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Abstract

In this chapter 4 topics are discussed. McKay correspondence, SUSY, and twistors are
discussed from TGD point of view, and new aspects of M8 −H duality are considered.

1. McKay correspondence in TGD framework

There are two mysterious looking correspondences involving ADE groups. McKay corre-
spondence between McKay graphs characterizing tensor products for finite subgroups of SU(2)
and Dynkin diagrams of affine ADE groups is the first one. The correspondence between prin-
cipal diagrams characterizing inclusions of hyper-finite factors of type II1 (HFFs) with Dynkin
diagrams for a subset of ADE groups and Dynkin diagrams for affine ADE groups is the second
one.

These correspondences are discussed from number theoretic point of view suggested by
TGD and based on the interpretation of discrete subgroups of SU(2) as subgroups of the cov-
ering group of quaternionic automorphisms SO(3) (analog of Galois group) and generalization
of these groups to semi-direct products Gal(K) / SU(2)K of Galois group for extension K of
rationals with the discrete subgroup SU(2)K of SU(2) with representation matrix elements in
K. The identification of the inclusion hierarchy of HFFs with the hierarchy of extensions of
rationals and their Galois groups is proposed.

A further mystery whether Gal(K) / SU(2)K could give rise to quantum groups or affine
algebras. In TGD framework the infinite-D group of isometries of “world of classical worlds”
(WCW) is identified as an infinite-D symplectic group for which the discrete subgroups char-
acterized by K have infinite-D representations so that hyper-finite factors are natural for their
representations. Symplectic algebra SSA allows hierarchy of isomorphic sub-algebras SSAn.
The gauge conditions for SSAn and [SSAn, SSA] would define measurement resolution giving
rise to hierarchies of inclusions and ADE type Kac-Moody type algebras or quantum algebras
representing symmetries modulo measurement resolution.

A concrete realization of ADE type Kac-Moody algebras is proposed. It relies on the group
algebra of Gal(K) / SU(2)K and free field representation of ADE type Kac-Moody algebra
identifying the free scalar fields in Kac-Moody Cartan algebra as group algebra elements
defined by the traces of representation matrices (characters).

2. New aspects of M8 −H duality

M8 −H duality is now a central part of TGD and leads to new findings. M8 −H duality
can be formulated both at the level of space-time surfaces and light-like 8-momenta. Since
the choice of M4 in the decomposition of momentum space M8 = M4 × E4 is rather free,
it is always possible to find a choice for which light-like 8-momentum reduces to light-like
4-momentum in M4 - the notion of 4-D mass is relative. This leads to what might be called
SO(4)−SU(3) duality corresponding to the hadronic and partonic views about hadron physics.
Particles, which are eigenstates of mass squared are massless in M4×CP2 picture and massive
in M8 picture. The massivation in this picture is a universal mechanism having nothing to
do with dynamics and results in zero energy ontology automatically if the zero energy states
are superpositions of states with different masses. p-Adic thermodynamics describes this
massivation. Also a proposal for the realization of ADE hierarchy emerges.

4-D space-time surfaces correspond to roots of octonionic polynomials P (o) with real coeffi-
cients corresponding to the vanishing of the real or imaginary part of P (o). These polynomials
however allow universal roots, which are not 4-D but analogs of 6-D branes and having topol-
ogy of S6. Their M4 projections are time =constant snapshots t = rn, rM ≤ rn 3-balls of
M4 light-cone (rn is root of P (x)). At each point the ball there is a sphere S3 shrinking to
a point about boundaries of the 3-ball. These special values of M4 time lead to a deeper
understanding of ZEO based quantum measurement theory and consciousness theory.

3. Is the identification of twistor space of M4 really correct?

The critical questions concerning the identification of twistor space of M4 as M4 × S2

led to consider a more conservative identification as CP3 with hyperbolic signature (3,-3) and
replacement of H with H = cdconf × CP2, where cdconf is CP2 with hyperbolic signature
(1,-3). This approach reproduces the nice results of the earlier picture but means that the
hierarchy of CDs in M8 is mapped to a hierarchy of spaces cdconf with sizes of CDs. This
conforms with Poincare symmetry from which everything started since Poincare group acts in
the moduli space of octonionic structures of M8. Note that also the original form of M8 −H
duality continues to make sense and results from the modification by projection from CP3,h

to M4 rather than CP2,h.
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The outcome of octo-twistor approach applied at level of M8 together with modified M8−
H duality leads to a nice picture view about twistorial description of massive states based
on quaternionic generalization of twistor (super-)Grassmannian approach. A radically new
view is that descriptions in terms of massive and massless states are alternative options, and
correspond to two different alternative twistorial descriptions and leads to the interpretation
of p-adic thermodynamics as completely universal massivation mechanism having nothing to
do with dynamics. As a side product emerges a deeper understanding of ZEO based quantum
measurement theory and consciousness theory relying on the universal roots of octonionic
polynomials of M8, which are not 4-D but analogs of 6-D branes. This part of article is
not a mere side track since by M8 − H duality the finite sub-groups of SU(2) of McKay
correspondence appear quite concretely in the description of the measurement resolution of
8-momentum.

1 Introduction

There are two mysterious looking correspondences involving ADE groups. McKay correspondence
between McKay graphs characterizing tensor products for finite subgroups of SU(2) and Dynkin
diagrams of affine ADE groups is the first one. The correspondence between principal diagrams
characterizing inclusions of hyper-finite factors of type II1 (HFFs) with Dynkin diagrams for a
subset of ADE groups and Dynkin diagrams for affine ADE groups is the second one.

I have considered the interpretation of McKay correspondence in TGD framework already
earlier [K18, K9] but the decision to look it again led to a discovery of a bundle of new ideas
allowing to answer several key questions of TGD.

1. Asking questions about M8 −H duality at the level of 8-D momentum space [L2] led to a
realization that the notion of mass is relative as already the existence of alternative QFT
descriptions in terms of massless and massive fields suggests (electric-magnetic duality). De-
pending on choice M4 ⊂ M8, one can describe particles as massless states in M4 × CP2

picture (the choice is M4
L depending on state) and as massive states (the choice is fixed M4

T )
in M8 picture. p-Adic thermal massivation of massless states in M4

L picture can be seen as
a universal dynamics independent mechanism implied by ZEO. Also a revised view about
zero energy ontology (ZEO) based quantum measurement theory as theory of consciousness
suggests itself.

2. Hyperfinite factors of type II1 (HFFs) [K18, K9] and number theoretic discretization in terms
of what I call cognitive representations [L8] provide two alternative approaches to the notion
of finite measurement resolution in TGD framework. One obtains rather concrete view about
how these descriptions relate to each other at the level of 8-D space of light-like momenta.
Also ADE hierarchy can be understood concretely.

3. The description of 8-D twistors at momentum space-level is also a challenge of TGD. 8-D
twistorializations in terms of octo-twistors (M4

T description) and M4 × CP2 twistors (M4
L

description) emerge at imbedding space level. Quantum twistors could serve as a twistor
description at the level of space-time surfaces.

1.1 McKay correspondence in TGD framework

Consider first McKay correspondence in more detail.

1. McKay correspondence states that the McKay graphs characterizing the tensor product de-
composition rules for representations of discrete and finite sub-groups of SU(2) are Dynkin
diagrams for the affine ADE groups obtained by adding one node to the Dynkin diagram of
ADE group. Could this correspondence make sense for any finite group G rather than only
discrete subgroups of SU(2)? In TGD Galois group of extensions K of rationals can be any
finite group G. Could Galois group take the role of G?

2. Why the subgroups of SU(2) should be in so special role? In TGD framework quaternions
and octonions play a fundamental role at M8 side of M8−H duality [L2]. Complexified M8

represents complexified octonions and space-time surfaces X4 have quaternionic tangent or
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normal spaces. SO(3) is the automorphism group of quaternions and for number theoret-
ical discretizations induced by extension K of rationals it reduces to its discrete subgroup
SO(3)K having SU(2)K as a covering. In certain special cases corresponding to McKay cor-
respondence this group is finite discrete group acting as symmetries of Platonic solids. Could
this make the Platonic groups so special? Could the semi-direct products Gal(K) / SU(2)K
take the role of discrete subgroups of SU(2)?

1.2 HFFs and TGD

The notion of measurement resolution is definable in terms of inclusions of HFFs and using number
theoretic discretization of X4. These definitions should be closely related.

1. The inclusions N ⊂M of HFFs with indexM : N < 4 are characterized by Dynkin diagrams
for a subset of ADE groups. The TGD inspired conjecture is that the inclusion hierarchies of
extensions of rationals and of corresponding Galois groups could correspond to the hierarchies
for the inclusions of HFFs. The natural realization would be in terms of HFFs with coefficient
field of Hilbert space in extension K of rationals involved.

Could the physical triviality of the action of unitary operators N define measurement res-
olution? If so, quantum groups assignable to the inclusion would act in quantum spaces
associated with the coset spaces M/N of operators with quantum dimension d = M : N .
The degrees of freedom below measurement resolution would correspond to gauge symmetries
assignable to N .

2. Adelic approach [L6] provides an alternative approach to the notion of finite measurement
resolution. The cognitive representation identified as a discretization of X4 defined by the
set of points with points having H (or at least M8 coordinates) in K would be common to
all number fields (reals and extensions of various p-adic number fields induced by K). This
approach should be equivalent with that based on inclusions. Therefore the Galois groups of
extensions should play a key role in the understanding of the inclusions.

How HFFs could emerge from TGD?

1. The huge symmetries of “world of classical words” (WCW) could explain why the ADE
diagrams appearing as McKay graphs and principal diagrams of inclusions correspond to
affine ADE algebras or quantum groups. WCW consists of space-time surfaces X4, which
are preferred extremals of the action principle of the theory defining classical TGD connecting
the 3-surfaces at the opposite light-like boundaries of causal diamond CD = cd×CP2, where
cd is the intersection of future and past directed light-cones of M4 and contain part of
δM4
±×CP2. The symplectic transformations of δM4

+×CP2 are assumed to act as isometries
of WCW. A natural guess is that physical states correspond to the representations of the
super-symplectic algebra SSA.

2. The sub-algebras SSAn of SSA isomorphic to SSA form a fractal hierarchy with confor-
mal weights in sub-algebra being n-multiples of those in SSA. SSAn and the commutator
[SSAn, SSA] would act as gauge transformations. Therefore the classical Noether charges for
these sub-algebras would vanish. Also the action of these two sub-algebras would annihilate
the quantum states. Could the inclusion hierarchies labelled by integers .. < n1 < n2 < n3....
with ni+1 divisible by ni would correspond hierarchies of HFFs and to the hierarchies of ex-
tensions of rationals and corresponding Galois groups? Could n correspond to the dimension
of Galois group of K.

3. Finite measurement resolution defined in terms of cognitive representations suggests a re-
duction of the symplectic group SG to a discrete subgroup SGK , whose linear action is
characterized by matrix elements in the extension K of rationals defining the extension. The
representations of discrete subgroup are infinite-D and the infinite value of the trace of unit
operator is problematic concerning the definition of characters in terms of traces. One can
however replace normal trace with quantum trace equal to one for unit operator. This im-
plies HFFs and the hierarchies of inclusions of HFFs [K18, K9]. Could inclusion hierarchies
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for extensions of rationals correspond to inclusion hierarchies of HFFs and of isomorphic
sub-algebras of SSA?

Quantum spinors are central for HFFs. A possible alternative interpretation of quantum spinors
is in terms of quantum measurement theory with finite measurement resolution in which precise
eigenstates as measurement outcomes are replaced with universal probability distributions defined
by quantum group. This has also application in TGD inspired theory of consciousness [K9]: the idea
is that the truth value of Boolean statement is fuzzy. At the level of quantum measurement theory
this would mean that the outcome of quantum measurement is not anymore precise eigenstate but
that one obtains only probabilities for the appearance of different eigenstate. One might say that
probability of eigenstates becomes a fundamental observable and measures the strength of belief.

1.3 New aspects of M8 −H duality

M8−H duality (H = M4×CP2) [L2] has become one of central elements of TGD. M8−Hduality
implies two descriptons for the states.

1. M8−H duality assumes that space-time surfaces in M8 have associative tangent- or normal
space M4 and that these spaces share a common sub-space M2 ⊂ M4, which corresponds
to complex subspace of octonions (also integrable distribution of M2(x) can be considered).
This makes possible the mapping of space-time surfaces X4 ⊂M8 to X4 ⊂ H = M4×CP2)
giving rise to M8 −H duality.

2. M8−H duality makes sense also at the level of 8-D momentum space in one-one correspon-
dence with light-like octonions. In M8 = M4×E4 picture light-like 8-momenta are projected
to a fixed quaternionic M4

T ⊂M8. The projections to M4
T ⊃M2 momenta are in general mas-

sive. The group of symmetries is for E4 parts of momenta is Spin(SO(4)) = SU(2)L×SU(2)R
and identified as the symmetries of low energy hadron physics.

M4 ⊃ M2 can be also chosen so that the light-like 8-momentum is parallel to M4
L ⊂ M8.

Now CP2 codes for the E4 parts of 8-momenta and the choice of M4
L and color group SU(3)

as a subgroup of automorphism group of octonions acts as symmetries. This correspond to
the usual description of quarks and other elementary particles. This leads to an improved
understanding of SO(4) − SU(3) duality. A weaker form of this duality S3 − CP2 duality:
the 3-spheres S3 with various radii parameterizing the E4 parts of 8-momenta with various
lengths correspond to discrete set of 3-spheres S3 of CP2 having discrete subgroup of U(2)
isometries.

3. The key challenge is to understand why the MacKay graphs in McKay correspondence and
principal diagrams for the inclusions of HFFs correspond to ADE Lie groups or their affine
variants. It turns out that a possible concrete interpretation for the hierarchy of finite sub-
groups of SU(2) appears as discretizations of 3-sphere S3 appearing naturally at M8 side of
M8 −H duality. Second interpretation is as covering of quaternionic Galois group. Also the
coordinate patches of CP2 can be regarded as piles of 3-spheres and finite measurement reso-
lution. The discrete groups of SU(2) define in a natural manner a hierarchy of measurement
resolutions realized as the set of light-like M8 momenta. Also a concrete interpretation for
Jones inclusions as inclusions for these discretizations emerges.

4. A radically new view is that descriptions in terms of massive and massless states are alterna-
tive options leads to the interpretation of p-adic thermodynamics as a completely universal
massivation mechanism having nothing to do with dynamics. The problem is the paradoxi-
cal looking fact that particles are massive in H picture although they should be massless by
definition. The massivation is unavoidable if zero energy states are superposition of massive
states with varying masses. The M4

L in this case most naturally corresponds to that associ-
ated with the dominating part of the state so that higher mass contributions can be described
by using p-adic thermodynamics and mass squared can be regarded as thermal mass squared
calculable by p-adic thermodynamics.

5. As a side product emerges a deeper understanding of ZEO based quantum measurement
theory and consciousness theory. 4-D space-time surfaces correspond to roots of octonionic
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polynomials P (o) with real coefficients corresponding to the vanishing of the real or imaginary
part of P (o).

These polynomials however allow universal roots, which are not 4-D but analogs of 6-D
branes and having topology of S6. Their M4 projections are time =constant snapshots
t = rn, rM ≤ rn 3-balls of M4 light-cone (rn is root of P (x)). At each point the ball there is
a sphere S3 shrinking to a point about boundaries of the 3-ball.

What suggests itself is following “braney” picture. 4-D space-time surfaces intersect the 6-
spheres at 2-D surfaces identifiable as partonic 2-surfaces serving as generalized vertices at
which 4-D space-time surfaces representing particle orbits meet along their ends. Partonic
2-surfacew would define the space-time regions at which one can pose analogs of boundary
values fixing the space-time surface by preferred extremal property. This would realize strong
form of holography (SH): 3-D holography is implied already by ZEO.

This picture forces to consider a modification of the recent view about ZEO based theory
of consciousness. Should one replace causal diamond (CD) with light-cone, which can be
however either future or past directed. “Big” state function reductions (BSR) meaning the
death and re-incarnation of self with opposite arrow of time could be still present. An
attractive interpretation for the moments t = rn would be as moments assignable to “small”
state function reductions (SSR) identifiable as “weak” measurements giving rise to sensory
input of conscious entity in ZEO based theory of consciousness. One might say that conscious
entity becomes gradually conscious about its roots in increasing order. The famous question
“What it feels to be a bat” would reduce to “What it feels to be a polynomial?”! One must
be however very cautious here.

1.4 What twistors are in TGD framework?

The basic problem of the ordinary twistor approach is that the states must be massless in 4-D sense.
In TGD framework particles would be massless in 8-D sense. The meaning of 8-D twistorialization
at space-time level is relatively well understood but at the level of momentum space the situation
is not at all so clear.

1. In TGD particles are massless in 8-D sense. For M4
L description particles are massless in 4-D

sense and the description at momentum space level would be in terms of products of ordinary
M4 twistors and CP2 twistors. For M4

T description particles are massive in 4-D sense. How
to generalize the twistor description to 8-D case?

The incidence relation for twistors and the need to have index raising and lowering operation
in 8-D situation suggest the replacement of the ordinary l twistors with either with octo-
twistors or non-commutative quantum twistors.

2. I have assumed that what I call geometric twistor space of M4 is simply M4×S2. It however
turned out that one can consider standard twistor space CP3 with metric signature (3,-3)
as an alternative. This option reproduces the nice results of the earlier approach but the
philosophy is different: there is no fundamental length scale but the hierarchy of causal
diamonds (CDs) predicted by zero energy ontology (ZEO) gives rise to the breaking of the
exact scaling invariance of M8 picture. This forces to modify M8 − H correspondence so
that it involves map from M4 to CP3 followed by a projection to hyperbolic variant CP2,h

of CP2. Note that also the original form of M8 − H duality continues to make sense and
results from the modification by projection from CP3,h to M4 rather than CP2,h.

M4 in H would not be be replaced with conformally compactified M4 (M4
conf ) but con-

formally compactified cd (cdconf ) for which a natural identification is as CP2 with second
complex coordinate replaced with hypercomplex coordinate. The sizes of twistor spaces of
cdconf using CP2 size as unit would reflect the hierarchy of size scales for CDs. The consider-
ation on the twistor space of M8 in similar picture leads to the identification of corresponding
twistor space as HP3 - quaternionic variant of CP3: the counterpart of CD8 would be HP2.

3. Octotwistors can be expressed as pairs of quaternionic twistors. Octotwistor approach sug-
gests a generalization of twistor Grassmannian approach obtained by replacing the bi-spinors
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with complexified quaternions and complex Grassmannians with their quaternionic counter-
parts. Although TGD is not a quantum field theory, this proposal makes sense for cognitive
representations identified as discrete sets of spacetime points with coordinates in the exten-
sion of rationals defining the adele [L6] implying effective reduction of particles to point-like
particles.

4. The outcome of octo-twistor approach together with M8 − H duality leads to a nice pic-
ture view about twistorial description of massive states based on quaternionic generalization
of twistor Grassmannian approach. A radically new view is that descriptions in terms of
massive and massless states are alternative options, and correspond to two different alter-
native twistorial descriptions and leads to the interpretation of p-adic thermodynamics as
completely universal massivation mechanism having nothing to do with dynamics. As a side
product emerges a deeper understanding of ZEO based quantum measurement theory and
consciousness theory relying on the universal roots of octonionic polynomials of M8, which
are not 4-D but analogs of 6-D branes. By M8 −H duality the finite sub-groups of SU(2)
of McKay correspondence appear quite concretely in the description of the measurement
resolution of 8-momentum.

What about super-twistors in TGD framework?

1. The parallel progress in the understanding SUSY in TGD framework [L14] in turn led to the
identification of the super-counterparts of M8, H and of twistor spaces modifying dramati-
cally the physical interpretation of SUSY. Super-spinors in twistor space would provide the
description of quantum states. Super-Grassmannians would be involved with the construc-
tion of scattering amplitudes. Quaternionic super Grassmannians would be involved with
M8 description.

2. The great surprise from physics point of view is that in fermionic sector only quarks are
allowed by SO(1, 7) triality and that anti-leptons are local 3-quark composites identifiable as
spartners of quarks. Gauge bosons, Higgs and graviton would be also spartners and assignable
to super-coordinates of imbedding space expressible as super-polynomials of quark oscillator
operators. Super-symmetrization means also quantization of fermions allowing local many-
quark states.

3. SUSY breaking would be caused by the same universal mechanism as ordinary massivation
of massless states. The mass formulas would be supersymmetric but the choice of p-adic
prime identifiable as ramified prime of extension of rationals would depend on the state of
super-multiplet. ZEO would make possible symmetry breaking without symmetry breaking
as Wheeler might put it.

What about the interpretation of quantum twistors? They could make sense as 4-D space-time
description analogous to description at space-time level. Now one can consider generalization of
the twistor Grassmannian approach in terms of quantum Grassmannians.

2 McKay correspondence

Consider first McKay correspondence from TGD point of view.

2.1 McKay graphs

McKay graps are defined in the following manner. Consider group G which is discrete but not
necessarily finite. If the group is finite there is a finite number of irreducible representations χI .
Select preferred representation V - usually V is taken to be the fundamental representation of
G and form tensor products χI ⊗ V . Suppose irrep χJ appears nij times in the tensor product
χI ⊗ χ0. Assign to each representation χI dot and connect the dots of χI and χJ by nij arrows.
This gives rise to MacKay graph.

Consider now the situation for finite-D groups of SU(2). 2-D SU(2) spinor representation as a
fundamental representation is essential for obtaining the identification of McKay graphs as Dynkin
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diagrams of simply laced affine algebras having only single line connecting the roots (the angle
between positive roots is 120 degrees) (see http://tinyurl.com/z48d92t).

1. For SU(2) representations one has the basic rule j1 − 1/2 ≤ j ≤ j1 + 1/2 for the tensor
product j1 ⊗ 1/2. This rule must be broken for finite subgroups of SU(2) since the number
of representations if finite so that branching point appears in McKay graph. In branching
point the decomposition of j1 ⊗ 1/2 decomposes to 3 lower-dimensional representations of
the finite subgroup takes place.

2. Simply lacedness means that given representation appears only once in chiI ⊗ V , when V is
2-D representation as it can be for a subgroup of SU(2). Additional exceptional properties
is the absence of loops (nii = 0) and connectedness of McKay graph.

3. One can consider binary icosahedral group (double covering of icosahedral group A5 with
order 60) as an example (for the McKay graph see http://tinyurl.com/y2h55jwp). The
representations of A5 are 1A, 3A, 3

′
B , 4A, 5A, where integer tells the dimension. Note that

SO(3) does not allow 4-D representation. For binary icosahedral group one obtains also
the representations 2A, 2

′
B , 4B , 6A. The McKay graph of E8 contains one branching point in

which one has the tensor product of 6-D and 2-D representations 6A and 2A giving rise to
5A ⊕ 3C ⊕ 4B .

McKay graphs can be defined for any finite group and they are not even unions of simply laced
diagrams unless one has subgroups of SU(2). Still one can wonder whether McKay correspondence
generalizes from subgroups of SU(2) to all finite groups. At first glance this does not seem possible
but there might be some clever manner to bring in all finite groups.

The proposal has been that this McKay correspondence has a deeper meaning. Could simply
laced affine ADE algebras, ADE type quantum algebras, and/or corresponding finite groups act
as symmetry algebras in TGD framework?

2.2 Number theoretic view about McKay correspondence

Could the physical picture provided by TGD help to answer the above posed questions?

1. Could one identify discrete subgroups of SU(2) with those of the covering group SU(2)
of SO(3) of quaternionic automorphisms defining the continuous analog of Galois group
and reducing to a discrete subgroup for a finite resolution characterized by extension K
of rationals. The tensor products of 2-D spinor representation of these discrete subgroups
SU(2)K would give rise to irreps appearing in the McKay graph.

2. In adelic physics [L6] extensions K of rationals define an evolutionary hierarchy with effective
Planck constant heff/h0 = n identified as the dimension of K. The action of discrete and
finite subgroups of various symmetry groups can be represented as Galois group action making
sense at the level of X4 [L2] for what I have called cognitive representations. By M8 − H
duality also the Galois group of quaternions and its discrete subgroups appear naturally.

This suggests a possible generalization of McKay correspondence so that it would apply to
all finite groups G. Any finite group G can appear as Galois group. The Galois group
Gal(K) characterizing the extension of rationals induces in turn extensions of p-adic number
fields appearing in the adele. Could the representation of G as Galois group of extension of
rationals allow to generalize McKay correspondence?

Could the following argument inspired by these observations make sense?

1. SU(2) is identified as spin covering of the quaternionic automorphism group. One can define
the subgroups in matrix representation of SU(2) based on complex numbers. One can replace
complex numbers with the extension of rationals and speak of group SU(2)K identified as a
discrete subgroup of SU(2) having in general infinite order.

The discrete finite subgroups G ⊂ SU(2) appearing in the standard McKay correspondence
correspond to extensions K of rationals for which one has G = SU(2)K . These special

http://tinyurl.com/z48d92t
http://tinyurl.com/y2h55jwp
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extensions can be identified by studying the matrix elements of the representation of G and
include the discrete groups Zn acting as rotation symmetries of the Platonic solids. For
instance, for icosahedral group Z2,Z3 and Z5 are involved and correspond to roots of unity.

2. The semi-direct product Gal / SU(2)K with group action

(gal1, g1)(gal2, g2) = (gal1 ◦ gal2, g1(gal1g2))

makes sense. The action of Gal/SU(2)K in the representation is therefore well-defined. Since
all finite groups G can appear as Galois groups, it seems that one obtains extension of the
McKay correspondence to semi-direct products involving all finite groups G representable as
Galois groups.

3. A good guess is that the number of representations of SU(2)K involved is infinite if SU(2)K
has infinite order. For Ãn and D̃n the branching occurs only at the ends of the McKay graph.
For Ek, k = 6, 7, 8 the branching occurs in middle of the graph (see http://tinyurl.com/

y2h55jwp). What happens for arbitrary G. Does the branching occur at all? One could
argue that if the discrete subgroup has infinite order, the representation can be completed
to a representation of SU(2) in terms of real numbers so that the McKay graphs must be
identical.

4. A concrete realization of ADE type Kac-Moody algebras is proposed. It relies on the group
algebra of Gal(K) / SU(2)K and free field representation of ADE type Kac-Moody algebra
identifying the free scalar fields in Kac-Moody Cartan algebra as group algebra elements
defined by the traces of representation matrices (characters).

5. A possible interpretation of quantum spinors is in terms of quantum measurement theory
with finite measurement resolution in which precise eigenstates as measurement outcomes
are replaced with universal probability distributions defined by quantum group [K9]. TGD
inspired theory of consciousness is a possible application.

Also the notion of quantum twistor [L16] can be considered. In TGD particles are massless
in 8-D sense and in general massive in 4-D sense but 4-D twistors are needed also now so that
a modification of twistor approach is needed. The incidence relation for twistors suggests the
replacement of the usual twistors with non-commutative quantum twistors.

3 ADE diagrams and principal graphs of inclusions of hy-
perfinite factors of type II1

Dynkin diagrams for ADE groups and corresponding affine groups characterize also the inclusions
of hyperfinite factors of type II1 (HFFs) [K9].

3.1 Principal graphs and Dynkin diagrams for ADE groups

1. If the index β = M : N of the Jones inclusion satisfies β < 4, the affine Dynkin diagrams
of SU(n) (discrete symmetry groups of n-polygons) and E7 (symmetry group of octahedron
and cube) and D(2n+ 1) (symmetries of double 2n+1-polygons) are not allowed.

2. Vaughan Jones [A4] (see http://tinyurl.com/y8jzvogn) has speculated that these finite
subgroups could correspond to quantum groups as kind of degenerations of Kac-Moody
groups. Modulo arithmetics defined by the integer n defining the quantum phase suggests
itself strongly. For β = 4 one can construct inclusions characterized by extended Dynkin
diagram and any finite sub-group of SU(2). In this case affine ADE hierarchy appear as
principal graphs characterizing the inclusions. For β < 4 the finite measurement resolution
could reduce affine algebra to quantum algebra.

3. The rule is that for odd values of n defining the quantum phase the Dynkin diagram does
not appear. If Dynkin diagrams correspond to quantum groups, one can ask whether they
allow only quantum group representations with quantum phase q = exp(iπ/n) equal to even
root of unity.

http://tinyurl.com/y2h55jwp
http://tinyurl.com/y2h55jwp
http://tinyurl.com/y8jzvogn
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3.2 Number theoretic view about inclusions of HFFs and preferred role
of SU(2)

Consider next the TGD inspired interpretation.

1. TGD suggests the interpretation in terms of representations of Gal(K(G)) / G for finite
subgroups G of SU(2), where K(G) would be an extension associated with G. This would
generalize to subgroups of SU(2) with infinite order in the case of arbitrary Galois group.
Quantum groups have finite number of representations in 1-1-correspondence with terms of
finite-D representations of G. Could the representations of Gal(K(G)) /G correspond to the
representations of quantum group defined by G?

This would conform with the vision that there are two manners to realize finite measurement
resolution. The first one would be in terms of inclusions of hyper-finite factors. Second would
be in terms cognitive representations defining a number theoretic discretization of X4 with
imbedding space coordinates in the extension of rationals in which Galois group acts.

In fact, also the discrete subgroup of infinite-D group of symplectic transformations of
∆M4

+ × CP2 would act in the cognitive representations and this suggests a far reaching
implications concerning the understanding of the cognitive representations, which pose a
formidable looking challenge of finding the set of points of X4 in given extension of ratio-
nals [L13].

2. This brings in mind also the model for bio-harmony in which genetic code is defined in terms
of Hamiltonian cycles associated with icosahedral and tetrahedral geometries [L1, L10]. One
can wonder why the Hamiltonian cycles for cubic/octahedral geometry do not appear. On the
other hand, according to Vaughan the Dynkin diagram for E7 is missing from the hierarchy
of so principal graphs characterizing the inclusions of HFFs for β < 4 (a fact that I failed to
understand). Could the genetic code directly reflect the properties of the inclusion hierarchy?

How would the hierarchies of inclusions of HFFs and extensions of rationals relate to each
other?

1. I have proposed that the inclusion hierarchies of extensions K of rationals accompanied by
similar hierarchies of Galois groups Gal(K) could correspond to a fractal hierarchy of sub-
algebras of hyperfinite factor of type II1. Quantum group representations in ADE hierarchy
would somehow correspond to these inclusions. The analogs of coset spaces for two alge-
bras in the hierarchy define would quantum group representations with quantum dimension
characterizing the inclusion.

2. The quantum group in question would correspond to a quantum analog of finite-D group
of SU(2) which would be in completely unique role mathematically and physically. The
infinite-D group in question could be the symplectic group of δM4

+ × CP2 assumed to act
as isometries of WCW. In the hierarchy of Galois groups the quantum group of finite group
G ⊂ SU(2) would correspond to Galois group of an extension K.

3. The trace of unit matrix defining the character associated with unit element is infinite for
these representations for factors of type I. Therefore it is natural to assume that hyper-finite
factor of type II1 for which the trace of unit matrix can be normalized to 1. Sub-factors
would have trace of projector with trace smaller than 1.

4. Do the ADE diagrams for groups Gal(K(G)) / G indeed correspond to quantum groups and
affine algebras? Why the finite groups should give rise to affine/Kac-Moody algebras? In
number theoretic vision a possible answer would be that depending on the value of the index
β of inclusion the symplectic algebra reduces in the number theoretic discretization by gauge
conditions specifying the inclusion either to Kac-Moody group (β = 4) or to quantum group
(β < 4).

What about subgroups of groups other than SU(2)? According to Vaughan there has been
work about inclusion hierarchies of SU(3) and other groups and it seems that the results generalize
and finite subgroups of say SU(3) appear. In this case the tensor products of finite sub-groups
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McKay graphs do not however correspond to the principal graphs for inclusions. Could the number
theoretic vision come in rescue with the replacement of discrete subgroup with Galois group and
the identification of SU(2) as the covering for the Galois group of quaternions?

3.3 How could ADE type quantum groups and affine algebras be con-
cretely realized?

The questions discussed are following. How to understand the correspondence between the McKay
graph for finite group G ⊂ SU(2) and ADE (affine) group Dynkin diagram for β < 4 (β = 4)?
How the nodes of McKay grap representing the irreps of finite group can correspond to the positive
roots of a Dynkin diagram, which are essentially vectors defined by eigenvalues of Cartan algebra
generators for complexified Lie-algebra basis.

The first thing that comes in mind is the construction of representation of Kac-Moody algebra
using scalar fields labelled by Cartan algebra generators (see http://tinyurl.com/y9lkeelk):
these representations are discussed by Edward Frenkel [A1]. The charged generators of Kac-Moody
algebra in the complement of Cartan algebra are obtained by exponentiating the contractions of the
vector formed by these scalar fields with roots to get α ·Φ = αiΦ

i. The charged field is represented
as a normal ordered product : exp(iα · Φ) :. If one can assign to each irrep of G a scalar field in a
natural manner one could achieve this.

Neglect first the presence of the group algebra of Gal(K(G)) / G. The standard rule for the
dimensions of the representations of finite groups reads as

∑
i d

2
I = n(G). For double covering of

G one obtains this rule separately for integer spin representations and half-odd integers spin repre-
sentations. An interesting possibility is that this could be interpreted in terms of supersymmetry
at the level of group algebra in which representation of dimension dI appears dI times.

The group algebra of G and its covering provide a universal manner to realize these represen-
tations in terms of a basis for complex valued functions in group (for extensions of rationals also
the values of the functions must belong to the extension).

1. Representation with dimension dI occurs dI times and corresponds to dI × dI representation
matrices DI

mn of representation χI , whose columns and rows provide representations for left-
and right-sided action of G. The tensor product rules for the representations χI can be
formulated as double tensor products. For basis states |J, n〉 in χI and |J, n〉 in χJ one has

|I,m〉⊗|J, n〉 = cK,pI,m|J,n|K, p〉 ,

where cK,pJ,n|J,n are Glebch-Gordan coefficients.

2. For the tensor product of matrices DI
mn and DJ

mn one must apply this rule to both indices.
The orthogonality properties of Glebsch-Gordan coefficients guarantee that the tensor prod-
uct contains only terms in which one has same representation at left- and right-hand side.
The orthogonality rule is ∑

m,n

cK,pI,m|J,nc
K,q
I,r|J,s ∝ δK,L .

3. The number of states is n(G) whereas the number I(G) of irreps corresponds to the dimension
of Cartan algebra of Kac-Moody algebra or of quantum group is smaller. One should be able
to pick only one state from each representation DI .

The condition that the state X of group algebra is invariant under automorphism gXg−1

implies that the allowed states as function in group algebra are traces Tr(DI)(g) of the
representation matrices. The traces of representation matrices indeed play fundamental role
as automorphism invariants. This suggests that the scalar fields ΦI in Kac-Moody algebra
correspond to Hilbert space coefficients of Tr(DI)(g) as elements of group algebra labelled by
the representation. The exponentiation of α · Φ would give the charged Kac-Moody algebra
generators as free field representation.

http://tinyurl.com/y9lkeelk
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4. For infinite sub-groups G ⊂ SU(2) d(G) is infinite. The traces are finite also in this case if
the dimensions of the representations involved are finite. If one interprets the unit matrix as
a function having value 1 in entire group Tr(Id) diverges. Unit dimension for HFFs provide
a more natural notion of dimension d = n(G) of group algebra n(G) as d = n(G) = 1.
Therefore HFFs would emerge naturally.

It is easy to take into account Gal(K(G)). One can represent the elements of semi-direct
product Gal(K(G)) / G as functions in Gal(K(G)) × G and the proposed construction brings in
also the tensor products in the group algebra of Gal(K(G)). It is however essential that group
algebra elements have values in K. This brings in tensor products of representations Gal and G
and the number of representations is n(Gal)×n(G). The number of fields ΦI as also the number of
Cartan algebra generators of ADE Lie algebra increases from I(G) to I(Gal)×I(G). The reduction
of the extension of coefficient field for the Kac-Moody algebra from complex numbers to K splits
the Hilbert space to sectors with smaller number of states.

4 M 8 −H duality

The generalization of the standard twistor Grassmannian approach to TGD remains a challenge
for TGD and one can imagine several approaches. M8−H duality is essential for these approaches
and will be discussed in the sequel.

The original form of M8 − H duality assumed H = M4 × CP2 but quite recently it turned
out that one could replace the twistor space of M4 identified as M4 × S2 with CP3,h, which is
hyperbolic variant of CP3. This option forces to replace H with H = CP2,h×CP2. M8−Hduality
would consist of a map of M4 point to corresponding twistor sphere in CP3,h and its projection to
CP2,h. This option will be discussed in the section about twistor lift of TGD.

4.1 M8 −H duality at the level of space-time surfaces

M8 − H duality [L2] relates two views about space-time surfaces X4: as algebraic surfaces in
complexified octonionic M8 and as minimal surfaces with singularities in H = M4 × CP2.

1. Octonion structure at the level of M8 means a selection of a suitable decomposition M8 =
M4 × E4 in turn determining H = M4 × CP2. Choices of M4 share a preferred 2-plane
M2 ⊂M4 belonging to the tangent space of allowed space-time surfaces X4 ⊂M8 at various
points. One can parameterize the tangent space of X4 ⊂ M8 with this property by a point
of CP2. Therefore X4 can be mapped to a surface in H = M4 ×CP2: one M8-duality. One
can consider also the possibility that the choice of M2 is local but that the distribution of
M2(x) is integrable and defines string world sheet in M4. In this case M2(x) is mapped to
same M2 ⊂ H.

2. Since 8-momenta p8 are light-like one can always find a choice of M4
L ⊂ M8 such that p8

belongs to M4
L and is thus light-like. The momentum has in the general case a component

orthogonal to M2 so that M4
L is unique by quaternionicity: quaternionic cross product for

tangent space quaternions gives the third imaginary quaternionic unit. For a fixed M4, call
it M4

T , the M4 projections of momenta are time-like. When momentum belongs to M2 the
choices is non-unique and any M4 ⊂M2 is allowed.

3. Space-time surfaces X4 ⊂M8 have either quaternionic tangent- or normal spaces. Quantum
classical correspondence (QCC) requires that charges in Cartan algebra co-incide with their
classical counters parts determined as Noether charges by the action principle determining X4

as preferred extremal. Parallelity of 8-momentum currents with tangent space of X4 would
conform with the naive view about QCC. It does not however hold true for the contributions
to four-momentum coming from string world sheet singularities (string world sheet boundaries
are identified as carriers of quantum numbers), where minimal surface property fails.

An important aspect of M8 −H duality is the description of space-time surfaces X4
c ⊂M8

c as
roots for the “real” or “imaginary” part in quaternionic sense of complexified-octonionic polynomial
with real coefficients: these options correspond to complexified-quaternionic tangent - or normal
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spaces. The real space-time surfaces would be naturally obtained as “real” parts with respect to i
of their complexified counterparts by projection from M8

c to M4
c . One could drop the subscripts

”c” but in the sequel they are kept.
Remark:Oc,Oc,Cc,Rc will be used in the sequel for complexifications of octonions, quaternions,

etc.. number fields using commuting imaginary unit i appearing naturally via the roots of real
polynomials.

M8 −H duality makes sense under 2 additional assumptions to be considered in the following
more explicitly than in earlier discussions.

1. Space-time surface is identified as a 4-D root for a Hc-valued “imaginary” or “real” part of
Oc valued polynomial obtained as an Oc continuation of a real polynomial P with rational
coefficients, which can be chosen to be integers. For P (x) = xn + .. ordinary roots are
algebraic integers. The 4-D space-time surface is projection of this surface from M8

c to M8.

The tangent space of space-time surface and thus space-time surface itself contains a preferred
M2
c ⊂M4

c or more generally, an integrable distribution of tangent spaces M2
c (x). The string

world sheet like entity defined by this distribution is 2-D surface X2
c ⊂ X4

c in Rc sense.

X2c can be fixed by posing to the non-vanishing Qc-valued part of octonionic polynomial
condition that the Cc valued “real” or “imaginary” part in Cc sense for this polynomial
vanishes. M2

c would be the simplest solution but also more general complex sub-manifolds
X2
c ⊂ M4

c are possible. In general one would obtain book like structures as collections of
several string world sheets having real axis as back.

By assuming that Rc-valued “real” or “imaginary” part of the polynomial at this 2-surface
vanishes. one obtains preferred M1

c or E1
c containing octonionic real and preferred imagi-

nary unit or distribution of the imaginary unit having interpretation as complexified string.
Together these kind 1-D surfaces in Rc sense would define local quantization axis of energy
and spin. The outcome would be a realization of the hierarchy R→Cc → Hc → Oc realized
as surfaces.

Remark: Also M4
c appears as a special solution for any polynomial P . M4

c seems to be like
a universal reference solution with which to compare other solutions. M4

c would intersect
all other solutions along string world sheets X2

c . Also this would give rise to a book like
structures with 2-D string world sheet representing the back of given book. The physical
interpretation of these book like structures remains open in both cases.

I have proposed that string world sheets as singularities correspond to 2-D folds of space-
time surfaces at which the dimension of the quaternionic tangent space degenerates from
4 to 2 [L12] [K5]. This interpretation is consistent with the identification as a book like
structure with 2-pages. Also 1-D real and imaginary manifols could be interpreted as folds
or equivalently books with 2 pages.

2. Associativity condition for tangent-/normal space is second essential condition and means
that tangent - or normal space is quaternionic. The conjecture is that the identification in
terms of roots of polynomials guarantees this and one can formulate this as rather convincing
argument [L3, L4, L5].

One cannot exclude rational functions and or even real analytic functions in the sense that
Taylor coefficients are octonionically real (propotional to octonionic real unit). Number theoret-
ical vision - adelic physics [L6], suggests that polynomial coefficients are rational or perhaps in
extensions of rationals. The real coefficients could in principle be replaced with complex numbers
a + ib, where i commutes with the octonionic units and defines complexifiation of octonions. i
appears also in the roots defining complex extensions of rationals.

1. In general the zero loci for imaginary or real part are 4-D but the 7-D light-cone δM8
+ of M8

with tip at the origin of coordinates is an exception [L2]. At δM8
+ the octonionic coordinate

o is light-like and one can write o = re, where 8-D time coordinate and radial coordinate are
related by t = r and one has e = (1 + er)/

√
2 such that one as e2 = e.

Polynomial P (o) can be written at δM8
+ as P (o) = P (r)e and its roots correspond to 6-

spheres S6 represented as surfaces tM = t = rN , rM =
√
r2N − r2E ≤ rN , rE ≤ rN , where
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the value of Minkowski time t = r = rN is a root of P (r) and rM denotes radial Minkowski
coordinate. The points with distance rM from origin of t = rN ball of M4 has as fiber
3-sphere with radius r =

√
r2N − r2E . At the boundary of S3 contracts to a point.

2. These 6-spheres are analogous to 6-D branes in that the 4-D solutions would intersect them
in the generic case along 2-D surfaces X2. The boundaries rM = rN of balls belong to the
boundary of M4 light-cone. In this case the intersection would be that of 4-D and 3-D surface,
and empty in the generic case (it is however quite not clear whether topological notion of
“genericity” applies to octonionic polynomials with very special symmetry properties).

3. The 6-spheres tM = rN would be very special. At these 6-spheres the 4-D space-time surfaces
X4 as usual roots of P (o) could meet. Brane picture suggests that the 4-D solutions connect
the 6-D branes with different values of rn.

The basic assumption has been that particle vertices are 2-D partonic 2-surfaces and light-like
3-D surfaces - partonic orbits identified as boundaries between Minkowskian and Euclidian
regions of space-time surface in the induced metric (at least at H level) - meet along their
2-D ends X2 at these partonic 2-surfaces. This would generalize the vertices of ordinary
Feynman diagrams. Obviously this would make the definition of the generalized vertices
mathematically elegant and simple.

Note that this does not require that space-time surfaces X4 meet along 3-D surfaces at
S6. The interpretation of the times tn as moments of phase transition like phenomena is
suggestive. ZEO based theory of consciousness suggests interpretation as moments for state
function reductions analogous to weak measurements ad giving rise to the flow of experienced
time.

4. One could perhaps interpret the free selection of 2-D partonic surfaces at the 6-D roots as
initial data fixing the 4-D roots of polynomials. This would give precise content to strong
form of holography (SH), which is one of the central ideas of TGD and strengthens the
3-D holography coded by ZEO alone in the sense that pairs of 3-surfaces at boundaries of
CD define unique preferred extremals. The reduction to 2-D holography would be due to
preferred extremal property realizing the huge symplectic symmetries and making M8 −H
duality possible as also classical twistor lift.

I have also considered the possibility that 2-D string world sheets in M8 could correspond to
intersections X4 ∩ S6? This is not possible since time coordinate tM constant at the roots
and varies at string world sheets.

Note that the compexification of M8 (or equivalently octonionic E8) allows to consider also
different variants for the signature of the 6-D roots and hyperbolic spaces would appear for
(ε1, εi, .., ε8), epsiloni = ±1 signatures. Their physical interpretation - if any - remains open
at this moment.

5. The universal 6-D brane-like solutions S6
c have also lower-D counterparts. The condition

determining X2 states that the Cc-valued “real” or “imaginary” for the non-vanishing Qc-
valued “real” or “imaginary” for P vanishes. This condition allows universal brane-like
solution as a restriction of Oc to M4

c (that is CDc) and corresponds to the complexified
time=constant hyperplanes defined by the roots t = rn of P defining “special moments in
the life of self” assignable to CD. The condition for reality in Rc sense in turn gives roots of
t = rn a hyper-surfaces in M2

c .

4.2 M8 −H duality at the level of momentum space

M8 −H duality occurs also at the level of momentum space and has different meaning now.

1. At M8 level 8-momenta are quaternionic and light-like. The choices of M4
L ⊃M2 for which

8-momentum in M4
L, are parameterized by CP2 parameterizing also the choices of tangent or

normal spaces of X4 ⊂M8 at space-time level. This maps M8 light-like momenta to light-like
M4
L momenta and to CP2 point characterizing the M4 and depending on 8-momentum. One

can introduce CP2 wave functions expressible in terms of spinor harmonics and generators
of of a tensor product of Super-Virasoro algebras.
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2. For a fixed choice M4
T momenta in general time-like and the E4 component of 8-momentum

has value equal to mass squared. E4 momenta are points of 3-sphere so that SO(3) harmonics
with SO(4) symmetry could parametrize the states. The quantum numbers are M4

T ⊃
M2 momenta with fixed mass and the two angular momenta with identical values for S3

harmonics, which correspond to the quantum states of a spherical quantum mechanical rigid
body, and are given by the matrix elements Dj

m,n SU(2) group elements (SO(4) decomposes
to SU(2)L)× SU(2)R acting from left and right).

This picture suggests what one might call SO(4)− SU(3) duality at the level of momentum
space. There would be two descriptions of states: as massless states with SU(3) symmetry
and massive states with SO(4) symmetry.

3. What about the space formed by the choices of the space of the light-like 8-momenta? This
space is the space for the choices of preferred M2 and parameterized by the 6-D (symmetric
space G2/SU(3), where SU(3) ⊂ G2 leaving complex plane M2 invariant is subgroup of
quaternionic automorphic group G(2) leaving octonionic real unit defining the rest system
invariant. This space is moduli space for octonionic structures each of which defines family
of space-time surfaces. 8-D Lorent transformations produce even more general octonionic
structures. The space for the choices of color quantization axes is SU(3)/U(1) × U(1), the
twistor space of CP2.

4.2.1 Do M4
L and M4

T have analogs at the space-time level?

As found, the solutions of octonionic polynomials consisting of 4-D roots and special 6-D roots
coming as 6-sphere S6 s at 7-D light-cone of M8. The roots at t = r light-cone boundary are given
by the roots r = rN of the polynomial P (t) and correspond to M4 slices tM = rN , rM ≤ rN . At
point rM S3 fiber as radius r(S3) =

√
r2N − r2M and contracts to a point at its boundaries.

Could M4
L and MT have analogies at the space-time level?

1. The sphere S3 associated M4
T could have counterpart at the level of space-time description.

The momenta in M4
T would naturally be mapped to momenta in the section t = rn in this

case the S3:s of different mass squared values would naturally correspond to S3:s assignable
to the points of the balls t = rn and code for mass squared value.

The counterpart of M4
L should correspond to light-cone boundary but what does CP2 corre-

spond? Could the pile of S3 associated with t = rn correspond also to CP2. Could this be
the case if there is wormhole contact carrying monopole flux at the origin so that the analog
for the replacement of 3-sphere at rCP2

= ∞ with homologically non-trivial 2-sphere would
be realized?

2. Does the 6-sphere as a root polynomial have counterpart in H? The image should be con-
sistent with M8 −H duality and correspond to a fixed structure depending on the root rn
only. Since S3 associated with the E4 momenta reduces to a point for M4

L, the natural guess
is that S6 reduces to t = rn, 0 ≤ rM ≤ rn surface in H.

4.2.2 S3 − CP2 duality

S3−CP2 duality at the level of quantum numbers suggest strongly itself. What does this require?
One can approach the problem from two different perspectives.

1. The first approach would be that the representations of SU(3) and SO(4) groups somehow
correspond to each other: one could speak of SU(3)−SO(4) duality [K13, K17]. The original
form of this duality was this. The color symmetries of quark physics at high energies would
be dual to the SO(4) = SU(2)L × SU(2)R symmetries of the low energy hadron physics.
Since the physical objects are partons and hadrons formed from the one cannot expect the
duality to hold true at the level of details for the representations, and the comparison of the
representations makes this clear.

2. The second approach relies on the notion of cognitive representation meaning discretization
of CP2 and S3 and counting of points of cognitive representations providing discretization in
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terms of M8 or H points belonging to the extension of rationals considered. In this case it
is more natural to talk about S3 − CP2 duality.

The basic observation is that the open region 0 ≤ r < ∞ of CP2 in Eguchi-Hanson coordi-
nates with r labeling 3-spheres S3(r) with finite radius can be regarded as pile of S3(r). In
discretization one would have discrete pile of these 3-spheres with finite number of points in
the extension of rationals. They points of given S3 could be related by isometries in special
cases.

How S3 − CP2 duality at the level of light-like M8 momenta could emerge?

1. Consider first the situation in which one chooses M4 ⊃ M2 sub-spaces so that momentum
projection to it is light-like. For cognitive representation the choices of M4 ⊃M2 correspond
to ad discrete set of points of CP2 and thus points in the pile of S3 with discrete radii since all
E4 parts of momenta with fixed length squared to zero in this choice and each E4 momentum
with fixed lengthand thus identifiable as discrete point of S3 would correspond to one choice.

All these choices would give rise to a pile of S3:s identifiable as set 0 ≤ r <∞ of CP2. The
number of CP2 points would be same as total number of points in the pile of discrete S3s.
This is what S3 − CP2 duality would say.

Remark: The volumes of CP2 and S3 with unit radius are 8π2 and 2π2 so that ration is
rational number.

2. Consider now the situation for M4
T so that one has non-vanishing M4 mass squared equal to

E4 mass squared, having discretized values. The E4 would momenta correspond to points
for a pile of discretized S3 and thus to the points of CP2 by above argument. One would
have S3 −CP2 correspondence also now as one indeed expects since the two manners to see
the situation should be equivalent.

3. In the space of light-like M8 momenta E8 momenta could naturally organize into repre-
sentations of finite discrete subgroups of SU(2) appearing in McKay correspondence with
ADE groups: the groups are cyclic groups, dihedral groups, and the isometry groups as-
sociated with tetrahedron, octahedron (cube) and icosahedron (dodecahedron) (see http:

//tinyurl.com/yyyn9p95).

4. Could a concrete connection with the inclusion hierarchy of HFFs be based on increasing
momentum resolution realized in terms of these groups at sphere S3. Notice however that
for cyclic and dihedral groups the orbits are circles and pairs of circles for dihedral groups so
that the discretization looks too simple and is rotationally asymmetric. Discretization should
improve as n increases.

One can of course ask why Cn and Dn with single direction of rotation axes would appear?
Could it be that the directions of rotation axis correspond to the directions defined by the
vertices of the 5 Platonic solids. Or could the orbits of fixed axis under the 5 Platonic orbits
be allowed. Also this looks still too simple.

Could the discretization labelled by nmax be determined by the product of the groups up to
nmax and define a group with infinite order. One can consider also groups defined by subsets
{n1, n2...n3} and these a pair of sequences with larger sequence containing the smaller one
could perhaps define an inclusion. The groups Cn and Dn allow prime decomposition in
obvious manner and it seems enough to include to the product only the groups Cp and Dp,
where p is prime as generators so that one would have set {p1, ...pn} of primes labelling these
groups besides the Platonic groups. The extension of rationals used poses a cutoff on the
number of groups involved and on the group elements representable since since too high roots
of unity resulting in the multiplication of Cpi and Dpj do not belong to the extension.

At the level of momentum space the hierarchy of finite discrete groups of SU(2) would define
the notion measurement resolution. The discrete orbits of SU(2) × U(1) at S3 would be
analogous to tesselations of sphere S2 known as Platonic solids at sphere S2 and appearing
in the ADE correspondence assignable to Jones inclusions as description of measurement
resolution. This would also explain also why Z2 coverings of the subgroups of SO(3) appear
in ADE sequence.

http://tinyurl.com/yyyn9p95
http://tinyurl.com/yyyn9p95
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This picture is probably not enough for the needs of adelic physics [L6] allowing all extensions
of rationals. Besides roots of unity only the roots of small integers 2, 3, 5 associated with the
geometry of Platonic solids would be included in these discretizations. One could interpret
these discretizations in terms of subgroups of discrete automorphism groups of quaternions.
Also the extensions of rationals are probably needed.

Could S3 − CP2 duality make sense at space-time level? Consider the space-time analog for
the projection of M8 momenta to fixed M4

T .

1. Suppose that the 3-surfaces determining the space-time surfaces as algebraic surfaces in
X4 ⊂ M8 are given at the surfaces t = rN , rM ≤ rN and have a 3-D fiber which should be
surface in CP2. On can assign to each point of this ball S3(rM ) with radius going to zero at
rM = rN . One has pile of S3(rM ) which corresponds to the region 0 ≤ r <∞ of CP2. This
set is discretized. Suppose that the discretization is like momentum discretization. If so, the
points would correspond to points of CP2. It is not however clear why the discretization
should be so symmetric as in momentum discretization.

2. The initial values could be chosen by choosing discrete set of points in this pile of S3:s and
this would give rise to a discrete set of points of CP2 fixing tangent or normal plane of X4

at these points. One should show that the selection of a point of S6 at each point indeed
determines quaternionic tangent or normal plane plane for a given polynomial P (o) in M8.

It would seem that this correspondence need not hold true.

4.3 M8 −H duality and the two manners to describe particles

The isometry groups for M4 × CP2 is P × SU(3) (P for Poincare group). The isometry group
for M8 = M4 × E4 with a fixed choice of M4 breaks down to P × SO(4). A further breaking by
selection M4 ⊂M2 of preferred octonionic complex plane M2 necessary in the algebraic approach
to space-time surfaces X4 ⊂M8 brings in preferred rest system and reduces the Poincare symmetry
further. At the space-time level the assumption that the tangent space of X4 contains fixed M2

or at least integral distribution of M2(x) ⊂M4 is necessary for M8 −H duality [L2].
The representations SO(4) and SU(3) could provide alternative description of physics so that

one would have what I have called SO(4)−SU(3) duality [K13]. This duality could manifest in the
description of strong interaction physics in terms of hadrons and quarks respectively (conserved
vector current hypothesis and partially conserved axial current hypothesis based on Spin(SO(4)) =
SU(2)×SU(2)R. The challenge is to understand in more detail this duality. This could allow also
to understand better how the two twistor descriptions might relate.

SO(4)− SU(3) duality implies two descriptions for the states and scattering amplitudes.

Option I: One uses projection of 8-momenta to a fixed M4
T ⊃M2.

Option II: One assumes that M4
L ⊃ M2 is defines the frame in which quaternionic octonion

momentum is parallel to M4
L: this M4

L depends on particle state and describes this dependence in
terms of wave function in CP2.

4.3.1 Option I: fixed M4
T ⊃M2

For Option I the description would be in terms of a fixed M4
T ⊂ M8 = M4

T × E4 and M2 ⊂ M4
T

fixed for both options. For given quaternionic light-like M8 momentum one would have projection
to M4

T , which is in general massive. E4 momentum would have same the length squared by
light-likeness.

De-localization M4
T mass squared equal to p2(M4

T ) = m2 in E4 can be described in terms of
SO(4) harmonics at sphere having p2(E4) = m2. This would be the description applied to hadrons
and leptons and particles treated as massive particles. Particle mass would be due to the fixed
choice of M4

T . What dictates this choice is an interesting question. An interesting question is
how these descriptions relate to QFT Higgs mechanism as (in principle) alternative descriptions:
the choice of fixed M4

T could be seen as analog for the generation of vacuum expectation of Higgs
selecting preferred direction in the space of Higgs fields.
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4.3.2 Option II: varying M4
L ⊃M2

For Option II the description would use M4
L ⊃M2, which is not fixed but chosen so that it contains

light-like M8 momentum. This would give light-like momentum in M4
L identifiable as quaternionic

sub-space of complexified octonions.

1. One could assign to the state wave function function for the choices of M4 and by quaternion-
icity of 8-momenta this would correspond to a state in super-conformal representation with
vanishing M4

L mass: CP2 point would code the information about E4 component light-like
8-momentum. This description would apply to the partonic description of hadrons in terms
of massless quarks and gluons.

2. For this option one could use the product of ordinary M4 twistors and CP2 twistors. One
challenge would be the generalization of the twistor description to the case of CP2 twistors.

4.3.3 p-Adic particle massivation and ZEO

The two pictures about description of light-like M8 momenta do not seem to be quite consistent
with the recent view about TGD in which H-harmonics describe massivation of massless particles.
What looks like a problem is following.

1. The resulting particles are massive in M4. But they should be massless in M4 × CP2

description. The non-vanishing mass would suggest the correct description in terms of Option
I for which the description in terms of E4 momenta with length equal to mass and thus
identifiable as points of S3. Momentum space wave functions at S3 - essentially rigid body
wave functions given by representation matrices of SU(2) could characterize the states rather
than CP2 harmonic.

2. The description based on CP2 color partial waves however works and this would favor Option
II with vanishing M4 mass. What goes wrong?

To understand what might be involved, consider p-adic mass calculations.

1. The massivation of physical fermion states includes also the action of super-conformal gen-
erators changing the mass. The particles are originally massless and p-adic mass squared is
generated thermally and mapped to real mass squared by canonical identification map.

For CP2 spinor harmonics mass squared is of order CP2 mass squared and thus gigantic.
Therefore the mass squared is assumed to contain negative tachyonic ground state contribu-
tion due to the negative half-odd integer valued conformal weight hvac < 0 of vacuum. The
origin of this contribution has remained a mystery in p-adic thermodynamics but it makes
possible to construct massless states. hvac cancels the spinorial contributions and the con-
tribution from positive conformal weights of super-conformal generators so that the particle
states are massless before thermalization. This would conform with the idea of using varying
M4
L and thus CP2 description.

2. What does the choice of M4 mean in terms of super-conformal representations? Could the
mysterious vacuum conformal weight hvac provide a description for the effect of the needed
SU(3) rotation of M4 from standard orientation on super-conformal representation. The
effect would be very simple and in certain sense reversal to the effect of Higgs vacuum
expectation value in that it would cancel mass rather than generate it.

An important prediction would be that heavy states should be absent from the spectrum
in the sense that mass squared would be p-adically of order O(p) or O(p2) (in real sense of
order O(1/p) or O(1/p2)). The trick would be that the generation of h0 as a representation
of SU(3) rotation of M4 makes always the dominating contribution to the mass of the state
vanishing.

Remark: If the canonical identification I mapping the p-adic mass integers to their real
numbers is of the simplest form m =

∑
n xnp

n → I(m) =
∑
n xnp

−n, it can happen that
the image of rational m/n with p-adic norm not larger than 1 represented as p-adic integer
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by expanding it in powers of p, can be near to the maximal value of p and the mass of the
state can be of order CP2 mass - about 10−4 Planck masses. If the canonical identification
is defined as m/n→ I/(m)/I(n) the image of the mass is small for small values of m and n.

3. Unfortunately, it is easy to get convinced that this explanation of hvac is not physically
attractive. Identical mass spectra at the level of M8 and H looks like a natural implication
of M8 −H-duality. SU(3) rotation of M4 in M8 cannot however preserve the general form
of M4×CP2 mass squared spectrum for the M4 projections of M8 momenta at level of M8.

Remark: For H = M4 × CP2 the mass squared in given representation of Super-conformal
symmetries is given as a sum of CP2 mass squared for the spinor harmonic determining the
ground state and of a Virasoro contribution proportional to a non-negative integer. The
masses are required to independent of electroweak quantum numbers.

One can imagine two further identifications for the origin of hvac.

1. Take seriously the possibility of complex momenta allowed by the complexification of M8

by commuting imagine unit i and also suggested by the generalization of the twistorializa-
tion. The real and imaginary parts of light-like complex 8-momenta p8 = p8,Re + ip8,Im are
orthogonal to each other: p8,Re · p8,Im = 0 so that both real and imaginary parts of p8 are
light-like: p28,Re = p28,Im = 0. The M4 mass squared can be written has m2 = m2

Re −m2
Im

with hvac ∝ −m2
Im. The representations of Super-conformal algebra would be labelled by

hvac ∝ m2
Im.

Could the needed wrong sign contribution to CP2 mass squared mass make sense? CP2 type
extremals having light-like geodesic as M4 projection are locally identical with CP2 but be-
cause of light-like projection they can be regarded as CP2 with a hole and thus non-compact.
Boundary conditions allow analogs of CP2 harmonics for which spinor d’Alembertian would
have complex eigenvalues.

Does quantum-classical correspondence allow complex momenta: can the classical four-
momenta assignable to 6-D Kähler action be complex? The value of Kähler coupling strength
allows the action to have complex phase but parts with different phases are not allowed. Could
the imaginary part to 4-momentum could come from the CP2 type extremal with Euclidian
signature of metric?

2. Second - not necessarily independent - idea relies on the observation that in TGD one has
besides the usual conformal algebra acting on complex coordinate z also its analog acting on
the light-like radial coordinate r of light-cone boundary. At light-cone boundary one has both
super-symplectic symmetries of ∆M4

+ × CP2 and extension of super-conformal symmetries
of sphere S2 to analogs of conformal symmetries depending on z and r and it seems that one
must chose between these two options. Also the extension of ordinary Kac-Moody algebra
acts at the light-like orbits of partonic 2-surfaces.

There are two scaling generators: the usual L0 = zd/dz and the second generator L0,1 =
ird/dr. For L0,1 at light-cone boundary powers of zn are replaced with (r/r0)ik = exp(iku),
u = log(r/r0)). Could it be that mass squared operator is proportional to L0 + L0,1 having
eigenvalues h = n − k? The absence of tachyons requires h ≥ 0. Could k characterize
given Super-Virasoro representation? Could k ≥ 0 serve as an analog of positive energy
condition allowing to analytically continue exp(iku) to upper u-plane? How to interpret this
continuation?

The 3-D generalization of super-symplectic symmetries at light-cone boundary and extended
Ka-Moody symmetries at partonic 2-surfaces should be possible in some sense. Could the
continuation to the upper u-plane correspond to the continuation of the extended conformal
symmetries from light-cone boundary to future light-one and from light-partonic 2-surfaces
to space-time interior?

Why p-adic massivation should occur at all? Here ZEO comes in rescue.

1. In ZEO one can have superposition of states with different 4-momenta, mass values and also
other charges: this does not break conservation laws. How to fix M4 in this case? One
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cannot do it separately for the states in superposition since they have different masses. The
most natural choices is as the M4 associated with the dominating contribution to the zero
energy state. The outcome would be thermal massivation described excellently by p-adic
thermodynamics [K1]. Recently a considerable increase in the understanding of hadron and
weak boson masses took place [L17].

2. In ZEO quantum theory is square root of thermodynamics in a well-defined formal sense, and
one can indeed assign to p-adic partition function a complex square root as a genuine zero
energy state. Since mass varies, one must describe the presence of higher mass excitations
in zero energy state as particles in M4 assigned with the dominating part of the state so
that the observed particle mass squared is essentially p-adic thermal expectation value over
thermal excitations. p-Adic thermodynamics would thus describe the fact that the choice of
M4
L cannot not ideal in ZEO and massivation would be possible only in ZEO.

3. Current quarks and constituent quarks are basic notions of hadron physics. Constituent
quarks with rather large masses appear in the low energy description of hadrons and current
quarks in high energy description of hadronic reactions. That both notions work looks rather
paradoxical. Could massive quarks correspond to MT picture and current quarks to M4

L

picture but with p-adic thermodynamics forced by the superposition of mass eigenstates
with different masses.

The massivation of ordinary massless fermion involves mixing of fermion chiralities. This
means that the SU(3) rotation determined by the dominating component in zero energy
state must induce this mixing. This should be understood.

4.4 M8 −H duality and consciousness

M8 −H duality is one of the key ideas of TGD and one can ask whether it has implications for
TGD inspired theory of consciousness and it indeed forces to challenge the recent ZEO based view
about consciousness [L7] .

4.4.1 Objections against ZEO based theory of consciousness

Consider first objections against ZEO based view about consciousness.

1. ZEO (zero energy ontology) based view about conscious entity can be regarded as a sequence
of “small” state function reductions (SSRs) identifiable as analogs of so called weak mea-
surements at the active boundary of causal diamond (CD) receding reduction by reduction
farther away from the passive boundary, which is unchanged as also the members of state
pairs at it. One can say that weak measurements commute with the observables, whose
eigenstates the states at passive boundary are. This asymmetry assigns arrow of time to the
self having CD as imbedding space correlate. “Big” state function reductions (BSRs) would
change the roles of boundaries of CD and the arrow of time. The interpretation is as death
and re-incarnation of the conscious entity with opposite arrow of time.

The question is whether quantum classical correspondence (QCC) could allow to say some-
thing about the time intervals between subsequent values of temporal distance between weak
state function reductions.

2. The questionable aspect of this view is that tM = constant sections look intuitively more
natural as seats of quantum states than light-cone boundaries forming part of CD boundaries.
The boundaries of CD are however favoured by the huge symplectic symmetries assignable to
the boundary of M4 light-cone with points replaced with CP2 at level of H. These symmetries
are crucial or the existence of the geometry of WCW (“world of classical worlds”).

3. Second objection is that the size of CD increases steadily: this nice from the point of view of
cosmology but the idea that CD as correlate for a conscious entity increases from CP2 size to
cosmological scales looks rather weird. For instance, the average energy of the state assignable
to either boundary of CD would increase. Since zero energy state is a superposition of
states with different energies classical conservation law for energy does not prevent this [L15]:
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essentially quantal effect due to the fact that the zero energy states are not exact eigenstates
of energy could be in question. In BSRs the energy would gradually increase. Admittedly
this looks strange and one must be keen for finding more conventional options.

4. Third objection is that re-incarnated self would not have any “childhood” since CD would
increase all the time.

One can ask whether M8 −H duality and this braney picture has implications for ZEO based
theory of consciousness. Certain aspects of M8−H duality indeed challenge the recent view about
consciousness based on ZEO (zero energy ontology) and ZEO itself.

1. The moments t = rn defining the 6-branes correspond classically to special moments for which
phase transition like phenomena occur. Could t = rn have a special role in consciousness
theory?

(a) For some SSRs the increase of the size of CD reveals new t = rn plane inside CD. One
can argue that these SSRS define very special events in the life of self. This would not
modify the original ZEO considerably but could give a classical signature for how many
ver special moments of consciousness have occurred: the number of the roots of P would
be a measure for the lifetime of self and there would be the largest root after which BSR
would occur.

(b) Second possibility is more radical. One could one think of replacing CD with single
truncated future- or past-directed light-cone containing the 6-D universal roots of P up
to some rn defining the upper boundary of the truncated cone? Could t = rn define
a sequence of moments of consciousness? To me it looks more natural to assume that
they are associated with very special moments of consciousness.

2. For both options SSRs increase the number of roots rn inside CD/truncated light-one grad-
ually and thus its size? When all roots of P (o) would have been measured - meaning that
the largest value rmax of rn is reached -, BSR would be unavoidable.

BSR could replace P (o) with P1(r1 − o): r1 must be real and one should have r1 > rmax.
The new CD/truncated light-cone would be in opposite direction and time evolution would
be reversed. Note that the new CD could have much smaller size size if it contains only the
smallest root r0. One important modification of ZEO becomes indeed possible. The size of
CD after BSR could be much smaller than before it. This would mean that the re-incarnated
self would have “childhood” rather than beginning its life at the age of previous self - kind
of fresh start wiping the slate clean.

One can consider also a less radical BSR preserving the arrow of time and replacing the
polynomial with a new one, say a polynomial having higher degree (certainly in statistical
sense so that algebraic complexity would increase).

4.4.2 Could one give up the notion of CD?

A possible alternative view could be that one the boundaries of CD are replaced by a pair of two
t = rN snapshots t = r0 and t = rN . Or at least that these surfaces somehow serve as correlates
for mental images. The theory might allow reformulation also in this case, and I have actually
used this formulation in popular lectures since it is easier to understand by laymen.

1. Single truncated light-cone, whose size would increase in each SSR would be present now
since the spheres correspond to balls of radius rn at times rn. If r0 = 0, which is the case for
P (o) ∝ o, the tip of the light-cone boundary is one root. One cannot avoid association with
big bang cosmology. For P (0) 6= r0 the first conscious moment of the cosmology corresponds
to t = r0. One can wonder whether the emergence of consciousness in various scales could
be described in terms of the varying value of the smallest root r0 of P (o).

If one allows BSR:s this picture differs from the earlier one in that CDs are replaced with
alternation of light-cones with opposite directions and their intersections would define CD.
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2. For this option the preferred values of t for SSRs would naturally correspond to the roots of
the polynomial defining X4 ⊂ M8. Moments of consciousness as state function reductions
would be due to collisions of 4-D space-time surfaces X4 with 6-D branes! They would
replace the sequence of scaled CD sizes. CD could be replaced with light-one and with the
increasing sequence (r0, ...rn) of roots defining the ticks of clock and having positive and
negative energy states at the boundaries r0 and rn.

3. What could be the interpretation for BSRs representing death of a conscious entity in the
new variant of ZEO? Why the arrow of time would change? Could it be because there are
no further roots of P (o)? The number of roots of P (o) would give the number of small state
function reductions?

What would happen to P (o) in BSR? The vision about algebraic evolution as increase of
the dimension for the extension of rationals would suggest that the degree of P (o) increases
as also the number of roots if all complex roots are allowed. Could the evolution continue
in the same direction or would it start to shift the part of boundary corresponding to the
lowest root in opposite direction of time. Now one would have more roots and more algebraic
complexity so that evolutionary step would occur.

In the time reversal one would have naturally tmax ≥ rnmax
for the new polynomial P (t−tmax)

having rnmax as its smallest root. The light-cone in M8 with tip at t = tmax would be in
opposite direction now and also the slices t− tmax = r′n would increase in opposite direction!
One would have two light-cones with opposite directions and the t = rn sections would
replace boundaries of CDs. The reborn conscious entity would start from the lowest root so
that also it would experience childhood.

This option could solve the argued problems of the previous scenario and give concrete connec-
tion with the classical physics in accordance with QCC. On the other hand, a minimal modification
of original scenario combined with M8 − H duality with moments t = rn as special moments in
the life of conscious entity allows also to solve these problems if the active boundary of CD is
interpreted as boundary beyond which classical signals cannot contribute to perceptions.

4.4.3 What could be the minimal modification of ZEO based view about conscious-
ness?

What would be the minimal modification of the earlier picture? Could one assume that CDs serve
as imbedding space correlates for the perceptive field?

1. Zero energy states would be defined as before that is in terms of 3-surfaces at boundaries of
CD: this would allow a realization of huge symmetries of WCW and the active boundary A of
CD would define the boundary of the region from which self can receive classical information
about environment. The passive boundary P of CD would define the boundary of the region
providing classical information about the state of self. Also now BSR would mean death and
reincarnation with an opposite arrow of time. Now however CD would shrink in BSR before
starting to grow in opposite time direction. Conscious entity would have “childhood”.

2. If the geometry of CD were fixed, the size scale of the t = rn balls of M4 would first increase
and then start to decrease and contract to a point eventually at the tip of CD. One must
however remember that the size of t = rn planes increases all the time as also the size of
CD in the sequences of SSRs. Moments t = rn could represent special moments in the life
of conscious entity taking place in SSRs in which t = rn hyperplane emerges inside CD with
increased size. The recent surprising findings challenging the Bohrian view about quantum
jumps [L11] can be understood in this picture [L11].

3. t = rn planes could also serve as correlates for memories. As CD increases at active boundary
new events as t = rn planes would take place and give rise to memories. The states at t = rn
planes are analogous to seats of boundary conditions in strong holography and the states
at these planes might change in state function reductions - this would conform with the
observations that our memories are not absolute.
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To sum up, the original view about ZEO seems to be essentially correct. The introduction of
moments t = rn as special moments in the life of self looks highly attractive as also the possibility
of wiping the slate clear by reduction of the size of CD in BSR.

5 Could standard view about twistors work at space-time
level after all?

While asking what super-twistors in TGD might be, I became critical about the recent view con-
cerning what I have called geometric twistor space of M4 identified as M4 × S2 rather than CP3

with hyperbolic metric. The basic motivations for the identification come from M8 picture in
which there is number theoretical breaking of Poincare and Lorentz symmetries. Second moti-
vation was that M4

conf - the conformally compactified M4 - identified as group U(2) [B1] (see

http://tinyurl.com/y35k5wwo) assigned as base space to the standard twistor space CP3 of M4,
and having metric signature (3,-3) is compact and is stated to have metric defined only modulo
conformal equivalence class.

As found in the previous section, TGD strongly suggests that M4 in H = M4×CP2 should be
replaced with hyperbolic variant of CP2, and it seems to me that these spaces are not identical.
Amusingly, U(2) and CP2 are fiber and base in the representation of SU(3) as fiber space so that
the their identification does not seem plausible.

On can however ask whether the selection of a representative metric from the conformal equiva-
lence class could be seen as breaking of the scaling invariance implied also by ZEO introducing the
hierarchy of CDs in M8. Could it be enough to have M4 only at the level of M8 and conformally
compactified M4 at the level of H? Should one have H = cdconf × CP2? What cdconf would be:
is it hyperbolic variant of CP2?

5.1 Getting critical

The only way to make progress is to become very critical now and then. These moments of almost
despair usually give rise to a progress. At this time I got very critical about the TGD inspired
identification of twistor spaces of M4 and CP2 and their properties.

5.1.1 Getting critical about geometric twistor space of M4

Let us first discuss the recent picture and how to modify it so that it is consistent with the hierarchy
of CDs. The key idea is that the twistor space and its base space represents CD so that one obtains
scale hierarchy of twistor spaces as a realization of broken scale invariance giving rise to the p-adic
length scale hierarchy.

1. I have identified the twistor space of M4 simply as T (M4) = M4 × S2. The interpretation
would be at the level of octonions as a product of M4 and choices of M2 as preferred complex
sub-space of octonions with S2 parameterizing the directions of spin quantization axes. Real
octonion axis would correspond to time coordinate. One could talk about the space of of
light-like directions. Light-like vector indeed defines M2. This view could be defended by
the breaking of both translation and Lorentz invariance in the octonionic approach due to
the choice of M2 and by the fact that it seems to work.

Remark: M8 = M4 × E4 is complexified to M8
c by adding a commuting imaginary unit i

appearing in the extensions of rationals and ordinary M8 represents its particular sub-space.
Also in twistor approach one uses often complexified M4.

2. The objection is that it is ordinary twistor space identifiable as CP3 with (3,-3) signature of
metric is what works in the construction of twistorial amplitudes. CP3 has metric as compact
space and coset space. Could this choice of twistor space make sense after all as geometric
twistor space?

Here one must pause and recall that the original key idea was that Poincare invariance is
symmetry of TGD for X4 ⊂ M4 × CP2. Now Poincare symmetry has been transformed to
a symmetry acting at the level of M8 in the moduli space of octonion structures defined

http://tinyurl.com/y35k5wwo
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by the choice of the direction of octonionic real axis reducing Poincare group to T × SO(3)
consisting of time translations and rotations. Fixing of M2 reducrs the group to T × SO(2)
and twistor space can be seen as the space for selections of quantization axis of energy and
spin.

3. But what about the space H? The first guess is H = M4
conf × CP2. According to [B1] (see

http://tinyurl.com/y35k5wwo) one has M4
conf = U(2) such that U(1) factor is time- like

and SU(2) factor is space-like. One could understand M4
conf = U(2) as resulting by addition

and identification of metrically 2-D light-cone boundaries at t = ±∞. This is topologically
like compactifying E3 to S3 and gluing the ends of cylinder S3×D1 together to the S3×S1.

The conformally compactified Minkowski space M4
conf should be analogous to base space of

CP3 regarded as bundle with fiber S2. The problem is that one cannot imagine an analog
of fiber bundle structure in CP3 having U(2) as base. The identification H = M4

conf × CP2

does not make sense.

4. In ZEO based breaking of scaling symmetry it is CD that should be mapped to the analog of
M4
conf - call it cdconf . The only candidate is cdconf = CP2 with one hypercomplex coordinate.

To understand why one can start from the following picture. The light-like boundaries of
CD are metrically equivalent to spheres. The light-like boundaries at t = ±∞ are identified
as in the case of M4

conf . In the case of CP2 one has 3 homologically trivial spheres defining
coordinate patches. This suggests that cdconf is simply CP2 with second complex coordinate
made hypercomplex. M4 and E4 differ only by the signature and so would do cdconf and
CP2.

The twistor spheres of CP3 associated with points of M4 intersect at point if the points differ
by light-like vector so that one has and singular bundle structure. This structure should have
analog for the compactification of CD. CP3 has also bundle structure CP3 → CP2. The S2

fibers and base are homologically non-trivial and complex analogs of mutually orthogonal line
and plane and intersect at single point. This defines the desired singular bundle structure
via the assignment of S2 to each point of CP2.

The M4 points must belong to the interior of cd and this poses constraints on the distance of
M4 points from the tips of cd. One expects similar hierarchy of cds at the level of momentum
space.

5. In this picture M4
conf = U(2) could be interpreted as a base space for the space of CDs

with fixed direction of time axis identified as direction of octonionic real axis associated with
various points of M4 and therefore of M4

conf . For Euclidian signature one would have base
and fiber of the automorphism sub-group SU(3) regarded as U(2) bundle over CP2: now one
would have CP2 bundle over U(2). This is perhaps not an accident, and one can ask whether
these spaces could be interpreted as representing local trivialization of SU(3) as U(2)×CP2.
This would give to metric cross terms between U(2) and CP2.

6. The proposed identification can be tested by looking whether it generalizes. What the twistor
space for entire M8 would be? cd = CD4 is replaced with CD8 and the discussion of the
preceding chapter demonstrated that the only possible identification of the twistor space is
now is as the 12-D hyperbolic variant of HP3 whereas CD8,conf would correspond to 8-D
hyperbolic variant of HP2 analogous to hyperbolic variant of CP2.

The outcome of these considerations is surprising.

1. One would have T (H) = CP3×F and H = CP2,H×CP2 where CP2,H has hyperbolic metric
with metric signature (1,−3) having M4 as tangent space so that the earlier picture can be
understood as an approximation. This would reduce the construction of preferred extremals
of 6-D Kähler action in T (H) to a construction of polynomial holomorphic surfaces and
also the minimal surfaces with singularities at string world sheets should result as bundle
projection. Since M8 − H duality must respect algebraic dynamics the maximal degree of
the polynomials involved must be same as the degree of the octonionic polynomial in M8.

http://tinyurl.com/y35k5wwo
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2. The hyperbolic variant Kähler form and also spinor connection of hyperbolic CP2 brings in
new physics beyond standard model. This Kähler form would serve as the analog of Kähler
form assigned to M4 earlier, and suggested to explain the observed CP breaking effects and
matter antimatter asymmetry for which there are two explanations [L14].

Some comments about the Minkowskian signature of the hyperbolic counterparts of CP3 and
CP2 are in order.

1. Why the metric of CP3 could not be Euclidian just as the metric of F? The basic objection
is that propagation of fields is not possible in Euclidian signature and one completely loses
the earlier picture provided by M4×CP2. The algebraic dynamics in M8 picture can hardly
replace it.

2. The map assigning to the point M4 a point of CP3 involves Minkowskian sigma matrices but
it seems that the Minkowskian metric of CP3 is not explicitly involved in the construction
of scattering amplitudes. Note however that the antisymmetric bi-spinor metric for the spin
1/2 representation of Lorentz group and its conjugate bring in the signature. U(2, 2) as
representation of conformal symmetries suggests (2, 2) signature for 8-D complex twistor
space with 2+2 complex coordinates representing twistors.

The signature of CP3 metric is not explicitly visible in the construction of twistor amplitudes
but analytic continuations are carried out routinely. One has also complexified M4 and M8

and one could argue that the problems disappear. In the geometric situation the signatures
of the subspaces differ dramatically. As already found, analytic continuation could allow
to define the variants of twistor spaces elegantly by replacing a complex coordinate with a
hyperbolic one.

Remark: For E4 CP3 is Euclidian and if one has E4
conf = U(2), one could think of replacing

the Cartesian product of twistor spaces with SU(3) group having M4
conf = U(2) as fiber and

CP2 as base. The metric of SU(3) appearing as subgroup of quaternionic automorphisms
leaving M4 ⊂ M8 invariant would decompose to a sum of M4

conf metric and CP2 metric

plus cross terms representing correlations between the metrics of M4
conf and CP2. This is

probably mere accident.

5.1.2 M8 −H duality and twistor space counterparts of space-time surfaces

It seems that by identifying CP3,h as the twistor space of M4, one could develop M8 −H duality
to a surprisingly detailed level from the conditions that the dimensional reduction guaranteed by
the identification of the twistor spheres takes place and the extensions of rationals associated with
the polynomials defining the space-time surfaces at M8- and twistor space sides are the same.
The reason is that minimal surface conditions reduce to holomorphy meaning algebraic conditions
involving first partial derivatives in analogy with algebraic conditions at M8 side but involving no
derivatives.

1. The simplest identification of twistor spheres is by z1 = z2 for the complex coordinates of the
spheres. One can consider replacing zi by its Möbius transform but by a coordinate change
the condition reduces to z1 = z2.

2. At M8 side one has either RE(P ) = 0 or IM(P ) = 0 for octonionic polynomial obtained as
continuation of a real polynomial P with rational coefficients giving 4 conditions (RE/IM
denotes real/imaginary part in quaternionic sense). The condition guarantees that tan-
gent/normal space is associative.

Since quaternion can be decomposed to a sum of two complex numbers: q = z1 + Jz2
RE(P ) = 0 correspond to the conditions Re(RE(P )) = 0 and Im(RE(P )) = 0. IM(P ) = 0
in turn reduces to the conditions Re(IM(P )) = 0 and Im(IM(P )) = 0.

3. The extensions of rationals defined by these polynomial conditions must be the same as
at the octonionic side. Also algebraic points must be mapped to algebraic points so that
cognitive representations are mapped to cognitive representations. The counterparts of both
RE(P ) = 0 and IM(P ) = 0 should be satisfied for the polynomials at twistor side defining
the same extension of rationals.
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4. M8 − H duality must map the complex coordinates z11 = Re(RE) and z12 = Im(RE)
(z21 = Re(IM) and z22 = Im(IM)) at M8 side to complex coordinates ui1 and ui2 with
ui1(0) = 0 and ui2(0) = 0 for i = 1 or i = 2, at twistor side.

Roots must be mapped to roots in the same extension of rationals, and no new roots are
allowed at the twistor side. Hence the map must be linear: ui1 = aizi1+bizi2 and ui2 = cizi1+
dizi2 so that the map for given value of i is characterized by SL(2,Q) matrix (ai, bi; ci, di).

5. These conditions do not yet specify the choices of the coordinates (ui1, ui2) at twistor side.
At CP2 side the complex coordinates would naturally correspond to Eguchi-Hanson complex
coordinates (w1, w2) determined apart from color SU(3) rotation as a counterpart of SU(3)
as sub-group of automorphisms of octonions.

If the base space of the twistor space CP3,h of M4 is identified as CP2,h, the hyper-complex
counterpart of CP2, the analogs of complex coordinates would be (w3, w4) with w3 hypercom-
plex and w4 complex. A priori one could select the pair (ui1, ui2) as any pair (wk(i), wl(i)),
k(i) 6= l(i). These choices should give different kinds of extremals: such as CP2 type ex-
tremals, string like objects, massless extremals, and their deformations.

String world sheet singularitees and world-line singularities as their light-like boundaries at
the light-like orbits of partonic 2-surfaces are conjectured to characterize preferred extremals as
surfaces of H at which there is a transfer of canonical momentum currents between Kähler and
volume degrees of freedom so that the extremal is not simultaneously an extremal of both Kähler
action and volume term as elsewhere. What could be the counteparts of these surfaces in M8?

1. The interpretation of the pre-images of these singularities in M8 should be number theoretic
and related to the identification of quaternionic imaginary units. One must specify two
non-parallel octonionic imaginary units e1 and e2 to determine the third one as their cross
product e3 = e1 × e2. If e1 and e2 are parallel at a point of octonionic surface, the cross
product vanishes and the dimension of the quaternionic tangent/normal space reduces from
D = 4 to D = 2.

2. Could string world sheets/partonic 2-surfaces be images of 2-D surfaces in M8 at which
this takes place? The parallelity of the tangent/normal vectors defining imaginary units ei,
i = 1, 2 states that the component of e2 orthogonal to e1 vanishes. This indeed gives 2
conditions in the space of quaternionic units. Effectively the 4-D space-time surface would
degenerate into 2-D at string world sheets and partonic 2-surfacesa as their duals. Note that
this condition makes sense in both Euclidian and Minkowskian regions.

3. Partonic orbits in turn would correspond surfaces at which the dimension reduces to D=3
by light-likeness - this condition involves signature in an essential manner - and string world
sheets would have 1-D boundaries at partonic orbits.

5.1.3 Getting critical about implicit assumptions related to the twistor space of CP2

One can also criticize the earlier picture about implicit assumptions related the twistor spaces of
CP2.

1. The possibly singular decomposition of F to a product of S2 and CP2 would has a description
similar to that for CP3. One could assign to each point of CP2 base homologically non-trivial
sphere intersecting it orthogonally.

2. I have assumed that the twistor space T (CP2) = F = SU(3)/U(1) × U(1) allows Kaluza-
Klein type metric meaning that the metric decomposes to a sum of the metrics assignable to
the base CP2 and fiber S2 plus cross terms representing interaction between these degrees
of freedom. It is easy to check that this assumption holds true for Hopf fibration S3 → S2

having circle U(1) as fiber (see http://tinyurl.com/qbvktsx). If Kaluza-Klein picture
holds true, the metric of F would decompose to a sum of CP2 metric and S2 metric plus
cross terms representing correlations between the metrics of CP2 and S2.

http://tinyurl.com/qbvktsx
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3. One should demonstrate that F = SU(3)/U(1)×U(1) has metric with the expected Kaluza-
Klein property. One can represent SU(3) matrices as products XY Z of 3 matrices. X
represents a point of base space CP2 as matrix, Y represents the point of the fiber S2 =
U(2)/U(1)×U(1) of F in similar manner as U(2) matrix, and the Z represents U(1)×U(1)
element as diagonal matrix [B1](see http://tinyurl.com/y6c3pp2g).

By dropping U(1)×U(1) matrix one obtains a coordinatization of F . To get the line element
of F in these coordinates one could put the coordinate differentials of U(1) × U(1) to zero
in an expression of SU(3) line element. This should leave sum of the metrics of CP2 and S2

with constant scales plus cross terms. One might guess that the left- and righ-invariance of
the SU(3) metric under SU(3) implies KK property.

Also CP3 should have the KK structure if one wants to realize the breaking of scaling invariance
as a selection of the scale of the conformally compactified M4. In absence of KK structure the
space-time surface would depend parametrically on the point of the twistor sphere S2.

5.2 The nice results of the earlier approach to M4 twistorialization

The basic nice results of the earlier picture should survive in the new picture.

1. Central for the entire approach is twistor lift of TGD replacing space-time surfaces with 6-D
surfaces in 12-D T (M4)× T (CP2) having space-time surfaces as base and twistor sphere S2

as fiber. Dimensional reduction identifying twistor spheres of T (M4) an T (CP2) and makes
these degrees of freedom non-dynamical.

2. Dimensionally reduced action 6-D Kähler action is sum of 4-D Kähler action and a volume
term coming from S2 contribution to the induced Kähler form. On interpretation is as a
generalization of Maxwell action for point like charge by making particle a 3-surface.

The interpretation of volume term is in terms of cosmological constant. I have proposed
that a hierarchy of length scale dependent cosmological constants emerges. The hierarchy of
cosmological constants would define the running length scale in coupling constant evolution
and would correspond to a hierarchy of preferred p-aic length scales with preferred p-adic
primes identified as ramified primes of extension of rationals.

3. The twistor spheres associated M4 × S2 and F were assumed to have same radii and most
naturally same Euclidian signature: this looks very nice since there would be only single
fundamental length equal to CP2 radius determining the radius of its twistor sphere. The
vision to be discussed would be different. There would be no fundamental scale and length
scales would emerge through the length scale hierarchy assignable to CDs in M8 and mapped
to length scales for twistor spaces.

The identification of twistor spheres with same radius would give only single value of cosmo-
logical constant and the problem of understanding the huge discrepancy between empirical
value and its naive estimate would remain. I have argued that the Kähler forms and metrics
of the two twistor spheres can be rotated with respect to each other so that the induced
metric and Kähler form are rotated with respect to each other, and the magnetic energy
density assignable to the sum of the induced Kähler forms is not maximal.

The definition of Kähler forms involving preferred coordinate frame would gives rise to sym-
metry breaking. The essential element is interference of real Kähler forms. If the signatures of
twistor spheres were opposite, the Kähler forms differ by imaginary unit and the interference
would not be possible.

Interference could give rise to a hierarchy of values of cosmological constant emerging as coef-
ficient of the Kähler magnetic action assignable to S2(X4) and predict length scale dependent
value of cosmological constant and resolve the basic problem related to the extremely small
value of cosmological constant.

4. One could criticize the allowance of relative rotation as adhoc: note that the resulting cosmo-
logical constant becomes a function depending on S2 point. For instance, does the rotation
really produce preferred extremals as minimal surfaces extremizing also Kähler action except

http://tinyurl.com/y6c3pp2g
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at string world sheets? Each point of S2 would correspond to space-time surface X4 with
different value of cosmological constant appearing as a parameter. Moreover, non-trivial rel-
ative rotation spoils the covariant constancy and J2(S2) = −g(S2) property for the S2 part
of Kähler form, and that this does not conform with the very idea of twistor space.

5. One nice implication would be that space-time surfaces would be minimal surfaces apart
from 2-D string world sheet singularities at which there is a transfer of canonical momen-
tum currents between Kähler and volume degrees of freedom. One can also consider the
possibility that the minimal surfaces correspond to surfaces give as roots of 3 polynomials of
hypercomplex coordinate of M2 and remaining complex coordinates.

Minimal surface property would be direct translation of masslessness and conform with the
twistor view. Singular surfaces would represent analogs of Abelian currents. The universal
dynamics for minimal surfaces would be a counterpart for the quantum criticality. At M8

level the preferred complex plane M2 of complexified octonions would represent the singular
string world sheets and would be forced by number theory.

Masslessness would be realized as generalized holomorphy (allowing hyper-complexity in M2

plane) as proposed in the original twistor approach but replacing holomorphic fields in twistor
space with 6-D twistor spaces realized as holomorphic 6-surfaces.

5.3 ZEO and twistorialization as manners to introduce scales in M8

physics

M8 physics as such has no scales. One motivation for ZEO is that it brings in the scales as sizes
of causal diamonds (CDs).

5.3.1 ZEO generates scales in M8 physics

Scales are certainly present in physics and must be present also in TGD Universe.

1. In TGD Universe CP2 scale plays the role of fundamental length scale, there is also the
length scale defined by cosmological constant and the geometric mean of these two length
scales defining a scale of order 10−4 meters emerging in the earlier picture and suggesting a
biological interpretation.

The fact that conformal inversion mk → R2mk/a2, a2 = mkmk is a conformal transformation
mapping hyperboloids with a ≥ R and a ≤ R to each other, suggests that one can relate
CP2 scale and cosmological scale defined by Λ by inversion so that cell length scale would
define one possible radius of cdconf .

2. In fact, if one has R(cdconf ) = x × R(CP2) one obtains by repeated inversions a hierarchy
R(k) = xkR and for x =

√
p one obtains p-adic length scale hierarchy coming as powers of

√
p,

which can be also negative. This suggests a connection with p-adic length scale hypothesis
and connections between long length scale and short length scale physics: they could be
related by inversion. One could perhaps see Universe as a kind of Leibnizian monadic system
in which monads reflect each other with respect to hyperbolic surfaces a = constant. This
would conform with the holography.

3. Without additional assumptions there is a complete scaling invariance at the level of M8.
The scales could come from the choice of 8-D causal diamond CD8 as intersection of 8-D
future and past directed light-cones inducing choice of cd in M4. CD serves as a correlate
for the perceptive field of a conscious entity in TGD inspired theory of consciousness and is
crucial element of zero energy ontology (ZEO) allowing to solve the basic problem of quantum
measurement theory.

5.3.2 Twistorial description of CDs

Could the map of the surfaces of 4-surfaces of M8 to cdconf × CP2 by a modification of M8 −H
correspondence allow to describe these scales? If so, compactification via twistorialization and
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M8 − H correspondence would be the manner to describe these scales as something emergent
rather than fundamental.

1. The simplest option is that the scale of cdconf corresponds to that of CD8 and CD4. One
should also understand what CP2 scale corresponds. The simplest option is that CP2 scale
defines just length unit since it is difficult to imagine how this scale could appear at M8

level. cdconf scale squared would be multiple or CP2 scale squared, say prime multiple of it,
and assignable to ramified primes of extension of rationals. Inversions would produce further
scales. Inversion would allow kind of hologram like representation of physics in long length
scales in arbitrary short length scales and vice versa.

2. The compactness of cdconf corresponds to periodic time assignable to over-critical cosmologies
starting with big bang and ending with big crunch. Also CD brings in mind over-critical
cosmology, and one can argue that the dynamics at the level of cdconf reflects the dynamics
of ZEO at the level of M8.

5.3.3 Modification of H and M8 −H correspondence

It is often said that the metric of M4
conf is defined only modulo conformal scaling factor. This would

reflect projectivity. One can however endow projective space CP3 with a metric with isometry
group SU(2, 2) and the fixing of the metric is like gauge choice by choosing representative in
the projective equivalence class. Thus CP3 with signature (3,-3) might perhaps define geometric
twistor space with base cdconf rather than M4

conf very much like the twistor space T (CP2) = F =

SU(3)/U(1)× U(1) at the level. Second projection would be to M4 and map twistor sphere to a
point of M4. The latter bundle structure would be singular since for points of M4 with light-like
separation the twistor spheres have a common point: this is an essential feature in the construction
of twistor amplitudes.

New picture requires a modification of the view about H and about M8 −H correspondence.

1. H would be replaced with cdconf ×CP2 and the corresponding twistor space with CP3 × F .
M8 − H duality involves the decomposition M2 ⊂ M4 ⊂ M8 = M4 × CP2, where M4 is
quaternionic sub-space containing preferred place M2. The tangent or normal space of X4

would be characterized by a point of CP2 and would be mapped to a point of CP2 and the
point of CP2 - or rather point plus the space S2 or light-like vectors characterizing the choices
of M2 - would mapped to the twistor sphere S2 of CP3 by the standard formulas.

S2(cdconf ) would correspond to the choices of the direction of preferred octonionic imaginary
unit fixing M2 as quantization axis of spin and S2(CP2) would correspond to the choice
of isospin quantization axis: the quantization axis for color hyperspin would be fixed by
the choice of quaternionic M4 ⊂ M8. Hence one would have a nice information theoretic
interpretation.

2. The M4 point mapped to twistor sphere S2(CP3) would be projected to a point of cdconf
and define M8 −H correspondence at the level of M4. This would define compactification
and associate two scales with it. Only the ratio R(cdconf )/R(CP2) matters by the scaling
invariance at M8 level and one can just fixe the scale assignable to T (CP2) and call it CP2

length scale.

One should have a concrete construction for the hyperbolic variants of CPn.

1. One can represent Minkowski space and its variants with varying signatures as sub-spaces of
complexified quaternions, and it would seem that the structure of sub-space must be lifted to
the level of the twistor space. One could imagine variants of projective spaces CPn, n = 2, 3
as and HPn, n = 2, 3. They would be obtained by multiplying imaginary quaternionic
unit Ik with the imaginary unit i commuting with quaternionic units. If the quaternions
λ involved with the projectivization (q1, ..., qn) ≡ λ(q1, ..., qn) are ordinary quaternions, the
multiplication respects the signature of the subspace. By non-commutativity of quaternions
one can talk about left- and right projective spaces.
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2. One would have extremely close correspondence between M4 and CP2 degrees of freedom
reflecting the M8−H correspondence. The projection CP3 → CP2 for E4 would be replaced
with the projection for the hyperbolic analogs of these spaces in the case of M4. The twistor
space of M4 identified as hyperbolic variant of CP3 would give hyperbolic variant of CP2 as
conformally compactified cd. The flag manifold F = SU(3)/U(1)× U(1) as twistor space of
CP2 would also give CP2 as base space.

The general solution of field equations at the level of T (H) would correspond to holomorphy
in general sense for the 6-surfaces defined by 3 vanishing conditions for holomorphic functions - 6
real conditions. Effectively this would mean the knowledge of the exact solutions of field equations
also at the level of H: TGD would be an integrable theory. Scattering amplitudes would in turn
constructible from these solutions using ordinary partial differential equations [L14].

1. The first condition would identify the complex coordinates of S2(cdconf ) and S2(CP2): here
one cannot exclude relative rotation represented as a holomorphic transformation but for
R(cdconf )� R(CP2) the effect of the rotation is small.

2. Besides this there would be vanishing conditions for 2 holomorphic polynomials. The coor-
dinate pairs corresponding to M2 ⊂ M4 would correspond to hypercomplex behavior with
hyper complex coordinate u = ±t − z. t and z could be assigned with U(1) fibers of Hopf
fibrations SU(2)→ S2 .

3. The octonionic polynomial P (o) of degree n = heff/h0 with rational coefficients fixes the
extension of rationals and since the algebraic extension should be same at both sides, the
polynomials in twistor space should have same degree. This would give enormous boos
concerning the understanding of the proposed cancellation of fermionic Wick contractions in
SUSY scattering amplitudes forced by number theoretic vision [L14].

5.3.4 Possible problems related to the signatures

The different signatures for the metrics of the twistor spheres of cdconf and CP2 can pose technical
problems.

1. Twistor lift would replaceX4 with 6-D twistor spaceX6 represented as a 6-surface in T (M4)×
T (CP2). X6 is defined by dimensional reduction in which the twistor spheres S2(cdconf ) and
S2(CP2) are identified and define the twistor sphere S2(X4) of X6 serving as a fiber whereas
space-time surface X4 serves as a base. The simplest identification is as (θ, φ)S2(M4) =
(θ, φ)S2(CP2): the same can be done for the complex coordinates zS2(M4

conf )
= zS2(CP2))). An

open question is whether a Möbius transformation could relate the complex coordinates. The
metrics of the spheres are of opposite sign and differ only by the scaling factors R2(cdconf )
and R2(CP2).

2. For cdconf option the signatures of the 2 twistor spheres would be opposite (time-like for
cdconf ). For R(cdconf )/R(CP2) = 1. J2 = −g is the only consistent option unless the
signature of space is not totally positive or negative and implies that the Kähler forms of
the two twistor spheres differ by i. The magnetic contribution from S2(X4) would give rise
to an infinite value of cosmological constant proportional to 1/

√
g2, which would diverge

R(cdconf )/R(CP2) = 1. There is however no need to assume this condition as in the original
approach.

5.4 Hierarchy of length scale dependent cosmological constants in twisto-
rial description

At the level of M8 the hierarchy of CDs defines a hierarchy of length scales and must correspond
to a hierarchy of length scale dependent cosmological constants. Even fundamental scales would
emerge.

1. If one has R(cdconf )/R(CP2) >> 1 as the idea about macroscopic cdconf would suggest, the
contribution of S2(cdconf ) to the cosmological constant dominates and the relative rotation
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of metrics and Kähler form cannot affect the outcome considerably. Therefore different
mechanism producing the hierarchy of cosmological constants is needed and the freedom to
choose rather freely the ratio R(cdconf )/R(CP2) would provide the mechanism. What looked
like a weakness would become a strength.

2. S2(cdconf would have time-like metric and could have large scale. Is this really accept-
able? Dimensional reduction essential for the twistor induction however makes S2(cdconf )
non-dynamical so that time-likeness would not be visible even for large radii of S2(cdconf )
expected if the size of cdconf can be even macroscopic. The corresponding contribution to
the action as cosmological constant has the sign of magnetic action and also Kähler mag-
netic energy is positive. If the scales are identical so that twistor spheres have same radius,
the contributions to the induced metric cancel each other and the twistor space becomes
metrically 4-D.

3. At the limit R(cdconf )→ RCP2) cosmological constant coming from magnetic energy density
diverges for J2 = −G option since it is proportional to 1/

√
g2. Hence the scaling factors must

be different. The interpretation is that cosmological constant has arbitrarily large values near
CP2 length scale. Note however that time dependence is replaced with scale dependence and
space-time sheets with different scales have only wormhole contacts.

It would seem that this approach could produce the nice results of the earlier approach. The
view about how the hierarchy of cosmological constants emerges would change but the idea about
reducing coupling constant evolution to that for cosmological constant would survive. The inter-
pretation would be in terms of the breaking of scale invariance manifesting as the scales of CDs
defining the scales for the twistor spaces involved. New insights about p-adic coupling constant
evolution emerge and one finds a new “must” for ZEO. H = M4 × CP2 picture would emerge
as an approximation when cdconf is replaced with its tangent space M4. The consideration of
the quaternionic generalization of twistor space suggests natural identification of the conformally
compactified twistor space as being obtained from CP2 by making second complex coordinate
hyperbolic. This need not conform with the identification as U(2).

6 How to generalize twistor Grassmannian approach in TGD
framework?

One should be able to generalize twistor Grassmannian approach in TGD framework. The basic
modification is replacement of 4-D light-like momenta with their 8-D counterparts. The octonionic
interpretation encourages the idea that twistor approach could generalize to 8-D context. Higher-
dimensional generalizations of twistors have been proposed but the basic problem is that the index
raising and lifting operations for twistors do not generalize (see http://tinyurl.com/y24lkwce).

1. For octonionic twistors as pairs of quaternionic twistors index raising would not be lost work-
ing for MT option and light-like M8 momenta can be regarded sums of M4

T and E4 parts
as also twistors. Quaternionic twistor components do not commute and this is essential for
incidence relation requiring also the possibility to raise or lower the indices of twistors. Ordi-
nary complex twistor Grassmannians would be replaced with their quaternionic countparts.
The twistor space as a generalization of CP3 would be 3-D quaternionic projective space
T (M8) = HP3 with Minkowskian signature (6,6) of metric and having real dimension 12 as
one might expect.

Another option realizing non-commutativity could be based on the notion of quantum twistor
to be also discussed.

2. Second approach would rely on the identification of M4 × CP2 twistor space as a Cartesian
product of twistor spaces of M4 and CP2. For this symmetries are not broken, M4

L ⊂ M8

depends on the state and is chosen so that the projection of M8 momentum is light-like so
that ordinary twistors and CP2 twistors should be enough. M8−H relates varying M4

L based
and M4

T based descriptions.

http://tinyurl.com/y24lkwce
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3. The identification of the twistor space of M4 as T (M4) = M4 × S2 can be motivated by
octonionic considerations but might be criticized as non-standard one. The fact that quater-
nionic twistor space HP3 looks natural for M8 forces to ask whether T (M4) = CP3 endowed
with metric having signature (3,3) could work in the case of M4. In the sequel also a vision
based on the identification T (M4) = CP3 endowed with metric having signature (3,3) will
be discussed.

6.1 Twistor lift of TGD at classical level

In TGD framework twistor structure is generalized [K15, K11, K6, L9]. The inspiration for TGD
approach to twistorialization has come from the work of Nima Arkani-Hamed and colleagues [B11,
B5, B6, B8, B15, B12, B2]. The new element is the formulation of twistor lift also at the level of
classical dynamics rather than for the scattering amplitudes only [K15, K6, K11, L9].

1. The 4-D light-like momenta in ordinary twistor approach are replaced by 8-D light-like mo-
menta so that massive particles in 4-D sense become possible. Twistor lift of TGD takes
places also at the space-time level and is geometric counterpart for the Penrose’s replace-
ment of massless fields with twistors. Roughly, space-time surfaces are replaced with their
6-D twistor spaces represented as 6-surfaces. Space-time surfaces as preferred extremals are
minimal surfaces with 2-D string world sheets as singularities. This is the geometric manner
to express masslessness. X4 is simultaneously also extremal of 4-D Kähler action outside
singularities: this realizes preferred extremal property.

2. One can say that twistor structure of X4 is induced from the twistor structure of H =
M4 × CP2, whose twistor space T (H) is the Cartesian product of geometric twistor space
T (M4) = M4 × CP1 and T (CP2) = SU(3)/U(1)× U(1). The twistor space of M4 assigned
to momenta is usually taken as a variant of CP3 with metric having Minkowski signature and
both CP1 fibrations appear in the more precise definition of T (M4). Double fibration [B14]
(see http://tinyurl.com/yb4bt74l) means that one has fibration from M4 × CP1 - the
trivial CP1 bundle defining the geometric twistor space to the twistors space identified as
complex projective space defining conformal compactification of M4. Double fibration is
essential in the twistorialization of TGD [K10].

3. The basic objects in the twistor lift of classical TGD are 6-D surfaces in T (H) having the
structure of twistor space in the sense that they are CP1 bundles having X4 as base space.
Dimensional reduction to CP1 bundle effectively eliminates the dynamics in CP1 degrees
of freedom and its only remnant is the value of cosmological constant appearing as coeffi-
cient of volume term of the dimensionally reduced action containing also 4-D Kähler action.
Cosmological term depends on p-adic length scales and has a discrete spectrum [L9, L8].

CP1 has also an interpretation as a projective space constructed from 2-D complex spinors.
Could the replacement of these 2-spinors with their quantum counterparts defining in turn quan-
tum CP1 realize finite quantum measurement resolution in M4 degrees of freedom? Projective
invariance for the complex 2-spinors would mean that one indeed has effectively CP1.

6.2 Octonionic twistors or quantum twistors as twistor description of
massive particles

For M4
T option the particles are massive and the one encounters the problem whether and how to

generalize the ordinary twistor description.

6.3 Basic facts about twistors and bi-spinors

It is convenient to start by summarizing the basic facts about bi-spinors and their conjugates
allowing to express massless momenta as paa

′
= λaλ̃a

′
with λ̃ defined as complex conjugate of λ

and having opposite chirality (see http://tinyurl.com/y6bnznyn).

http://tinyurl.com/yb4bt74l
http://tinyurl.com/y6bnznyn
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1. When λ is scaled by a complex number λ̃ suffers an opposite scaling. The bi-spinors allow
the definition of various inner products

〈λ, µ〉 = εabλ
aµb ,[

λ̃, µ̃
]

= εa′b′ λ̃
a′ µ̃b

′
,

p · q = 〈λ, µ〉
[
λ̃, µ̃

]
, (qaa′ = µaµ̃a′) . (6.1)

2. Spinor indices are lowered and raised using antisymmetric tensors εαβ and εα̇β̇ . If the particle
has spin one can assign it a positive or negative helicity h = ±1. Positive helicity can be
represented by introducing artitrary negative (positive) helicity bispinor µa (µa′) not parallel
to λa (µa′) so that one can write for the polarization vector

εaa′ =
µaλ̃a′

〈µ, λ〉
, positive helicity ,

εaa′ =
λaµ̃a′[
µ̃, λ̃

] , negative helicity . (6.2)

In the case of momentum twistors the µ part is determined by different criterion to be
discussed later.

3. What makes 4-D twistors unique is the existence of the index raising and lifting operations
using ε tensors. In higher dimensions they do not exist and this causes difficulties. For octo-
nionic twistors with quaternionic components possibly only in D = 8 the situation changes.

To get a very rough idea about twistor Grassmannian approach idea, consider tree amplitudes
of N = 4 SUSY as example and it is convenient to drop the group theory factor Tr(T1T2 · · ·Tn).
The starting point is the observation that tree amplitude for which more than n − 2 gluons have
the same helicity vanish. MHV amplitudes have exactly n− 2 gluons of same helicity- taken by a
convention to be negative- have extremely simple form in terms of the spinors and reads as

An =
〈λx, λy〉4∏n
i=1〈λi, λi+1〉

(6.3)

When the sign of the helicities is changed 〈..〉 is replaced with [..].
An essential point in what follows is that the amplitudes are expressible in terms of the an-

tisymmetric bi-linears 〈λi, λj〉 making sense also for octotwistors and identifiable as quaternions
rather than octonions.

6.3.1 M8 −H duality and two alternative twistorializations of TGD

M8 −H duality suggests two alternative twistorializations of TGD.

1. The first approach would be in terms of M8 twistors suggested by quaternionic light-lineness
of 8-momenta. M8 twistors would be Cartesian products of M4 and E4 twistors. One can
imagine a straightforward generalization of twistor scattering amplitudes in terms of general-
ized Grassmannian approach replacing complex Grassmannian with quaternionic Grassman-
nian, which is a mathematically well-defined notion.

2. Second approach would rely on M4 × CP2 twistors, which are products of M4 twistors and
CP2 twistors: this description works nicely at classical space-time level but at the level of
momentum space the problem is how to describe massivation of M4 momenta using twistors.
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6.3.2 Why the components of twistors must be non-commutative?

How to modify the 4-D twistor description of light-like 4-momenta so that it applies to massive
4-momenta?

1. Twistor consists of a pair (µα̇, λ
α) of bi-spinors in conjugate representations of SU(2). One

can start from the 4-D incidence relations for twistors

µα̇ = pαα̇λ
α .

Here pαα̇ denotes the representation of four-momentum pkσk. The antisymmetric permu-
tation symbols εαβ and its dotted version define antisymmetric “inner product” in twistor
space. By taking the inner product of µ with itself, one obtains the commutation relation
µ1µ2−µ2µ1 = 0, which is consistent with right-hand side for massless particles with pkp

k = 0.

2. In TGD framework particles are massless only in 8-D sense so that the right hand side in
the contraction is in general non-vanishing. In massive case one can replace four-momentum
with unit vector. This requires

〈µ, µ〉 = µ1µ2 − µ2µ1 6= 0 .

The components of 2-spinor become non-commutative.

This raises two questions.

1. Could the replacement of complex twistors by quaternionic twistors make them non-commutative
and allow massive states?

2. Could non-commutative quantum twistors solve the problem caused by the light-likeness of
momenta allowing 4-D twistor description?

6.3.3 Octotwistors or quantum twistors?

One should be able to generalize twistor amplitudes and twistor Grassmannian approach to TGD
framework, where particles are massless in 8-D sense and massive in 4-D sense. Could twistors be
replaced by octonionic or quantum twistors.

1. One can express mass squared as a product of commutators of components of the twistors λ
and λ̃, which is essentially the conjugate of λ:

p · p = 〈λ, λ〉
[
λ̃, λ̃

]
. (6.4)

This operator should be non-vanishing for non-vanishing mass squared. Both terms in the
product vanish unless commutativity fails so that mass vanishes. The commutators should
have the quantum state as its eigenstate.

2. Also 4-momentum components should have well-defined values. Four-momentum has ex-
pression paa

′
= λaλ̃a

′
in massless case. This expression should generalized to massive case

as such. Eigenvalue condition and reality of the momentum components requires that the
components paa

′
are commuting Hermitian operators.

In twistor Grassmannian approach complex but light-like momenta are possible as analogs of
virtual momenta. Also in TGD framework the complexity of Kähler coupling strength allows
to consider complex momenta. For twistor lift they however differ from real momenta only
by a phase factor associated with the 1/αK associated with 6-D Kähler action.

Remark: I have considered also the possibility that states are eigenstates only for the longi-
tudinal M2 projection of 4-momentum with quark model of hadrons serving as a motivation.
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(a) Could this equation be obtained in massive case by regarding λa and λ̃a
′

as commuting
octo-spinors and their complex conjugates? Octotwistors would naturally emerge in the
description at imbedding space level. I have already earlier considered the notion of
octotwistor [K12] [L2]).

(b) Or could it be obtained for quantum bi-spinors having same states as eigenstates. Could
quantum twistors as generalization of the ordinary twistors correspond to the reduction
of the description from the level of M8 or H to at space-time level so that one would have
4-D twistors and massive particles with 4-momentum identifiable as Noether charge for
the action principle determining preferred extremals? I have considered also the notion
of quantum spinor earlier [K9, K3, K2, K14, K4].

3. In the case of quantum twistors the generalization of the product of the quantities 〈λi, λi+1〉
appearing in the formula should give rise to c-number in the case of quantum spinors. Can
one require that the quantities 〈λi, λi+1〉 or even 〈λi, λj〉 are c-numbers simultaneously? This
would also require that 〈λ, λ〉 is non-vanishing c-number in massive case: also incidence rela-
tion suggest this condition. Could one think λ as an operator such that 〈λ, λ〉 has eigenvalue
spectrum corresponding to the quantities 〈λi, λi+1〉 appearing in the scattering amplitude?

6.4 The description for M4
T option using octo-twistors?

For option I with massive M4
T projection of 8-momentum one could imagine twistorial description

by using M8 twistors as products of M4
T and E4 twistors, and a rather straightforward generaliza-

tion of standard twistor Grassmann approach can be considered.

6.4.1 Could twistor Grassmannians be replaced with their quaternionic variants?

The first guess would simply replace Gr(k, n) with Gr(2k, 2n) 4-D twistors 8-D twistors. From
twistor amplitudes with quaternionic M8-momenta one could construct physical amplitudes by
going from 8-momentum basis to the 4-momentum- basis with wave functions in irreps of SO(3).
Life is however not so simple.

1. The notion of ordinary twistor involves in an essential manner Pauli matrices σi satisfying
the well-known anti-commutation relations. They should be generalized. In fact, σ0 and√
−1σi can be regarded as a matrix representation for quaternionic units. They should have

analogs in 8-D case.

Octonionic units iei indeed provide this analog of sigma matrices. Octonionic units for
the complexification of octonions allow to define incidence relation and representation of 8-
momenta in terms of octo-spinors. They do not however allow matrix representation whereas
time-like octonions allow interpretation as quaternion in suitable bases and thus matrix
representation. Index raising operation is essential for twistors and makes dimension D = 4
very special. For naive generalizations of twistors to higher dimensions this operation is lost
(see http://tinyurl.com/y24lkwce).

2. Could one avoid multiplication of more than two octo-twistors in Grassmann amplitudes
leading to difficulties with associativity. An important observation is that in the expressions
for the twistorial scattering amplitudes only products 〈λi, λj〉 or [λ̃i, λ̃i+1] but not both occur.
These products are associative even if the spinors are replaced by quaternionic spinors.

These operations are antisymmetric in the arguments, which suggests cross product for
quaternions giving rise to imaginary quaternion so that the product of objects would give
rise to a product of imaginary quaternions. This might be a problem since a large number
of terms in the product would approach to zero for random imaginary quaternions.

An ad hoc guess would be that scattering probability is proportional to the product of
amplitude as product 〈λi, λj〉 and its “hermitian conjugate” with the conjugates [λ̃i, λ̃i+1]
in the reverse order (this does not affect the outcome) so that the result would be real.
Scattering amplitude would be more like quaternion valued operator. Could one have a
formulation of quantum theory or at least TGD view about quantum theory allowing this?

http://tinyurl.com/y24lkwce
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3. If ordinary massless 4-momenta correspond to quaternionic sigma matrices, twistors can be
regarded as pairs of 2-spinors in matrix representation. Octonionic 8-momenta should cor-
respond to pairs of 4-spinors. As already noticed, octonions do not however allow matrix
representation! Octonions for a fixed decomposition M8 = M4 ×E4 can be however decom-
posed to linear combination of two quaternions just like complex numbers to a combination of
real numbers. These quaternions would have matrix representation and quaternionic analogs
of twistor pair (µ, λ̃). One could perhaps formulate the generalization of twistor Grassmann
amplitudes using these pairs. This would suggest replacement of complex bi-spinors with
complexified quaternions in the ordinary formalism. This might allow to solve problems with
associativity if only 〈λi, λj〉 or [λ̃i, λ̃i+1] appear in the amplitudes.

4. The argument in the momentum conserving delta function δ(λiλ̃i) should be real so that the
conjugation with respect to i would not change the argument and non-commutativity would
not be problem. In twistor Grassmann amplitudes the argument C · Z of delta momentum
conserving function is linear in the components of complex twistor Z. If complex twistor
is replaced with quaternionic twistor, the Grassmannian coordinates C in delta functions
δ(C · Z) must be replaced with quaternionic one.

The replacement of complex GrassmanniansGrC(k, n) with quaternionic GrassmanniansGrH(k, n)
is therefore highly suggestive. Quaternionic Grassmannians (see http://tinyurl.com/y23jsffn)
are quotients of symplectic Lie groups GrH(k, n) = Un(H)/(Ur(H) × Un−r(H)) and thus well-
defined. In the description using GlH(k, n) matrices the matrix elements would be quaternions
and k × k minors would be quaternionic determinants.

Remark: Higher-D projective spaces of octonions do not exist so that in this sense dimension
D = 8 for imbedding space would be maximal.

6.4.2 Twistor space of M8 as quaternionic projective space HP3?

The simplest Grassmannian corresponds to twistor space and one can look what one obtains in
this case. One can also try to understand how to cope with the problems caused by Minkowskian
signature.

1. In previous section it was found that the modification of H to H = cdconf×CP2 with cdconf =
CP2,h identifiable as CP2 with Minkowskian signature of metric is strongly suggestive.

2. For E8 quaternionic twistor space as analog of CP3 would be its quaternionic variant HP3

with expected dimension D = 16 − 4 = 12. Twistor sphere would be replaced with its
quaternionic counterpart SU(2)H/U(1)H having dimension 4 as expected. CD8,conf as con-
formally compactified CD8 must be 8-D. The space HP2 has dimension 8 and is analog of
CP2 appearing as analog of base space of CP3 identified as conformally compactified 4-D
causal diamond cdconf . The quaternionic analogy of M4

conf = U(2) identified as conformally

compactified M4 would be U(2)H having dimension D = 10 rather than 8.

HP3 and HP2 might work for E8 but it seems that the 4-D analog of twistor sphere should
have signature (2,-2) whereas base space should have signature (1,-7). Some kind of hy-
perbolic analogs of these spaces obtained by replacing quaternions with their hypercomplex
variant seem to be needed. The same receipe in the twistorialization of M4 would give cdconf
as analog of CP2 with second complex coordinate made hyperbolic. I have already considered
the construction of hyperbolic analogs of CP2 and CP3 as projective spaces. These results
apply to HP2 and HP3.

3. What about octonions? Could one define octonionic projective plane OP2 and its hyperbolic
variants corresponding to various sub-spaces of M8? Euclidian OP2 known as Cayley plane
exists as discovered by Ruth Moufang in 1933. Octonionic higher-D projective spaces and
Grassmannians do not however exist so that one cannot assign OP3 as twistor spaces.

6.4.3 Can one obtain scattering amplitudes as quaternionic analogs of residue inte-
grals?

Can one obtain complex valued scattering amplitudes (i commuting with octonionic units) in this
framework?

http://tinyurl.com/y23jsffn
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1. The residue integral over quaternionic C-coordinates should make sense, and pick up the
poles as vanishing points of minors. The outcome of repeated residue integrations should
give a sum over poles with complex residues.

2. Residue calculus requires analyticity. The problem is that quaternion analyticity based on a
generalization of Cauchy-Riemann equations allows only linear functions. One could define
quaternion (and octonion) analyticity in restricted sense using powers series with real coeffi-
cients (or in extension involving i commuting with octonion units). The quaternion/octonion
analytic functions with real coefficients are closed with respect to sum and product. I have
used this definition in the proposed construction of algebraic dynamics for in X4 ⊂M8 [L2].

3. Could one define the residue integral purely algebraically? Could complexity of the coeffi-
cients (i) force complex outcome: if pole q0 is not quaternionically real the function would
not allow decompose to f(q)/(q − q0) with f allowing similar Taylor series at pole. If so,
then the formulas of Grassmannian formalism could generalize more or less as such at M8

level and one could map the predictions to predictions of M4 × CP2 approach by analog of
Fourier transform transforming these quantum state basis to each other.

This option looks rather interesting and involves the key number theoretic aspects of TGD in
a crucial manner.

6.5 Do super-twistors make sense at the level of M8?

By M8 −H duality [L2] there are two levels involved: M8 and H. These levels are encountered
both at the space-time level and momentum space level. Do super-octonions and super-twistors
make sense at M8 level?

1. At the level of M8 the high uniqueness and linearity of octonion coordinates makes the
notion of super-octonion natural. By SO(8) triality octonionic coordinates (bosonic octet
80), octonionic spinors (fermionic octet 81), and their conjugates (anti-fermionic octet 8−1)
would for triplet related by triality. A possible problem is caused by the presence of separately
conserved B and L. Together with fermion number conservation this would require N = 4
or even N = 4 SUSY, which is indeed the simplest and most beautiful SUSY.

2. At the level of the 8-D momentum space octonionic twistors would be pairs of two quater-
nionic spinors as a generalization of ordinary twistors. Super octo-twistors would be obtained
as generalization of these.

The progress in the understanding of the TGD version of SUSY [L14] led to a dramatic progress
in the understanding of super-twistors.

1. In non-twistorial description using space-time surfaces and Dirac spinors in H, imbedding
space coordinates are replaced with super-coordinates and spinors with super-spinors. Theta
parameters are replaced with quark creation and annihilation operators. Super-coordinate is
a super-polynomial consisting of monomials with vanishing total quark number and appearing
in pairs of monomial and its conjugate to guarantee hermiticity.

Dirac spinor is a polynomial consisting of powers of quark creation operators multiplied by
monomials similar to those appearing in the super-coordinate. Anti-leptons are identified
as spartners ofquarks identified as local 3-quark states. The multi-spinors appearing in the
expansions describe as such local many-quark-antiquark states so that super-symmetrization
means also second quantization. Fermionic and bosonic states assignable to H-geometry
interact since super-Dirac action contains induced metric and couplings to induced gauge
potentials.

2. The same recipe works at the level of twistor space. One introduces twistor super-coordinates
analogous to super-coordinates of H and M8. The super YM field of N = 4 SUSY is replaced
with super-Dirac spinor in twistor space. The spin degrees of freedom associated with twistor
spheres S2 would bring in 2 additional spin-like degrees of freedom.
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The most plausible option is that the new spin degrees are frozen just like the geometric S2

degrees of freedom. The freezing of bosonic degrees of freedom is implied by the construction
of twistor space of X4 by dimensional reduction as a 6-D surface in the product of twistor
spaces of M4 and CP2. Chirality conditions would allow only single spin state for both
spheres.

3. Number theoretical vision implies that the number of Wick contractions of quarks and anti-
quarks cannot be larger than the degree of the octonionic polynomial, which in turn should be
same as that of the polynomials of twistor space giving rise to the twistor space of space-time
surface as 6-surface. The resulting conditions correspond to conserved currents identifiable
as Noether currents assignable to symmetries.

Also Grassmannian is replaced with super-Grassmannian and super-coordinates as matrix ele-
ments of super matrices are introduced.

1. The integrand of the Grassmannian integral defining the amplitude can be expanded in Taylor
series with respect to theta parameters associated with the super coordinates C as rows of
super G(k, n) matrix.

2. The delta function δ(C,Z) factorizing into a product of delta functions is also expanded in
Taylor series to get derivatives of delta function in which only coordinates appear. By partial
integration the derivatives acting on delta function are transformed to derivatives acting on
integrand already expanded in Taylor series in theta parameters. The integration over the
theta parameters using the standard rules gives the amplitudes associated with different
powers of theta parameters associated with Z and from this expression one can pick up the
scattering amplitudes for various helicities of external particles.

The super-Grassmannian formalism is extremely beautiful but one must remember that one is
dealing with quantum field theory. It is not at all clear whether this kind of formalism generalizes
to TGD framework, where particle are 3-surfaces [L2]. The notion of cognitive representation ef-
fectively reducing 3-surfaces to a set of point-like particles strongly suggests that the generalization
exists.

The progress in understanding of M8 − H duality throws also light to the problem whether
SUSY is realized in TGD and what SUSY breaking does mean. It seems now clear that sparticles
are predicted and SUSY remains in the simplest scenario exact but that p-adic thermodynamics
causes thermal massivation: unlike Higgs mechanism, this massivation mechanism is universal and
has nothing to do with dynamics. This is due to the fact that zero energy states are superpositions
of states with different masses. The selection of p-adic prime characterizing the sparticle causes
the mass splitting between members of super-multiplets although the mass formula is same for all
of them.

The increased undestanding of what twistorialization leads to an improved understanding of
what twistor space in TGD could be. It turns out that the hyperbolic variant CP3,h of the
standard twistor space CP3 is a more natural identification than the earlier M4×S2 also in TGD
framework but with a scale corresponding to the scale of CD at the level of M8 so that one obtains
a scale hierarchy of twistor spaces. Twistor space has besides the projection to M4 also a bundle
projection to the hyperbolic variant CP2,h of CP2 so that a remarkable analogy between M4 and
CP2 emerges. One can formulate super-twistor approach to TGD using the same formalism as will
be discussed in this article for the formulation at the level of H. This requires introducing besides
6-D Kähler action and its super-variant also spinors and their super-variants in super-twistor space.
The two formulations are equivalent apart from the hierarchy of scales for the twistor space. Also
M8 allows analog of twistor space as quaternionic Grassmannian HP3 with signature (6,6). What
about super- variant of twistor lift of TGD? consider first the situation before the twistorialization.

1. The parallel progress in the understanding SUSY in TGD framework [L14] leads to the iden-
tification of the super-counterparts of M8, H and of twistor spaces modifying dramatically
the physical interpretation of SUSY. Super-spinors in twistor space would provide the de-
scription of quantum states. Super-Grassmannians would be involved with the construction
of scattering amplitudes. Quaternionic super Grassmannians would be involved with M8

description.
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2. In fermionic sector only quarks are allowed by SO(1, 7) triality and that anti-leptons are local
3-quark composites identifiable as spartners of quarks. Gauge bosons, Higgs and graviton
would be also spartners and assignable to super-coordinates of imbedding space express-
ible as super-polynomials of quark oscillator operators. Super-symmetrization means also
quantization of fermions allowing local many-quark states.

3. SUSY breaking would be caused by the same universal mechanism as ordinary massivation
of massless states. The mass formulas would be supersymmetric but the choice of p-adic
prime identifiable as ramified prime of extension of rationals would depend on the state of
super-multiplet. ZEO would make possible symmetry breaking without symmetry breaking
as Wheeler might put it.

6.5.1 Super-counterpart of twistor lift using the proposed formalism

The construction of super-coordinates and super-spinors [L14] suggests a straightforward formula-
tion of the super variant of twistor lift . One should only replace the super-imbedding space and
super-spinors with super-twistor space and corresponding super-spinors and formulate the theory
using 6-D super-Kähler action and super-Dirac equation and the same general prescription for
constructing S-matrix. Dimensional reduction should give essentially the 4-D theory apart from
the variation of the radius of the twistor space predicting variation of cosmological constant. The
size scale of CD would correspond to the size scale of the twistor space for M4 and for CP2 the
size scale would serve as unit and would not vary.

The first step is the construction of ordinary variant of Kähler action and modified Dirac action
for 6-D surfaces in 12-D twistor space.

1. Replace the spinors of H with the spinors of 12-D twistor space and assume only quark
chirality. By the bundle property of the twistor space one can express the spinors as tensor
products of spinors of the twistor spaces T (M4) and T (CP2). One can express the spinors
of T (M4) tensor products of spinors of M4 - and S2 spinors locally and spinors of T (CP2)
as tensor products of CP2 - and S2 spinors locally. Chirality conditions should reduce the
number of 2 spin components for both T (M4) and T (CP2) to one so that there are no
additional spin degrees of freedom.

The dimensional reduction can be generalized by identifying the two S2 fibers for the preferred
extremals so that one obtains induced twistor structure. In spinorial sector the dimensional
reduction must identify spinorial degrees of freedom of the two S2s by the proposed chirality
conditions also make them non-dynamical. The S2 spinors covariantly constant in S2 degrees
of freedom.

2. Define the spinor structure of 12-D twistor space, define induced spinor structure at 6-D
surfaces defining the twistor space of space-time surface. Define the twistor counterpart of
the analog of modified Dirac action using same general formulas as in case of H.

Construct next the super-variant of this structure.

1. Introduce second quark oscillator operators labelled by the points of cognitive representa-
tion in 12-D twistor space effectively replacing 6-D surface with its discretization and having
quantized quark field q as its continuum counterpart. Replace the coordinates of the 12-D
twistor space with super coordinates hs expressed in terms of quark and anti-quark oscil-
lator operators labelled by points of cognitive representation, and having interpretation as
quantized quark field q restricted to the points of representation.

2. Express 6-D Kähler action and Dirac action density in terms of super-coordinates hs. The
local monomials of q appear in hs and therefore also in the expansion of super-variants of
modified gamma matrices defined by 6-D ähler action as contractions of canonical momentum
currents of the action density LK with the gamma matrices of 12-D twistor space. In super-
Kähler action also the local composites of q giving rise to currents formed from the local
composites of 3-quarks and antiquarks and having interpretation as leptons and anti-leptons
occur - leptons would be therefore spartners of squarks.
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3. Perform super-expansion also for the induced spinor field qs in terms of monomials of q. qs(q)
obeys super-Dirac equation non-linear in q. But also q should satisfy super-Dirac action
as an analog of quantized quark field and non-linearity indeed forces also q to have has
super-expansion. Thus both quark field q and super-quark field qs both satisfy super-Dirac
equation.

The only possibility is qs = q stating fixed point property under q → qs having interpretation
in terms of quantum criticality fixing the values of the coefficients of various terms in qs and
in the super-coordinate hs having interpretation as coupling constants. One has quantum
criticality and discrete coupling constant evolution with respect to extension of rationals
characterizing adelic physics.

4. Super-Dirac action vanishes for its solutions and the exponent of super-action reduces to
exponent of super-Kähler action, whose matrix elements between positive and negative energy
parts of zero energy states give S-matrix elements.

Super-Dirac action has however an important function: the derivatives of quark currents
appearing in the super-Kähler action can be transformed to a linear strictly local action of
super spinor connection (∂α → Aα,s effectively). Without this lattice discretization would
be needed and cognitive representation would not be enough.

To sum up, the super variants of modified gamma matrices of the 6-surface would satisfy the
condition Dα,sΓ

α
s = 0 expressing preferred extremal property and guaranteeing super-hermicity of

Ds. qs would obey super-Dirac equation Dsqs = 0. The self-referential identification q = qs would
express quantum criticality of TGD.

7 Could one describe massive particles using 4-D quantum
twistors?

The quaternionic generalization of twistors looks almost must. But before this I considered also
the possibility that ordinary twistors could be generalized to quantum twistors to describe particle
massivation. Quantum twistors could provide space-time level description, which requires 4-D
twistors, which cannot be ordinary M4 twistors. Also the classical 4-momenta, which by QCC
would be equal to M8 momenta, are in general massive so that the ordinary twistor approach
cannot work. One cannot of course exclude the possibility that octo-twistors are enough or that
M8
L description is equivalent with space-time description using quantum twistors.

7.1 How to define quantum Grassmannian?

The approach to twistor amplitude relies on twistor Grassmann approach [B7, B4, B3, B10, B11,
B2] (see http://tinyurl.com/yxllwcsn). This approach should be replaced by replacing Grass-
mannian GR(K,N) = Gl(n,C)/Gl(n−m,C)×Gl(m,C) with quantum Grassmannian.

7.1.1 Naive approach to the definition of quantum Grassmannian

Quantum Grassmannian is a notion studied in mathematics and the approach of [A2] (see http:

//tinyurl.com/y5q6kv6b) looks reasonably comprehensible even for physicist. I have already
earlier tried to understand quantum algebras and their possible role in TGD [K7]. It is however
better to start as ignorant physicist and proceed by trial and error and find whether mathematicians
have ended up with something similar.

1. Twistor Grassmannian scattering amplitudes involving k negative helicity gluons involve
product of k × k minors of an k × n matrix C taken in cyclic order. C defines k × n
coordinates for Grassmannian Gr(k, n) of which part is redundant by the analogs of gauge
symmetries Gl(n − m,C) × Gl(m,C). Here n is the number of external gluons and k the
number of negative helicity gluons. The k × k determinants taken in cyclic order appear
in the integrand over Grassmannian. Also the quantum variants of these determinants and
integral over quantum Grassmannian should be well-defined and residue calculus gives hopes
for achieving this.

http://tinyurl.com/yxllwcsn
http://tinyurl.com/y5q6kv6b
http://tinyurl.com/y5q6kv6b
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2. One should define quantum Grassmannian as algebra according to my physicist’s understand-
ing algebra can be defined by starting from a free algebra generated by a set of elements -
now the matrix elements of quantum matrix. One poses on these elements relations to get
the algebra considered. What could these conditions be in the recent case.

3. A natural condition is that the definition allows induction in the sense that its restriction to
quantum sub-matrices is consistent with the general definition of k × n quantum matrices.
In particular, one can identify the columns and rows of quantum matrices as instances of
quantum vectors.

4. How to generalize from 2× 2 case to k×n case? The commutation relations for neighboring
elements of rows and columns are fixed by induction. In 4× 4 corresponding to M4 twistors
one would obtain for (a1, ..., a4). aiai+1 = qai+1ai cyclically (k = 1 follows k = 4).

What about commutations of ai and ai+k, k > 1. Is there need to say anything about these
commutators? In twistor Grassmann approach only connected k × k minors in cyclic order
appear. Without additional relations the algebra might be too large. One could argue that
the simplest option is that one has aiai+k = qai+kai for k odd aiai+k = q−1ai+kai for k
even. This is required from the consistency with cyclicity. These conditions would allow to
define also sub-determinants, which do not correspond to connected k×k squares by moving
the elements to a a connected patch by permutations of rows and columns.

5. What about elements along diagonal? The induction from 2 × 2 would require the commu-
tativity of elements along right-left diagonals. Only commutativity of the elements along
left-right diagonal be modified. Or is the commutativity lost only along directions parallel
to left-right diagonal? The problem is that the left-right and right-left directions are trans-
formed to each other in odd permutations. This would suggest that only even permutations
are allowed in the definition of determinant

6. Could one proceed inductively and require that one obtains the algebra for 2 × 2 matrices
for all 2 × 2 minors? Does this apply to all 2 × 2 minors or only to connected 2 × 2 minors
with cyclic ordering of rows and columns so that top and bottom row are nearest neighbors
as also right and left column. Also in the definition of 3× 3 determinant only the connected
developed along the top row or left column only 2×2 determinants involving nearest neighbor
matrix elements appear. This generalizes to k × k case.

It is time to check how wrong the naive intuition has been. Consider 2× 2 matrices as simple
example. In this case this gives only 1 condition (ad − bc = −da + cb) corresponding to the
permutation of rows or columns. Stronger condition suggested by higher-D case would be ad = da
and bc = cb. The definition of 2 × 2 in [A2] however gives for quantum 2-matrices (a, b; c, d) the
conditions

ac = qca , bd = qda ,
ab = qba , cd = qdc ,
bc = cb , ad− da = (q − q−1)bc .

(7.1)

The commutativity along left-right diagonal is however lost for q 6= 1 so that quantum determinant
depends on what row or column is used to expand it. The modification of the commutation relations
along rows and columns is what one might expect and wants in order to achieve non-commutativity
of twistor components making possible massivation in M4 sense.

The limit q → 1 corresponds to non-trivial algebra in general and would correspond to β = 4
for inclusions of HFFs expected to give representations of Kac-Moody algebras. At this limit
only massless particles in 4-D sense are allowed. This suggests that the reduction of Kac-Moody
algebras to quantum groups corresponds to symmetry breaking associated with massivation in 4-D
sense.

7.1.2 Mathematical definition of quantum Grassmannian

It would seem that the proposed approach is reasonable. The article [A3] (see http://tinyurl.

com/yycflgrd) proposing a definition of quantum determinant explains also the basic interpreta-
tion of what the non-commutativity of elements of quantum matrices does mean.

http://tinyurl.com/yycflgrd
http://tinyurl.com/yycflgrd
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1. The first observation is that the commutation of the elements of quantum matrix corresponds
to braiding rather than permutation and this operation is represented by R-matrix. The
formula for the action of braiding is

Rabcdt
c
et
d
f = tadt

b
cR

cd
ef . (7.2)

Here R-matrix is a solution of Yang-Baxter equaion and characterizes completely the commu-
tation relations between the elements of quantum matrix. The action of braiding is obtained
by applying the inverse of R-matrix from left to the equation. By iterating the braidings of
nearest neighbors one can deduce what happens in the braiding exchanging quantum matrix
elements which are not nearest neighbors. What is nice that the R-matrix would fix the
quantum algebra, in particular quantum Grassmannian completely.

2. In the article the notion of quantum determinant is discussed and usually the definition of
quantum determinant involves also the introduction of metric gab allowing the raising of the
indices of the permutation symbol. One obtains formulas relating metric and R-matrix and
restricting the choice of the metric. Note however that if ordinary permutation symbol is
used there is no need to introduce the metric.

The definition quantum Grassmannian proposed does not involve hermitian conjugates of the
matrices involved. One can define the elements of Grassmannian and Grassmannian residue inte-
grals without reference to complex conjugation: could one do without hermitian conjugates? On
the other hand, Grassmannians have complex structure and Kähler structure: could this require
hermitian conjugates and commutation relations for these?

7.2 Two views about quantum determinant

If one wants to define quantum matrices in Gr(k, n) so that quantal twistor-Grassmann amplitudes
make sense, the first challenge is to generalize the notion of k × k determinant.

One can consider two approaches concerning the definition of quantum determinant.

1. The first guess is that determinant should not depend on the ordering of rows or columns
apart from the standard sign factor. This option fails unless one modifies the definition of
permutation symbol.

2. The alternative view is that permutation symbol is ordinary and there is dependence on
the row or column with respect to which one develops. This dependence would however
disappear in the scattering amplitudes. If the poles and corresponding residues associated
with the k× k-minors of the twistor amplitude remain invariant under the permutation, this
is not a problem. In other words, the scattering amplitudes are invariant under braid group.
This is what twistor Grassmann approach implies and also TGD predict.

For the first option quantum determinant would be braiding invariant. The standard definition
of quantum determinant is discussed in detail in [A3] (see http://tinyurl.com/yycflgrd).

1. The commutation of the elements of quantum matrix corresponds to braiding rather than
permutation and as found, this operation is represented by R-matrix.

2. Quantum determinant would change only by sign under the braidings of neighboring rows and
columns. The braiding for the elements of quantum matrix would compensate the braiding
for quantum permutation symbol. Permutation symbol is assumed to be q-antisymmetric
under braiding of any adjacent indices. This requires that permutation ik ↔ ik+1 regarded
as braiding gives a contraction of quantum permutation symbol εi1,...1k with Rijikik+1

plus
scaling by some normalization factor λ besides the change of sign.

εa1...akak+1...an = −λεa1...ij...anRjiakak+1
. (7.3)

The value of λ can be calculated.

http://tinyurl.com/yycflgrd
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3. The calculation however leads to the result that that quantum determinantD satisfiesD2 = 1!
If the result generalizes for sub-determinants defined by k×k-minors (, which need not be the
case) would have determinants satisfying D2 = 1, and the idea about vanishing of k×k-minor
essential for getting non-trivial twistor scattering amplitude as residue would not make sense.

It seems that the braiding invariant definition of quantum determinant, which of course in-
volves technical assumptions) is too restrictive. Does this mean that the usual definition requiring
development with respect to preferred row is the physically acceptable option? This makes sense
if only the integral but not integrand is invariant under braidings. Braiding symmetry would be
analogous to gauge invariance.

7.3 How to understand the Grassmannian integrals defining the scat-
tering amplitudes?

The beauty of the twistor Grassmannian approach is that the residue integrals over quantum
Gr(k, n) would reduce to sum over poles (or possibly integrals over higher-D poles). Could residue
calculus provide a manner to integrate q-number valued functions of q-numbers? What would be
the minimal assumptions allowing to obtain scattering amplitudes as c-numbers?

Consider first what the integrand to be replaced with its quantum version looks like.

1. Twistor scattering amplitudes involve also momentum conserving delta function expressible
as δ(λaλ̃

a). This sum and - as it seems - also the summands should be c-numbers - in other
words one has eigenstates of the operators defining the summands.

2. By introducing Grassmannian space Gr(k, n) with coordinates Cα,i (see http://tinyurl.

com/yxllwcsn), one can linearize δ(λaλ̃
a) to a product of delta functions δ(C ·Z) = δ(C ·λ̃)×

δ(C⊥ · λ) (I have not written the delta function is Grassmann parameters related to super
coordinates). Z is the n-vector formed by the twistors associated with incoming particles.

The 4×k components of Cα,kZ
k should be c-numbers at least when they vanish. One should

define quantum twistors and quantum Grassmannian and pose the constraints on the poles.

How to achieve the goal? Before proceeding it is good to recall the notion of non-commutative
geometry (see http://tinyurl.com/yxrcr8xv). Ordinary Riemann geometry can be obtained
from exterior algebra bundle, call it E. The Hilbert space of square integrable sections in E carries
a representation of the space of continuous functions C(M) by multiplication operators. Besides
this there is unbounded differential operator D, which so called signature operator and defined in
terms of exterior derivative and its dual: D = d+d∗. This spectral triple of algebra, Hilbert space,
and operator D allows to deduce the Riemann geometry.

The dream is that one could assign to non-commutative algebras non-commutative spaces using
this spectral triple. The standard q-p quantization is example of this: one obtains now Lagrange
manifolds as ordinary commutative manifolds.

Consider now the situation in the case of quantum Grassmannian.

1. In the recent case the points defining the poles of the function - it might be that the eventual
poles are not a set of discrete points but a higher-dimensional object - would form the
commutative part of non-commutative quantum space. In this space the product of quantum
minors would become ordinary number as also the argument C ·Z of the delta function. This
commutative sub-space would correspond to a space in which maximum number of minors
vanish and residues reduce to c-numbers.

Thus poles of the integrand of twistor amplitude would correspond to eigenstates for some
k× k minors of Grassmannian with a vanishing eigenvalue. The residue at the pole at given
step in the recursion pole by pole need not be c-number but the further residue integrals
should eventually lead to a c-number or c-number valued integrand.

2. The most general option would be that the conditions hold true only in the sense that some
k×k minors for k ≥ 2 are c-numbers and have a vanishing eigenvalue but that smaller minors
need not have this property. Also Cα,kZ

k should be c-numbers and vanish. Residue calculus
would give rise to lower-D integrals in step-wise manner.

http://tinyurl.com/yxllwcsn
http://tinyurl.com/yxllwcsn
http://tinyurl.com/yxrcr8xv
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The simplest and most general option is that one can speak only about eigenvalues of k × k
minors. At pole it is enough to have one minor for which eigenvalue vanishes whereas other
minors could remain quantal. In the final reduction the product of all non-vanishing k × k
minors appearing in cyclic order in the integrand should have a well-defined c-number as
eigenvalue. Does this allow the appearance of only cyclic minors.

A stronger condition would be that all non-vanishing minors reduce to their eigenvalues.
Could it be that only the n cyclic minors can commute simultaneously and serve as analogs
of q-coordinates in phase space? The complex dimension of GC(n, k) is d = (n− k)k. If the
space spaced by minors corresponds to Lagrangian manifold with real dimension not larger
than d, one has k ≤ d = (n − k)k. This gives k ≤ n/2(1 +

√
1− 2/n) For k = 2 this gives

k ≤ n/2. For n → ∞ one has k ≤ n/2 + 1. For k > n/2 one can change the roles of
positive and negative helicities. It has been found that in certain sense the Grassmannian
contributing to the twistor amplitude is positive.

The notion of positivity found to characterize the part of Grassmannian contributing to
the residue integral and also the minors and the argument of delta function [B9](see http:

//tinyurl.com/yd9tf2ya) would suggest that it is also real sub-space in some sense and
this finding supports this picture.

The delta function constraint forcing C ·Z to zero must also make sense. C ·Z defines k× 6
matrix and also now one must consider eigenvalues of C · Z. Positivity suggest reality also
now. Z adds 4×n degrees of freedom and the number 6×k of additional conditions is smaller
than 4 × n. 6k ≤ 4 × n combined with k ≤ n/2 gives k ≤ n/2 so that the conditions seems
to be consistent.

3. The c-number property for the cyclic minors could define the analog of Lagrangian manifold
for the phase space or Kähler manifold. One can of course ask, whether Kähler structure
of Gr(k, n) could generalize to quantum context and give the integration region as a sub-
manifold of Lagrangian manifold of Gr(k, n) and whether the twistor amplitudes could reduce
to integral over sub-manifold of Lagrangian manifold of ordinary Gr(k, n).

To sum up, I have hitherto thought that TGD allows to get rid of the idea of quantization of
coordinates. Now I have encountered this idea from totally unexpected perspective in an attempt
to understand how 8-D masslessness and its twistor description could relate to 4-D one. Grass-
mannians are however very simple and symmetric objects and have natural coordinates as k × n
matrices interpretable as quantum matrices. The notion of quantum group could find very concrete
application as a solution to the basic problem of the standard twistor approach. Therefore one
can consider the possibility that they have quantum counterparts and at least the residue integrals
reducing to c-numbers make sense for quantum Grassmannians in algebraic sense.
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