q →
exp(i2πq). The numbers 1/|FN | are in turn mapped to the numbers exp(i2π/|FN |), which
are also roots of unity. The statement would be that the algebraic phases defined by Farey
sequence give the best possible approximate representation for the phases exp(in2π/|FN |)
with evenly distributed phase angle.

2. In TGD framework the phase factors defined by FN corresponds to the set of quantum
phases corresponding to Jones inclusions labeled by q = exp(i2π/n), n ≤ N , and thus to the
N lowest levels of dark matter hierarchy. There are actually two hierarchies corresponding
to M4 and CP2 degrees of freedom and the Planck constant appearing in Schrödinger equa-
tion corresponds to the ratio na/nb defining quantum phases in these degrees of freedom.
Zna×nb

appears as a conformal symmetry of “dark” partonic 2-surfaces and with very general
assumptions this implies that there are only in TGD Universe [K4, K3].

3. The fusion of physics associated with various number fields to single coherent whole requires
algebraic universality. In particular, the roots of unity, which are complex algebraic numbers,
should define approximations to continuum of phase factors (angle is not well-defined notion
p-adically but trigonometric functions are if algebraic extensions involving roots of unity are
allowed). The S-matrix associated with p-adic-to-padic transitions can involve only this kind
of algebraic phases. One can also say that cognitive representations can involve only algebraic
phases and algebraic numbers in general. For completions of algebraic extensions of rationals
U-matrix, M-matrix and S-matrix would be obtained by algebraic continuation from from
that in the extension of rationals. One can also say that in the intersection all parameters
belong to an extension of rationals and various transition amplitudes have parameters in this
intersection. The core of physics (its “genes”) would be number theoretically universal [?]

4. The subgroups of the hierarchy of subgroups of the modular group with rational matrix
elements are labeled by integer N and relate naturally to the hierarchy of Farey sequences.
The hierarchy of quantum critical phases is labeled by integers N with quantum phase
transitions occurring only between phases for which the smaller integer divides the larger
one [K4].

3.4.4 Interpretation of RH in TGD framework

Number theoretic universality of physics suggests an interpretation for the Riemann hypothesis
in TGD framework. RH would be equivalent to the statement that the Farey numbers provide
best possible approximation to the set of rationals k/|FN | or to the statement that the roots of
unity contained by FN define the best possible approximation for the roots of unity defined as
exp(ik2π/|FN |) with evenly spaced phase angles. The roots of unity allowed by the lowest N levels
of the dark matter hierarchy allows the best possible approximate representation for algebraic
phases represented exactly at |FN |: th level of hierarchy.

A stronger statement would be that the Platonia, where RH holds true would be the best
possible world in the sense that algebraic physics behind the cognitive representations would allow
the best possible approximation hierarchy for the continuum physics (both for numbers in unit
interval and for phases on unit circle). Platonia with RH would be cognitive paradise.

One could see this also from different view point. “Platonia as the cognitively best possible
world” could be taken as the “axiom of all axioms”: a kind of fundamental variational principle of
mathematics. Among other things it would allow to conclude that RH is true: RH must hold true
either as a theorem following from some axiomatics or as an axiom in itself.

3.4.5 Could rational N-tangles exist in some sense?

The article of Kauffman and Lambropoulou [A6] about rational 2-tangles having commutative sum
and product allowing to map them to rationals is very interesting from TGD point of view. The
illustrations of the article are beautiful and make it easy to get the gist of various ideas. The
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theorem of the article states that equivalent rational tangles giving trivial tangle in the product
correspond to subsequent Farey numbers a/b and c/d satisfying ad − bc = ±1 so that the pair
defines element of the modular group SL(2, Z).

1. Rational 2-tangles

1. The basic observation is that 2-tangles are 2-tangles in both “s- and t-channels”. Product
and sum can be defined for all tangles but only in the case of 2-tangles the sum, which in this
case reduces to product in t-channel obtained by putting tangles in series, gives 2-tangle. The
so called rational tangles are 2-tangles constructible by using addition of ±[1] on left or right
of tangle and multiplication by ±[1] on top or bottom. Product and sum are commutative
for rational 2-tangles but the outcome is not a rational 2-tangle in the general case. One can
also assign to rational 2-tangle its negative and inverse. One can map 2-tangle to a number
which is rational for rational tangles. The tangles [0], [∞], ±[1], ±1/[1], ±[2], ±[1/2] define
so called elementary rational 2-tangles.

2. In the general case the sum of M− and N−tangles is M+N−2-tangle and combines various
N−tangles to a monoidal structure. Tensor product like operation giving M+N -tangle looks
to me physically more natural than the sum.

3. The reason why general 2-tangles are non-commutative although 2-braids obviously commute
is that 2-tangles can be regarded as sequences of N−tangles with 2-tangles appearing only
as the initial and final state: N is actually even for intermediate states. Since N > 2-
braid groups are non-commutative, non-commutativity results. It would be interesting to
know whether braid group representations have been used to construct representations of
N−tangles.

2. Does generalization to N >> 2 case exist?

One can wonder whether the notion of rational tangle and the basic result of the article about
equivalence of tangles might somehow generalize to the N > 2 case.

1. Could the commutativity of tangle product allow to characterize the N > 2 generalizations
of rational 2-tangles. The commutativity of product would be a space-time correlate for
the commutativity of the S-matrices defining time like entanglement between the initial and
final quantum states assignable to the N -tangle. For 2-tangles commutativity of the sum
would have an analogous interpretation. Sum is not a very natural operation for N-tangles
for N > 2. Commutativity means that the representation matrices defined as products of
braid group actions associated with the various intermediate states and acting in the same
representation space commute. Only in very special cases one can expect commutativity for
tangles since commutativity is lost already for braids.

2. The representations of 2-tangles should involve the subgroups of N -braid groups of inter-
mediate braids identifiable as Galois groups of N : th order polynomials in the realization
as number theoretic tangles. Could non-commutative 2-tangles be characterized by alge-
braic numbers in the extensions to which the Galois groups are associated? Could the
non-commutativity reflect directly the non-commutativity of Galois groups involved? Quite
generally one can ask whether the invariants should be expressible using algebraic numbers
in the extensions of rationals associated with the intermediate braids.

3. Rational 2-tangles can be characterized by a rational number obtained by a projective identi-
fication [a, b]T → a/b from a rational 2-spinor [a, b]T to which SL(2(N-1), Z) acts. Equivalence
means that the columns [a, b]T and [c, d]T combine to form element of SL(2, Z) and thus defin-
ing a modular transformation. Could more general 2-tangles have a similar representation
but in terms of algebraic integers?

4. Could N -tangles be characterized by N − 1 2(N − 1)-component projective column-spinors

[a1i , a
2
i , .., a

2(N−1)
i ]T , i = 1, ...N − 1 so that only the ratios aki /a

2(N−1)
i ≤ 1 matter? Could

equivalence for them mean that the N − 1 spinors combine to form N − 1 +N − 1 columns
of SL(2(N − 1), Z) matrix. Could N -tangles quite generally correspond to collections of
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projective N − 1 spinors having as components algebraic integers and could ad − bc = ±1
criterion generalize? Note that the modular group for surfaces of genus g is SL(2g, Z) so that
N − 1 would be analogous to g and 1 ≤ N ≥ 3- braids would correspond to g ≤ 2 Riemann
surfaces.

5. Dark matter hierarchy leads naturally to a hierarchy of modular sub-groups of SL(2, Q)
labeled by N (the generator τ → τ + 2 of modular group is replaced with τ → τ + 2/N).
What might be the role of these subgroups and corresponding subgroups of SL(2(N −1), Q).
Could they arise in “anyonization” when one considers quantum group representations of
2-tangles with twist operation represented by an N : th root of unity instead of phase U
satisfying U2 = 1?

3.4.6 How tangles could be realized in TGD Universe?

The article of Kauffman and Lambropoulou stimulated the question in what senses N -tangles could
be realized in TGD Universe as fundamental structures.

1. Tangles as number theoretic braids?

The strands of number theoretical N−braids correspond to roots of N: th order polynomial and
if one allows time evolutions of partonic 2-surface leading to the disappearance or appearance of
real roots N−tangles become possible. This however means continuous evolution of roots so that
the coefficients of polynomials defining the partonic 2-surface can be rational only in initial and
final state but not in all intermediate “virtual” states.

2. Tangles as tangled partonic 2-surfaces?

Tangles could appear in TGD also in second manner.

1. Partonic 2-surfaces are sub-manifolds of a 3-D section of space-time surface. If partonic
2-surfaces have genus g > 0 the handles can become knotted and linked and one obtains
besides ordinary knots and links more general knots and links in which circle is replaced by
figure eight and its generalizations obtained by adding more circles (eyeglasses for N−eyed
creatures).

2. Since these 2-surfaces are space-like, the resulting structures are indeed tangles rather than
only braids. Tangles made of strands with fixed ends would result by allowing spherical
partons elongate to long strands with fixed ends. DNA tangles would the basic example,
and are discussed also in the article. DNA sequences to which I have speculatively assigned
invisible (dark) braid structures might be seen in this context as space-like “written language
representations” of genetic programs represented as number theoretic braids.

3.5 Only The Quantum Variants Of M4 And M8 Emerge FromLocal
Hyper-Finite II1 Factors

Super-symmetry suggests that the representations of CH Clifford algebra M as N module M/N
should have bosonic counterpart in the sense that the coordinate for M8 representable as a par-
ticular M2(Q) element should have quantum counterpart. Same would apply to M4 coordinate
representable as M2(C) element. Quantum matrix representation of M/N as SLq(2, F ) matrix,
F = C,H is the natural candidate for this representation. As a matter fact, this guess is not quite
correct. It is the interpretation of M2(C) as a quaternionic quantum algebra whose generalization
to the octonionic quantum algebra works.

Quantum variants of MD exist for all dimensions but only spaces M4 and M8 and their linear
sub-spaces emerge from hyper-finite factors of type II1. This is due to the non-associativity of
the octonionic representation of the gamma matrices making it impossible to absorb the powers of
the octonionic coordinate to the Clifford algebra element so that the local algebra character would
disappear. Even more: quantum coordinates for these spaces are commutative operators so that
their spectra define ordinary M4 and M8 which are thus already quantal concepts.

The commutation relations for M2,q(C) matrices
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(
a b
c d

)
,

(3.6)

read as

ab = qba , ac = qac , bd = qdb , cd = qdc ,
[ad, da] = (q − q−1)bc , bc = cb .

(3.7)

These relations can be extended by postulating complex conjugates of these relations for complex
conjugates a†, b†, c†, d† plus the following non-vanishing commutators of type [x, y†]:

[a, a†] = [b, b†] = [c, c†] = [d, d†] = 1 . (3.8)

The matrices representing M4 point must be expressible as sums of Pauli spin matrices. This can
be represented as following conditions on physical states

O|phys〉 = 0 ,

O ∈ {a− a†, d− d†, b− c†, c− b†} . (3.9)

For instance, the first two conditions follow from the reality of Pauli sigma matrices σx, σy, σz.
These conditions are compatible only if the operators O commute. This is the case and means
also that the operators representing M4 coordinates commute and it is possible to define quantum
states for which M4 coordinates have well-defined eigenvalues so that ordinary M4 emerges purely
quantally from quaternions whose real coefficients are made non-Hermitian operators to obtain
operator complexificiation of quaternions. Also the quantum states in which M4 coordinates are
emerge naturally.

M2,q(C) matrices define the quantum analog of C4 and one can wonder whether other linear
sub-spaces can be defined consistently or whether M4

q and thus Minkowski signature is unique.
This seems to be the case. For instance, the replacement a− a→ a+ a making also time variable
Euclidian is impossible since [a + a, d − d] = 2(q − q−1)bc does not vanish. The observation that
M4 coordinates can be regarded as eigenvalues of commuting observables proves that quantum
CD and its orbifold description are equivalent.

What about M8: does it have analogous description? The representation of M4 point as M2(C)
matrix can be interpreted a combination of 4-D gamma matrices defining hyper-quaternionic units.
Hyper-octonionic units indeed have anti-commutation relations of gamma matrices of M8 and
would give classical representation of M8. The counterpart of M2,q(C) would thus be obtained by
replacing the coefficients of hyper-octonionic units with operators satisfying the generalization of
M2,q(C) commutation relations. One should identify the reality conditions and find whether they
are mutually consistent.

Introduce the coefficients of E4 gamma matrices having interpretation as quaterionic units as

a0 = ix(a+ d) , a3 = x(a− d) ,
a1 = x(b+ c) , a2 = x(ib− c) ,
x = 1√

2
,

and write the commutations relations for them to see how the generalization should be performed.
The selections of commutative and quaternionic sub-algebras of octonion space are fundamental

for TGD and quantum octonionic algebra should reflect these selections in its structure. In the
case of quaternions the selection of commutative sub-algebra implies the breaking of 4-D Lorentz
symmetry. In the case of octonions the selection of quaternion sub-algebra should induce the
breaking of 8-D Lorentz symmetry. Quaternionic sub-algebra obeys the commutations of Mq(2, C)
whereas the coefficients in in the complement commute mutually and quantum commute with the
complex sub-algebra. This nails down the commutation relations completely:
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[a0, a3] = −i(q − q−1)(a21 + a22) ,

[ai, aj ] = 0 , i, j 6= 0, 3 ,

a0ai = qaia0 , i 6= 0, 3 ,

a3ai = qaia3 , i 6= 0, 3 . (3.10)

Checking that M8 indeed corresponds to commutative subspace defined by the eigenvalues of
operators is straightforward.

The argument generalizes easily to other dimensions D ≥ 4 but now quaternionic and octonionic
units must be replaced by gamma matrices and an explicit matrix representation can be introduced.
These gamma matrices can be included as a tensor factor to the infinite-dimensional Clifford
algebra so that the local Clifford algebra reduces to a mere Clifford algebra. The units of quantum
octonions which are just ordinary octonion units do not however allow matrix representation so
that this reduction is not possible and embedding space and space-time indeed emerge genuinely.
The non-associativity of octonions would determine the laws of physics in TGD Universe!

Thus the special role of classical number fields and uniqueness of space-time and embedding
space dimensions becomes really manifest only when a quantal deformation of the quaternionic
and octonionic matrix algebras is performed. It is possible to construct the quantal variants of
the coset spaces M4 × E4/Ga × Gb by simply posing restrictions on the of eigen states of the
commuting coordinate operators. Also the quantum variants of the space-time surface and quite
generally, manifolds obtained from linear spaces by geometric constructions become possible.
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