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1. Introduction

1

M8 — H duality [L11} L9, LI0, [L17] has become a cornerstone of quantum TGD but several aspects

Abstract

This article represents a critical re-examination of M® — H duality, which is one of the
cornerstones of Topological Geometrodynamics (TGD). The original version of M® — H duality
assumed that space-time surfaces in M?® can be identified as associative or co-associative
surfaces. If the surface has associative tangent or normal space and contains a complex or
co-complex surface, it can be mapped to a 4-surface in H = M* x CP.

Later emerged the idea that octonionic analyticity realized in terms of real polynomials P
algebraically continued to polynomials of complexified octonion could fulfill the dream. The
vanishing of the real part Reg(P) (imaginary part Img(P)) in the quaternionic sense would
give rise to an associative (co-associative) space-time surface.

The realization of the general coordinate invariance motivated the notion of strong form of
holography (SH) in H allowing realization of a weaker form of M® — H duality by assuming
that associativity/co-associativity conditions are needed only at 2-D string world sheet and
partonic 2-surfaces and possibly also at their light-like 3-orbits.

The outcome of the re-examination was a positive surprise. Although no interesting as-
sociative space-time surfaces are possible, every distribution of normal associative planes (co-
associativity) is integrable. Another positive surprise was that Minkowski signature is the
only possible option. Equivalently, the image of M* as real co-associative sub-space of O,
(complex valued octonion norm squared is real valued for them) by an element of local Gz,
or its subgroup SU(3, c) gives a real co-associative space-time surface. The conjecture is that
the polynomials P determine these surfaces as roots of Reg(P). These surfaces also possess
co-complex 2-D sub-manifolds allowing the mappingto H to H by M® — H duality as a whole.
SH would not be needed and would be replaced with number theoretic holography determining
space-time surface from its roots and selection of real subspace of O. characterizing the state
of motion of a particle.

Octonionic Dirac equation as analog of momentum space variant of ordinary Dirac equation
forces the interpretation of M® as an analog of momentum space and Uncertainty Principle
forces to modify the map M* ¢ M® — M* C H from identification to inversion. The equations
for Req(P) = 0 reduce to simultaneous roots of the real polynomials defined by the odd and
even parts of P having interpretation as complex values of mass squared mapped to light-cone
proper time constant surfaces in H. This leads to the idea that the formulation of scattering
amplitudes at M?® levels provides the counterpart of momentum space description of scattering
whereas the formulation at the level of H provides the counterpart of space-time description

This picture combined with zero energy ontology leads also to a view about quantum
TGD at the level of M®. Local G2 celement has properties suggesting a Yangian symmetry
assignable to string world sheets and possibly also partonic 2-surfaces. The representation
of Yangian algebra using quark oscillator operators would allow to construct zero energy
states at representing the scattering amplitudes. The physically allowed momenta would
naturally correspond to algebraic integers in the extension of rationals defined by P. The
co-associative space-time surfaces (unlike generic ones) allow infinite-cognitive representations
making possible the realization of momentum conservation and on-mass-shell conditions.

The new view about M® — H duality differs from the earlier one rather dramatically so
that a summary of the differences is added to the end of paper.

Introduction

of this duality are still poorly understood.

1.1 Development of the idea about M® — H duality

A brief summary about the development of the idea is in order.

1. The original version of M® — H duality assumed that space-time surfaces in M8 can be iden-
tified as associative or co-associative surfaces. If the surface has associative tangent/normal
space and contains a complex co-complex surface, it can be mapped to a 4-surface in

M4 XCPQ.

. Later emerged the idea that octonionic analyticity realized in terms of a real polynomials
P algebraically continued to polynomials of complexified octonion might realize the dream
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[L4] L5 [L6]. The original idea was that the vanishing condition for the real/imaginary part
of P in quaternion sense could give rise to co-assocative/associative sense.

M?® — H duality concretizes number theoretic vision [L7, L8] summarized as adelic physics
fusing ordinary real number based physics for the correlates of sensory experience and various
p-adic physics (p = 2,3,...) as physics for the correlates of cognition. The polynomials of
real variable restricted to be rational valued defines an extension or rationals via the roots of
the polynomials and one obtains an evolutionary hierachy associated with these extensions
increasing in algebraic complexity. These extensions induce extensions of p-adic numbers
and the points of space-time surface in M® with coordinates in the extension of rationals
define cognitive representations as unique discretizations of the space-time surface.

3. The realization of the general coordinate invariance in TGD framework [K2| [K1l [K5| [L22]
[L19] motivated the idea that strong form of holography (SH) in H could allow realizing
M8 — H duality by assuming associativity/co-associativity conditions only at 2-D string
world sheet and partonic 2-surfaces and possibly also at their light-like 3-orbits at which the
signature of the induced metric changes from Minkowskian to Euclidian.

1.2 Critical re-examination of the notion

In this article M® — H duality is reconsidered critically.

1. The healthy cold shower was the learning that quaternion (associative) sub-spaces of quater-
nionic spaces are geodesic manifolds [A6]. The distributions of quaternionic normal spaces
are however always integrable. Hence, co-associativity remains the only interesting option.
Also the existence of co-commutative sub-manifolds of space-time surface demanding the ex-
istence of a 2-D integrable sub-distribution of subspaces is possible. This learning experience
motivated a critical examination of the M® — H duality hypothesis.

2. The basic objection is that for the conjectured associative option, one must assign to each
state of motion of a particle its own octonionic structure since the time axis would correspond
to the octonionic real axis. It was however clear from the beginning that there is an infinite
number of different 4-D planes O, in which the number theoretical complex valued octonion
inner product reduces to real - the number theoretic counterpart for Riemann metric. In
the co-associative case this is the only option. Also the Minkowski signature for the real
projection turns out to be the only physically acceptable option. The mistake was to assume
that Euclidian regions are co-associative and Minkowskian regions associative: both must be
co-associative.

3. The concrete calculation of the octonion polynomial was the most recent step - carried already
earlier [L4} [L5] [L6] but without realizing the implications of the extremely simple outcome.
The imaginary part of the polynomial is proportional to the imaginary part of octonion itself.
It turned out that the roots P = 0 of the octonion polynomial P are 12-D complex surfaces
in O, rather than being discrete set of points defined as zeros X = 0,Y = 0 of two complex
functions of 2 complex arguments. The analogs of branes are in question. Already earlier
6-D real branes assignable to the roots of the real polynomial P at the light-like boundary
of 8-D light-cone were discovered: also their complex continuations are 12-D [L9] [L12].

4. P has quaternionic de-composition P = Reg(P) + IsImg(P) to real and imaginary parts in
a quaternionic sense. The condition Reg(P) = 0 implies that the resulting surface is a 4-D
complex surface X2 a with a 4-D real projection X2, which could be co-associative. Note
that the condition X = 0 is satisfied but not Y = 0 condition. The naive expectation is that
adding the condition Y = 0 one obtains 3-D surface X2 having a 3-D real projection X? with
the analog of 6-D brane defined as a root of P. Img(P) = 0 gives a complex surface X with
real projection X! as a candidate for an associative surface: only geodesic sub-manifolds are
however possible.

The expectation is wrong! The equations X = 0 and Y = 0 involve the same complex
argument 02 as a complex analog for the Lorentz invariant distance squared from the tip of
the light-cone. There are solutions only if the two polynomials considered have a common
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a? root! When the solution exists X belongs to X8 rather than having a 3-D intersection

with it! This has strong consequences concerning the physical interpretation.

Co-associative X2 could be also realized by assuming X2 is obtained by acting with a local
G . or possibly SUs . C G2 . transformation to an co-associative real plane of O, which can
be selected in very many manners related to G transformation. The co-associativity of this
plane is preserved in the map because G2 . acts as an automorphism group of the octonions.
The conjecture is that the surface obtained by giving up Y = 0 condition is the same surface
as obtained by G, . holography.

This would fulfil the original dream about solving classical TGD exactly in terms of roots for
real /imaginary parts of octonionic polynomials in M® and by mapping the resulting space-time
surfaces to H by M® — H duality. In particular, SH would not be needed at the level of H, and
would be replaced to a dramatically stronger number theoretic holography in which the roots of a
real polynomial would fix the space-time surface completely one the real projection characterizing
the state of motion of the particle is selected. Fundamental physics would be ridiculously simple.

Octonionic Dirac equation, which is purely algebraic equation and the counterpart for ordinary
Dirac equation in momentum space, serves as a second source of information.

1. The first implication is that O, has interpretation as an analog of momentum space: this has
profound implications concerning the interpretation. The space-time surface in M® would
be analogs of Fermi ball.

2. The solutions come in two types. If the condition Y = 0 is not satisfied, X? is empty and the
momentum squared represented by O, point must be light-like and belong to the light-like
boundary of CD: one would only massless quarks arriving at CD. If X and Y have a common
root, X* belongs to X% and quarks can be massive. The massivation of quarks would have
interpretation as a number theoretic phase transition occurring when even and odd parts of
P have a common root.

3. Second implication is that by the Lorentz invariance of roots of P, the space-time surface has
an infinite number of points in cognitive representation defined by points with coordinates
having values in the extensions of rational defined by P and allowing an interpretation as 4-
momenta. This is what makes interesting scattering amplitudes for massive quarks possible.
The emergence of the common root would mean cognitive explosion. Without the symmetry
one would have only forward scattering in the interior of X?. Massless quarks can however
arrive at the boundary of CD which also allows cognitive representation with infinite number
of points.

4. This picture inspires the question, whether one could construct scattering amplitudes also at
the level of H using recipes similar to those used in the case of H [L21]. Here the appearance
of G2 . maps defining trivial gauge fields having vanishing divergence when restricted to string
world sheets suggests that Yangian symmetry associated with G . or its subgroup allows to
construct scattering amplitudes - zero energy states- using co-product. The induction of M?
spinor fields to the space-time surface would allow a realization of G, . algebra as analog of
Kac-Moody algebra but with non-negative conformal weights.

2 The situation before the cold shower

The view about M8 — H duality before the cold shower - leading to what I dare to call a break-
through - helps to gain idea about the phenomenological side of M® — H duality. Most of the
phenomenology survives the transition to a more precise picture. This section is however not
absolutely necessary for what follows it.

2.1 Can one deduce the partonic picture from M® — H duality?

The M?® counterparts for partons and their light like orbits in H can be understood in terms of
octonionic Dirac equation in M?® as an analog for the algebraic variant of ordinary Dirac equation
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at the level of momentum space [L17, [LT6] but what about the identification of partonic 2-surfaces
as interaction vertices at which several partonic orbits meet? Can one deduce the phenomenological
view about elementary particles as pairs of wormhole contacts connected by magnetic flux tubes
from M® — H duality? Why should the partonic vertices reside at ¢t = 7, branes? There is also
the question whether partonic orbits correspond to their own sub-CDs as the fact that their rest
systems correspond to different octonionic real axes suggests.

M?® — H duality indeed conforms with the phenomenological picture about scattering diagrams
in terms of partonic orbits [L22] [L21] [L21) [L22] [L22], and leads to the view about elementary
particles as pairs of Euclidian wormhole contacts associated with flux tubes carrying monopole
flux.

2.2 What happens at the ”very special moments in the life of self”?

Consider first what happens at the ”very special moments in the life of self” [L9,[.12] corresponding
to t = r,, where r, is a root of the real polynomial defining octonionic polynomial as its algebraic
continuation. The moment ¢ = r, corresponds to a 6-sphere S as an analog of brane and is a
special solution to the algebraic equations stating the vanishing of either imaginary or real part of
octonion valued polynomial: imaginary and real parts are quaternion valued now. These branes
are localized to the boundary of M#® lightcone.

1. In the generic case there are 4 complexified conditions giving rise to a surface with complex
dimension D, = 4 in M?. The 4 complex conditions in M correspond to 8 real conditions.
There are 4 complexified polynomials in the imaginary/real part of the octonionic polyno-
mial and one can solve the complexified M* time coordinate from them getting 4 complex
solutions, which must be identical. This gives a complex surface with dimension D, = 4
projected from M to M® by taking its "real part”. The outcome is a space-time surface X*
with Dr = 4 identified as "reality”.

2. At t = r, branes the 4 complex conditions reduce to 2 complex conditions stating the
location to 8-D light-cone and the condition that one has root of the polynomial. Instead
of 4 complexified octonionic conditions one has only 2 and one obtains complexified S° as a
solution having real S® as real projection.

2.3 What does SH mean and its it really needed?

SH has been assumed hitherto but what is its precise meaning?

1. Hitherto, SH at the level of H is believed to be needed: it assumes that partonic 2-surfaces
and /or string world sheets serve as causal determinants determining X* via boundary con-
ditions.

(a) The normal or tangent space of X* at partonic 2-surfaces and possibly also at string
world sheets has been assumed to be associative that is quaternionic. This condition
should be true at the entire X*.

(b) Tangent or normal space has been assumed to contain preferred M? which could be
replaced by an integrable distribution of M?(z) C M*. At string world sheets only
the tangent space can be associative. At partonic 2-surfaces also normal space could
be associative. This condition would be true only at string world sheets and partonic
2-surfaces so that only these can be mapped to H by M8 — H duality and continued to
space-time surfaces as preferred extremals satisfying SH.

The current work demonstrates that although SH could be used at the level of SH, this is not
necessary. Co-associativity together with co-commutativity for string world sheets allows the

mapping of the real space-time surfaces in M?® to H implying exact solvability of the classical
TGD.
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2.4 Questions related to partonic 2-surfaces
There are several questions related to partonic 2-surfaces.

Q1: What are the M3 pre-images of partons and their light-like partonic orbits in H?

It will be found that the octonionic Dirac equation in M?® implies that octo-spinors are
located to 3-D light-like surfaces Y,? - actually light-cone boundary and its 3-D analogs at
which number theoretic norm squared is real and vanishes - or to the intersections of X? with
the 6-D roots of P in which case Dirac equation trivializes and massive states are allowed.
They are mapped to H by M8 — H duality.

Remark: One can ask whether the same is true in H in the sense that modified Dirac action
would be localized to 3-D light-like orbits and 3-D ends of the space-time surfaces at the
light-like boundaries of CD having space-like induced metric. Modified Dirac action would
be defined by Cherm-Simons term and would force the classical field equations for the bosonic
Chern-Simons term. If the interior part of the modified Dirac action is absent, the bosonic
action is needed to define the space-time surfaces as extremals.They would be minimal
surfaces and universal by their holomorphy and would not depend on coupling parameters
so that very general actions can have them as preferred extremals. This issue remains still
open.

The naive - and as it turned out, wrong - guess was that the images of the light-like surfaces
should be light-like surfaces in H at the boundaries of Minkowskian and Euclidian regions
(wormhole contacts). In the light-like case Y,3 corresponds to the light-cone boundary so
that this would be the case. X3 however turns out to correspond to a hyperboloid in M*
as an analog of a mass shell and is not identifiable as a partonic orbit.

It turned out that the complex surface X2 allows real sections in the sense that the number
theoretic complex valued metric defined as a complex continuation of Minkowski norm is
real at 4-D surfaces: call them Z!. They are bounded by a 3-D region at Z? at which the
value of norm squared vanishes. This surface is an excellent candidate for the pre-image of
the light-like orbit of partonic 2-surface serving as a topological vertex. One has therefore
strings worlds sheets, partonic 2-surfaces and their light-like orbits and they would connect
the "mass shells” at X2. All ingredients for SH would be present.

The intersections of Z2 with X? identifiable as the section of X* a = constant hyperboloid
would give rise to partonic 2-surfaces appearing as topological reaction vertices.

The assumption that the 4-D tangent space at these light-like 3-surfaces is co-associative,
would give an additional condition determining the image of this surface in H, so that the
boundary conditions for SH would become stronger. One would have boundary conditions
at light-like partonic orbits. Note that string world sheets are assumed to have light-like
boundaries at partonic orbits.

Q2: Why should partonic 2-surfaces appear as throats of wormhole contact in H? Wormhole
contacts do not appear in M8,

1. In M? light-like orbits are places where the Minkowskian signature changes to Euclidian.
Does M®—H duality map the images of these coinciding roots for Euclidian and Minkowskian
branches to different throats of the wormhole contact in H so that the intersection would
disappear?

2. This is indeed the case. The intersection of Euclidian and Minkowskian branches defines a
single 3-surface but the tangent and normal spaces of branches are different. Therefore their
H images under M® — H duality for the partonic 2-surface are different since normal spaces
correspond to different C'P, coordinates. These images would correspond to the two throats
of wormhole contact so that the H-image by SH is 2-sheeted. One would have wormhole
contacts in H whereas in M® the wormhole contact would reduce to a single partonic 2-
surface.
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3. The wormhole contact in H can have only Euclidian signature of the induced metric. The
reason is that the M* projections of the partonic surfaces in H are identical so that the points
with same M*? coordinates have different C' P, coordinates and their distance is space-like.

Q3: In H picture the interpretation of space-time surfaces as analogs of Feynman graphs
assumes that several partonic orbits intersect at partonic 2-surfaces. This assumption could be of
course wrong.This raises questions.

What the pre-images of partonic 2-surfaces are in M®? Why should several partonic orbits
meet at a given partonic 2-surface? Is this needed at all?

The space-time surface X associated intersects the surface X8 associated with different particle
- say with different value of mass along 2-D surface. Could this surface be identified as partonic
2-surface X?2? This occurs symmetrically so that one has a pair of 2-surfaces X2. What does this
mean? Could these surface map to the throats of wormhole contact in H?

Why several partonic surfaces would co-incide in topological reaction vertex at the level of H?
At this moment is is not clear whether this is forced by M8 picture.

Octonionic Dirac equation implies that M8 has interpretation as analog of momentum space so
that interaction vertices are replaced by multilocal vertices representing momenta and propagators
become local being in this sense analogous to vertices of QFT. One could of course argue that
without the gluing along ends there would be no interactions since the interactions in X? for two
3-surfaces consist in the generic case of a discrete set of points. One could also ask whether the
surfaces Y,? associated with the space-time surfaces X associated with incoming particles must
intersect along partonic 2-surface rather than at discrete set of points.

The meeting along ends need not be true at the level of M® since the momentum space inter-
pretation would imply that momenta do not differ much so that particles should have identical
masses: for this to make sense one should assume that the exchanged virtual particles are massless.
One other hand, if momenta are light-like for Y;?, this might be the case.

Q4: Why two wormhole contacts and monopole flux tubes connecting them at the level of H?
Why monopole flux?

1. The tangent spaces of the light-like orbits have different light-like direction. Intuitively, this
corresponds to different directions of light-like momenta. Momentum conservation requires
more than one partonic orbit changing its direction meeting at partonic 2-surface. By light-
likeness, the minimum is 2 incoming and two outgoing lines giving a 4-vertex. This allows the
basic vertices involving ¥ and Psi at opposite throats of wormhole contacts. Also a higher
number of partonic orbits is possible.

2. A two-sheeted closed monopole flux tube having wormhole contacts as its "ends” is suggested
by elementary particle phenomenology. Since M® homology is trivial, there is no monopole
field in M8. If M® — H duality is continuous it maps homologically trivial partonic 2-surfaces
to homologically trivial 2-surfaces in H. This allows the wormhole throats in H to have
opposite homology charges. Since the throats cannot correspond to boundaries there must
be second wormhole contact and closed flux tube.

3. What does the monopole flux for a partonic 2-surface mean at the level of M3? The distri-
bution of quaternionic 4-D tangent/normal planes containing preferred M? and associated
with partonic 2-surface in M® would define a homologically on-trivial 2-surface in CP,. The

situation is analogous to a distribution of tangent planes or equivalently normal vectors in
S2.

Q4: What is the precise form of M2 — H duality: does it apply only to partonic 2-surfaces and
string world sheets or to the entire space-time surfaces?

M8 — H duality is possible if the X* in M?® contains also integrable distribution of complex
tangent or normal 2-planes at which 4-D tangent space is quaternionic/associative. String world
sheets and partonic 2-surfaces define these distributions.

The minimum condition allowed by SH in H is that string world sheets and there is a finite
number of partonic 2-surfaces and string world sheets. In this case only these 2-surfaces can be
mapped to H and SH assigns to them a 4-D space-time surface. The original hypothesis was that
these surfaces define global orthogonal slicings of the X* so that M® — H duality could be applied
to the entire X*. This condition is probably too strong.
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3 Challenging M® — H duality

M?®— H duality involves several alternative options and in the following arguments possibly leading
to a unique choice are discuses.

1. Are both associativity and co-associativity possible or is only either of these options allowed?
Is it also possible to pose the condition guaranteeing the existence of 2-D complex sub-
manifolds identifiable as string world sheets necessary to map the entire space-time surface
from M® to H? In other words, is the strong form of holography (SH) needed in M® and/or
H or is it needed at all?

2. The assignment of the space-time surface at the level of M® to the roots of real or imaginary
part (in quaternionic sense) of octonionic polynomial P defined as an algebraic continuation
of real polynomial is an extremely powerful hypothesis in adelic physics [L8| [L'7] and would
mean a revolution in biology and consciousness theory.

Does P fix the space-time surface with the properties needed to realize M® — H duality or is
something more needed? Does the polynomial fix the space-time surface uniquely - one would
have extremely strong number theoretic holography - so that one would have number theoretic
holography with coefficients of a real polynomial determining the space-time surface?

3. M® — H duality involves mapping of M* C M8 to M* C H. Hitherto it has been assumed
that this map is direct identification. The form of map should however depend on the
interpretation of M®. In octonionic Dirac equation M?® coordinates are in the role of momenta
[L17). This suggests the interpretation of M® as an analog of 8-D momentum space. If this
interpretation is correct, Uncertainty Principles demands that the map M* c M® — M* c H
is analogous toinversion mapping large momenta to small distances.

4. Twistor lift of TGD [K10] is an essential part of the TGD picture. Ttwistors and momentum
twistors provide dual approaches to twistor Grassmann amplitudes. Octonionic Dirac equa-
tion suggests that M3 and H are in a similar dual relation. Could M® — H duality allow a
generalization of twistorial duality to TGD framework?

3.1 Explicit form of the octonionic polynomial

What does the identification of the octonionic polynomial P as an octonionic continuation of a
polynomial with real or complexified coefficients imply? In the following I regard M?S as O% and
consider products for complexified octonions.

Remark: In adelic vision the coefficients of P must be rationals (or at most algebraic numbers
in some extension of rationals).

One interesting situation corresponds to the real subspace of O, spanned by {Iy,il}, = 1,..7,
with a number theoretic metric signature (1, —1, —1..., —1) of M® which is complex valued except at
in various reals subspaces.This subspace is associative. The original proposal was that Minkowskian
space-time regions as projections to this signature are associative whereas Euclidian regions are co-
associative. It however turned out that associative space-time surfaces are physically uninteresting.

The canonical choice (ily, I1, I2,il3,14,1I5, I, il7) defining the complexification of the tangent
space represents a co-associative sub-space realizing Minkowski signature. It turns out that both
Minkowskian and Euclidian space-time regions must be co-associative .

3.1.1 Surprises

The explicit calculation of the octonionic polynomial yielded a chilling result. If one poses (co-
)associativity conditions as vanishing of the imaginary or real part in quaterionic sense: Img(P) =
0 or Reg(P) = 0, the outcome is that the space-time surface is just M* or E*. Second chilling
result is that quaternionic sub-manifolds are geodesic sub-manifolds. This led to the question how
to modify the (co-)associativity hypothesis.

The vision has been that space-time surfaces can be identified as roots for the imaginary
(co-associative) part I'mg(O) or real part Img(O) of octonionic polynomial using the standard
decomposition (1, e, ez, €3).
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1. The naive counting of dimensions suggests that one obtains 4-D surfaces. The surprise was
that also 6-D brane like entities located at the boundary of M?® light-cone and with topology
of 6-sphere S® are possible. They correspond to the roots of a real polynomial P(0) for the
choice (1,ily,...,iI7). The roots correspond to the values of the real octonion coordinate
interpreted as values of linear M* time in the proposal considered. Also for the canonical
proposal one obtains a similar result. In O, they correspond to 12-D complex surfaces X
satisfying the same condition conditions x3 + 72 = 0 and P(z¢) = 0.

2. There was also another surprise. As already described, the general form for the octo-
nionic polynomial P(o0) induced from a real polynomial is extremely simple and reduces
to X (t2,72) Iy +iY (t?,72)Im(0). There are only two complex variables ¢ and 72 involved and
the solutions of P = 0 are 12-D complex surfaces X¢ in O.. Also the special solutions have
the same dimension.

3. In the case of co-associativity 8 conditions are needed for Reg(P) = 0: note that X = 0
is required. This gives a complex manifold X2 with 4-D real projection X2 as an excellent
candidate for co-associative surface. One can consider adding the condition Y = 0. The naive
expectation is that this gives a 6-D solution X3 with 3-D real projection X?3. The expectation
turned out to be wrong since by the Lorentz invariance the froots of both X = 0 and
Y = 0 are values of complex valued a? representing complex valued light-cone proper time.
Simultaneous solution corresponds to a common root of X and Y. Either the intersection is
empty or X2 is contained by X§.

X2 should be co-associative and in the simplest situation would have a fixed M? in its normal
space. Does the co-associativity of the sub-space for the projection guarantee this? If this is
the case, one can apply M® — H duality and map the space-time surfaces to H.

4. One can also pose the associativity condition Img(P) =0 giving 4 x 2 = 8 conditions giving
a complex manifold X2 having 5-D real projection X? This certainly fails to give associative.
The additional conditions X = 0,Y = 0 are naively expected to give a complex surface X?
with 2-D real projection X?. X = O0andY = 0 however have either no solution or X and Y
have a common root. In the latter case the dimension of the solution reduces to D = 4. X*
would represent the boundary of X2 and brane interpretation would be appropriate. One
could also have either X = 0 or Y = 0: this would give X2 with 4-D real projection but we
know that it cannot be associative so that M® — C P, duality fails.

The conclusion is that Reg(P) = 0 gives 4-D possibly co-associative surface whereas I'mg(P) =
0 gives a 5-D surface X?2.

3.1.2 General form of P and of the solutions to P =0, Reg(P) =0, and Img(P) =0
It is convenient to introduce complex coordinates for O, since the formulas obtained allow projec-

tions to various real sections of O..

1. To see what happens, one can calculate 0?. Denote o, by o, = tI+ 0, and the norm squared
of 0 by r?, where 72 = > 0} where o, are the complex coordinates of octonion. Number
theoretic norm squared for o, is t? + 2 and reduces to a real number in the real sections of
O.. For instance in the section (I1,4I3,il5,il7) the norm squared is —x% + x% + (E% + x% and
defines Minkowskian norm squared.

For 02 one has:
=t —r?42A6=Xo+Y, .
For 0 one obtains
0 =tX—-0-Y+tY + X6 .

Clearly, Img(0™) has always the same direction as Img(o). Hence one can write in the
general case



3.1

Explicit form of the octonionic polynomial 12

A

o"=X+Yo . (3.1)

This trivial result was obtained years ago but its full implications became evident only while
preparing the current article. The point is that the solutions to associativity /co-associativity
conditions by putting Re(Q(P) = 0 or Img(P) = 0 are trivial: just M or E*. What goes
wrong with basic assumptions, will be discussed later.

Remark: In M8 sub-space one has imaginary o is proportional to the commuting imaginary
unit.

It is easy to deduce a recursion formula for the coefficients for X and Y for n:th power of
oc. Denote by t the coordinate associated with the real octonion unit (not time coordinate).
One obtains

o = X, Io + Y5
Xp=tXn_1-Yy 1 s (32)
Y,=1tY, 1+ Xn1 .

In the co-associative case one has ¢ = 0 or possibly constant ¢t = T (note that in the recent
interpretation ¢ does not have interpretation as time coordinate). The reason is that the
choice of octonionic coordinates is unique apart from translation along the real axis from the
condition that the coefficients of P remain complex numbers in powers of the new variable.

For t = 0 the recursion formula gives for the polynomial P(o.) the expression

P(OC) = Z(_l)n,rQn(p2n71]0 +p2n6) . (33)

Denoting the even and of odd parts of P by Peyen and Ppgq, the roots ry of X = Re(P(o.))
are 1oots Pogq and roots 2 of Y = I'm(P(0.)) are roots of Pe,,,. Co-associativity gives roots
of X and the roots of P as simultaneous roots of P,;q and P.yey,.

In the generic situation the solutions of X = 0 resp. X = 0,Y = 0 would be 4-D resp.
3-D complex surfaces. One does not have a generic situation now! Basically due to Lorentz
invariance, one has two ordinary polynomial equations giving ordinary complex numbers as
roots! The roots of a2 for X = 0 and Y = 0 must be the same. This requires that the
corresponding polynomials have a common root. Otherwise the intersection of X with X%
is empty!

For the co-associative option corresponding to the canonical choice with Minkowski signature
the condition X = 0 gives the Lorentz invariant square of the complexified Minkowski norm
as complex root 1y odq of Poqq:

a? = Re(m?) — Im(m?) + 2iRe(m) - Im(m) = Tk oda - (3.4)

c

For Y = 0 the solution exists only if X and Y have a common root! In this case however
one does not have 3-D surface X2 but X? belongs to X¢. The idea about X} as brane-like
entity connecting two 3-D regions of X? fails.

couple of remarks are in order.

. If all roots are identical for P.ye, and P,qq, one has P,_1 = P, and p,_1 = pp. If Peyen

vanishes it poses no conditions: the surface X = 0,Y = 0 is 14-D whereas the space-time
surface is 4-D.
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2. Non vanishing mass squared values for octonionic spinors correspond to common roots of
P.yen and P,gq. When P.,e, vanishes all roots of P = P,yq are allowed. The special
solutions to P = 0 discovered already earlier are restricted to the boundary of CDg and
correspond to the values of mass (rather than mass squared) coming as roots of the real
polynomial P. These mass values are mapped by inversion to ”very special moments in the
life of self” at the level of H as special values of light-cone proper time rather than linear
Minkowski time as in the earlier interpretation [L9]. The new picture is Lorenz invariant.

The following summarizes the situation.

1. For the roots of P one has X = 0,Y = 0. The two complex conditions give a 6-D complex
surface X8 having real projection X¢. The roots of X resp. Y are permuted by Galois
groups with n elements. The condition Img(P) = 0 associated with the possibly associative
space-time surface gives 4 complex conditions reducing giving X2 possibly identifiable as 4-D
space-time surface. Associativity however fails. Galois group of n-elements is involved. This
means that the surface is n-sheeted.

The condition Reg(P) = 0 gives the condition X = 0 plus 3 complex conditions for the
remaining components of Reg(P). This gives X} having 4-D real section X! serving as a
candidate for co-associative space-time surface. The condition X = 0,Y = 0 has no solutions
or implies that X belongs to X¢.

The experience with the octonionic Dirac equation [LI7] reducing to mass shell condition -
to be discussed in the sequel in detail - forces the interpretation m - m as mass squared. M8
would be the analog of momentum space. For the common root X2 allows massive quarks.
If the common root does not exist, only massless momenta arriving at the boundary of CD
are possible. The emergence of a common root clearly represents a phase transition from a
massless to massive phase. For given P there are both massive and massless phases and in
the generic situation only massless phase.

2. Could X be (co-)associative?: the answer is affirmative [A6].

3.1.3 What about string world sheets and partonic 2-surfaces?

One can apply the above arguments also to the identification of 2-D string world sheets and partonic
2-surfaces.

1. One has two kinds of solutions: M? and 3-D surfaces of X* as analogs of 6-brane. The
interpretation for 3-D resp. 2-D branes as a light-like 3-surface associated with the octonionic
Dirac equation representing mass shell condition resp. string world sheet is attractive.

2. M? would be replaced with an integrable distribution of M?(z) in local tangent space M*(z).
The space for the choices of M?(z) would be S3 corresponding to the selection of a preferred
quaternion imaginary unit equal to the choices of preferred octonion imaginary unit.

The choices of the preferred complex subspace M?(x) at a given point would be characterized
by its normal vector and parameterized by sphere S2: the interpretation as a quantization
axis of angular momentum is suggestive. One would have space S3 x S2. Also now the
integrability conditions de4 = 0 would hold true.

3. String world sheets could be regarded as analogs of superstrings connecting 3-D brane like
entities defined by the light-like partonic orbits. The partonic 2-surfaces at the ends of light-
like orbits defining also vertices could correspond to the 3-surfaces at which quaternionic
4-surfaces intersect 6-branes.

3.2 Is (co-)associativity possible?

The number theoretic vision relying on the assumption that space-time surfaces are 8-D complex
4-surfaces in 08 determined as algebraic surfaces for octonionic continuations of real polynomials,
which for adelic physics would have coefficients which are rational or belong to an extension of
rationals. The projections to subspaces Re® of of defined as space for which given coordinate is
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purely real or imaginary so that complexified octonionic norm is real would give rise to real 4-D
space-time surfaces. M® — H duality would map these surfaces to geometric objects in M* x CP;.
This vision involves several poorly understood aspects and it is good to start by analyzing them.

3.2.1 Challenging the notions of associativity and co-associativity

Consider first the notions of associativity resp. co-associativity equivalent with quaternionicity
resp. co-quaternionicity. The original hope was that both options are possible for surfaces of real
sub-spaces of O, ("real” means here that complexified octonionic metric is real).

1. The original idea was that the associativity of the tangent space or normal space of a
real space-time surface X* reduces the classical physics at the level of M® to associativ-
ity. Associativity/co-associativity of the space-time surface states that at each point of the
tangent-/normal space of the real space-time surface in O is quaternionic. The notion gen-
eralizes also to X2 C O%. (Co-)associativity makes sense also for the real subspaces space of
O with Minkowskian signature.

2. It has been however unclear whether (co-)associativity is possible. The cold shower came as I
learned that associativity allows only for geodesic sub-manifolds of quaternionic spaces about
which octonions provide an example [A6]. The good news was that the distribution of co-
associative tangent spaces always defines an integrable distribution in the sense that one can
find sub-manifold for which the associative normal space at a given point has tangent space
as an orthogonal complement. Should the number theoretic dynamics rely on co-associativity
rather than associativity?

3. Minkowskian space-time regions have been assumed to be associative and to correspond
to the projection to the standard choice for basis as {1,ily,il5,il3}. The octonionic units
{1, 11, Is, I3} define quaternionic units and associative subspace and their products with unit
I, define the orthogonal co-associative subspace as {I4,Is = I411,Is = I4ls, Iy = 1415},
This result forces either to weaken the notion of associativity or to consider alternative
identifications of Minkowskian regions, which can be co-associative: fortunately, there exists
a large number of candidates.

The article [A6] indeed kills the idea about the associativity of the space-time surface. The
article starts from a rather disappointing observation that associative sub-manifolds are geodesic
sub-manifolds and therefore trivial. Co-associative quaternion sub-manifolds are however possible.
With a motivation coming from this observation, the article discusses what the author calls RC
quaternionic sub-manifolds of quaternion manifolds. For a quaternion manifold the tangent space
allows a realization of quaternionic units as antisymmetric tensors. These manifolds are constant
curvature spaces and typically homogeneous spaces.

1. Quaternion sub-manifold allows a 4-D integrable distribution of quaternion units. The normal
complement of this distribution is expressible in terms of the second fundamental form and
the condition that it is trivial implies that the second fundamental form is vanishing so
that one has a geodesic submanifold. Quaternionic sub-manifolds are thus too trivial to be
interesting. As a diametric opposite, one can also define totally real submanifolds for which
the normal space contains a distribution of quaternion units. In this case the distribution is
always integrable. This case is much more interesting from the TGD point of view.

2. Author introduces the notion of CR quaternion sub-manifold N C M, where M is quaternion
manifold with constant sectional curvatures. N has quaternion distribution D in its tangent
spaces if the action of quaternion units takes D to itself. D is the co-quaternionic orthogonal
complement D in the normal space N. D would take also D to itself. D+ can be expressed
in terms of the components of the second fundamental form and vanishes for quaternion
sub-manifolds.

3. Author deduces results about CR quaternion sub-manifolds, which are very interesting from
the TGD point of view.
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(a) Sub-manifold is CR quaternion sub-manifold only if the curvature tensor of Rjs of
the imbedding space satisfies Ry;(D, D, D+, D ) = 0. The condition is trivial if the
quaternion manifold is flat. In the case of octonions this would be the case.

(b) D is integrable only if the second fundamental form restricted to it vanishes meaning
that one has a geodesic manifold. Totally real distribution D is always integrable to a
co-associative surface.

(c) If D+ integrates to a minimal surface then N itself is a minimal surface.

Could one consider RC quaternion sub-manifolds in TGD framework? Both octonions and
their complexifixation can be regarded as quaternionic spaces. Consider the real case.

1. If the entire D is quaternionic then IV is a geodesic sub-manifold. This would leave only E*
and its Minkowskian variants with various signatures. One could have however 4-D totally
real (co-associative) space-time surfaces. Simple arguments will show that the intersections
of the conjectured quaternionic and co-quaternionic 4-surfaces have 2- and 3-D intersections
with 6-branes.

Should one replace associative space-time surfaces with CR sub-manifolds with d < 3 inte-
grable distribution D whereas the co-quaternionic surfaces would be completely real having
4-D integrable D+? Could one have 4-D co-associative surfaces for which D+ integrates to
n > 1-dimensional minimal surface (geodesic line) and the X 4 jtself is a minimal surface?

Partially associative CR manifold do not allow M®H duality. Only co-associative surfaces
allow it and also their signature must be Minkowskian: the original idea [L111 [L4] [L5] [L6]
about Euclidian (Minkowskian) signature for co-associative (associative) surfaces was wrong.

2. The integrable 2-D sub-distributions D defining a distribution of normal planes could define
foliations of the X* by 2-D surfaces. What springs to mind is foliations by string world sheets
and partonic 2 surfaces orthogonal to them and light-like 3-surfaces and strings transversal
to them. This expectation is realized.

3.2.2 How to identify the Minkowskian sub-space of O.7

There are several identifications of subspaces of O, with Minkowskian signature. What is the
correct choice has been far from obvious. Here symmetries come in rescue.

1. Any subspace of O¢ with 3 (1) imaginary coordinates and 1 (3) real coordinates has Minkowskian
signature in octonionic norm algebraically continued to O, (complex valued continuation of
real octonion norm instead of real valued Hilbert space norm for O.). Minkowskian regions
should have local tangent space basis consisting of octonion units which in the canonical
case would be {I1,ils,il5,il7}, where i is commutative imaginary unit. This particular basis
is co-associative having whereas its complement {ily, I, Iy, I} is associative and has also
Minkowskian signature.

2. The size of the isometry group of the subspace of M8 depends on whether the tangent basis
contains real octonion unit 1 or not. The isometry group for the basis containing Iy is SO(3)
acting as automorphisms of quaternions and SO(k,3 — k) when 3 — k units are proportional
to 4. The reason is that Gy (and its complexification Gz ) and its subgroups do not affect
Iy. For the tangent spaces built from 4 imaginary units [ and ¢I; the isometry group is
SO(k,4—k) C Ga.

The choice therefore allows larger isometry groups and also co-associativity is possible for a
suitable choice of the basis. The choice {Iy,il3,il5,iI7} is a representative example, which
will be called canonical basis. For these options the isometry group is the desired SO(1, 3)
as an algebraic continuation of SO(4) C Gg acting in {I1, I3, I5, Iz}, to SO(1,3) C Ga.

Also Minkowskian signature - for instance for the original canonical choice {Iy,il1,ils,il5} -
can have only SO(k, 3—k) as isometries. This is the basic objection against the original choice
{Io,il1,il5,iI3}. This identification would force the realization of SO(1,3) as a subgroup of
SO(1,7). Different states of motion for a particle require different octonion structure with
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different direction of the octonion real axis in M®. The introduction of the notion of moduli
space for octonion structures does not look elegant. For the option {I,il3,il5,il;} only a
single octonion structure is needed and G contains SO(1, 3).

Note that also the signatures (4,0), (0,4) and (2,2) are possible and the challenge is to
understand why only the signature (1,3) is realized physically.

Co-associative option is definitely the only physical alternative. The original proposal for the
interpretation of the Minkowski space in terms of an associative real sub-space of M* had a serious
problem. Since time axis was identified as octonionic real axis, one had to assign different octonion
structure to particles with non-parallel moment: SO(1,7) would relate these structures: how to
glue the space-time surfaces with different octonion structures together was the problem. This
problem disappears now. One can simply assign to particles with different state of motion real
space-time surface defined related to each other by a transformation in SO(1,3) C Ga.

3.2.3 The condition that M® — H duality makes sense

The condition that M8 — H duality makes sense poses strong conditions on the choice of the real
sub-space of M2.

1. The condition that tangent space of O, has a complexified basis allowing a decomposition to
representations of SU(3) C Gs is essential for the map to M® — H although it is not enough.
The standard representation of this kind has basis {£ily + I1 } behaving like SU(3) singlets
{3 + €il3, I4 + €ils, elg + il7} behaves like SU(3) triplet 3 for ¢ = 1 and its conjugate 3 for
e = —1. Gy, provides new choices of the tangent space basis consistent with this choice.
SU(3) leaves the direction I; unaffected but more general transformations act as Lorentz
transformation changing its direction but not leaving the M* plane. Even more general G» .
transformations changing M* itself are in principle possible.

Interestingly, for the canonical choice the co-associative choice has SO(1,3) as isometry
group whereas the complementary choice failing to be associative correspond to a smaller
isometry group SO(3). The choice with M* signature and co-associativity would provide
the highest symmetries. For the real projections with signature (2,2) neither consistent with
color structure, neither full associativity nor co-associativity is possible.

2. The second essential prerequisite of M® — H duality is that the tangent space is not only
(co-)associative but contains also (co-)complex - and thus (co-)commutative - plane. A more
general assumption would be that a co-associative space-time surface contains an integrable
distribution of planes M?(x), which could as a special case reduce to M2,

The proposal has been that this integrable distribution of M?(x) could correspond to string
sheets and possibly also integrable orthogonal distribution of their co-complex orthogonal
complements as tangent spaces of partonic 2-surfaces defining a slicings of the space-time
surface. It is now clear that this dream cannot be realized since the space-time surface
cannot be even associative unless it is just E* or its Minkowskian variants.

3. As already noticed, any distribution of the associative normal spaces integrates to a co-
associative space-time surface. Could the normal spaces also contain an integrable distribu-
tion of co-complex planes defined by octonionic real unit 1 and real unit Ij(x), most naturally
I in the canonical example? This would give co-commutative string world sheet. Commuta-
tivity would be realized at the 2-D level and associativity at space-time level. The signature
of this plane could be Minkowskian or Euclidian. For the canonical example {I;,il3,il5,4l7}
the 2-D complex plane in quaternionic sense would correspond to (a X 1, +ngly +n4ls+mnels,
where the unit vector n; has real components and one has a = 1 or a = i is forced by the
complexification as in the canonical example.

Since the distribution of normal planes integrates to a 4-surface, one expects that its sub-
distribution consting of commutative planes integrates to 2-D surface inside space-time sur-
face and defines the counterpart of string worlds sheet. Also its normal complement could
integrate to a counterpart of partonic 2-surface and a slicing of space-time surface by these
surfaces would be obtained.
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4. The simplest option is that the commutative space does not depend on position at X*. This
means a choice of a fixed octonionic imaginary unit, most naturally I; for the canonical
option. This would make SU(3) and its sub-group U(2) independent of position. In this case
the identification of the point of CP, = SU(3)/U(2) labelling the normal space at a given
point is unique.

For a position dependent choice SU(3)(x) it is not clear how to make the specification of
U(2)(x) unique: it would seem that one must specify a unique element of Ga(z) relating
SU(3)(x) to a choice at special point xo and defining the conjugation of both SU(3)(x) and
U(2)(x). Otherwise one can have problems. This would also mean a unique choice for the
direction of time axis in O and fixing of SO(1, 3) as a subgroup of Ga .. Also this distribution
of associative normal spaces is integrable. Physically this option is attractive but an open
question is whether it is consistent with the identification of space-time surfaces as roots
Reqg(P)=0of P.

3.2.4 Co-associativity from octonion analyticity or/and from G5 holography?

Candidates for co-associative space-time surfaces X are defined as restrictions X? for the roots
X2 of the octonionic polynomials such that the O, coordinates in the complement of a real co-
associative sub-space of O, vanish or are constant. Could the surfaces X} or even X2 be co-
associative?

1. X} is analogous to the image of real or imaginary axis under a holomorphic map and defines a
curve in complex plane preserving angles. The tangent vectors of X and X2 involve gradients
of all coordinates of O, and are expressible in terms of all octonionic unit vectors. It is not
obvious that their products would belong to the normal space of X* a strong condition would
be that this is the case for X2.

2. Could octonion analyticity in the proposed sense guarantee this? The products of octonion
units also in the tangent space of the image would be orthogonal to the tangent space.
Ordinary complex functions preserve angles, in particular, the angle between x- and y-axis is
preserved since the images of coordinate curves are orthogonal. Octonion analyticity would
preserve the orthogonality between tangent space vectors and their products.

3. This idea could be killed if one could apply the same approach to associative case but this
is not possible! The point is that when the real tangent space of O, contains the real
octonion unit, the candidate for the 4-D space-time surface is a complex surface X2. The
number theoretic metric is real only for 2-D X2 so that one obtains string theory with co-
associativity replaced with co-commutativity and M* x CP, with M? x S2. One could of
course ask whether this option could be regarded as a ”sub-theory” of the full theory.

My luck was that I did not realize the meaning of the difference between the two cases first
and realized that one can imagine an alternative approach.

1. G5 as an automorphism group of octonions preserves co-associativity. Could the image of a
co-associative sub-space of O, defined by an octonion analytic map be regarded as an image
under a local Gy gauge transformation. SU(3) C G2 is an especially interesting subgroup
since it could have a physical interpretation as a color gauge group. This would also give a
direct connection with M® — H duality since SU(3) corresponds to the gauge group of the
color gauge field in H.

2. One can counter-argue that an analog of pure gauge field configuration is in question at the
level of M8. But is a pure gauge configuration for G . a pure gauge configuration for G»?
The point is that the G . connection g='9,g trivial for Gz . contains by non-linearity cross
terms from gog, ¢ = g2,1 + @922, which are of type Re = X[g2,1,92.1] — X[92,2,92,2] = 0 and
Im =iZ[g21,92,2] = 0. If one puts g2 2 contributions to zero, one obtains Re = X[g2 1, g2.1],
which does not vanish so that SU(3) gauge field is non-trivial.

3. X} could be also obtained as a map of the co-associative M* plane by a local Gy, element.
It will turn out that Gz . could give rise to the speculated Yangian symmetry [L3] at string
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world sheets analogous to Kac-Moody symmetry and gauge symmetry and crucial for the
construction of scattering amplitudes in MS8.

4. The decomposition of the co-associative real plane of O, should contain a preferred complex
plane for M® — H duality to make sense. Gz . transformation should trivially preserve this
property so that SH would not be necessary at H side anymore.

There is a strong motivation to guess that the two options are equivalent so that G2 . holography
would be equivalent with octonion analyticity. The original dream was that octonion analyticity
would realize both associative and co-associative dynamics but was exaggeration!

3.2.5 Does one obtain partonic 2-surfaces and strings at boundaries of ACDg?

It is interesting to look for the dimensions of the intersections of the light-like branes at the
boundary of C Dy giving rise to the boundary of CD, in M* to see whether it gives justification for
the existing phenomenological picture involving light-like orbits of partonic 2-surfaces connected
by string world sheets.

1. Complex light-cone boundary has dimension D = 14. P = 0 as an additional condition at
0C Dg gives 2 complex conditions and defines a 10-D surface having 5-D real projections.

2. The condition Img(P) = 0 gives 8 conditions and gives a 2-D complex surface with 1-D real
projection. The condition Reg(P) = 0 gives 3 complex conditions since X = 0 is already
satisfied and the solution is a 4-D surface having 2-D real projection. Could the interpretation
be in terms of the intersection of the orbit of a light-like partonic surface with the boundary
of CD87

3. Associativity is however not a working option. If only co-associative Minkowskian surfaces
allowing mapping to H without SH are present then only 4-D space-time surfaces with
Minkowskian signature, only partonic 2-surfaces and their light-like orbits would emerge
from co-associativity.

This option would not allow string world sheets for which there is a strong intuitive support.
What could a co-complex 2-surface of a co-associative manifold mean? In the co-associative
case the products of octonion imaginary units are in the normal space of space-time surface.
Could co-complex surface X2 C X2 be defined by an integrable co-complex sub-distribution
of co-associative distribution. The 4-D distribution of normal planes is always integrable.

Could the 2-D sub-distributions of co-associative distribution integrate trivially and define
slicings by string world sheets or partonic 2-surfaces. Could the distribution of string distri-
butions and its orthogonal complement be both integrable and provide orthogonal slicings
by string world sheets and partonic 2-surfaces? String world sheets with Minkowskian signa-
ture should intersect the partonic orbits with Euclidian signature along light-like lines. This
brings in mind the orthogonal grid of flow lines defined by the Re(f) = 0 and Im(f) = 0
lines of an analytic function in plane.

4. In this picture the partonic 2-surfaces associated with light-like 3-surface would be physically
unique and could serve as boundary values for the distributions of partonic 2-surfaces. But
what about string world sheets connecting them? Why would some string world sheets be
exceptional? String world sheets would have a light-like curve as an intersection with the
partonic orbit but this is not enough.

Could the physically special string world sheets connect two partonic surfaces? Could the
string associated with a generic string world sheet be like a flow line in a hydrodynamic
flow past an obstacle - the partonic 2-surface? The string as a flowline would go around the
obstacle along either side but there would be one line which ends up to the object.

Interactions would correspond geometrically to the intersections of co-associative space-time
surfaces X! associated with particles and corresponding to different real sub-spaces of O, related
by Lorentz boost in SO(1,3) C Ga,.. In the generic case the intersection would be discrete. In
the case that X and Y have a common root the real surfaces X} C X8 associated with quarks
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and depending on their state of motion would reside inside the same 6-D surface X8 and have a
2-D surface X? as intersection. Could this surface be interpretedas a partonic 2-surface? One must
however bear in mind that partonic 2-surfaces as topological vertices are assumed to be non-generic
in the sense that the light-like partonic orbits meet at them. At the level of H, the intersections
would be partonic 2-surfaces X2 at which the four 3-D partonic orbits would meet along their
ends. Does this hold true at the level of M8? Or can it hold true even at the level H?

The simplest situation corresponds to 4 external quarks. There are 6 different intersections.
Not all of them are realized since a given quark can belong only to a singleintersection. One must
have two disjoint pairs -say 12 and 34. Most naturally positive resp. negative energy quarks form
a pair. These pairs are located in different half-cones. The intersections would give two partonic
2-surfaces and this situation would be generic. This suggests a modification of the description of
particle reaction in M8 . M® — H duality suggests a similar description in H.

3.2.6 What could be the counterparts of wormhole contacts at the level of M87

The experience with H, in particular the presence of extremals with Euclidian signature of the
induced metric and identified as building bricks of elementary particles, suggest that also the light-
like 3-surfaces in M2 could have a continuation with an Euclidian signature of the number theoretic
metric with norm having real values only for the projections to planes allowing real coordinates.

The earlier picture has been that the wormhole contacts as C P, type extremals correspond
to co-associative regions and their exteriors to associative regions. If one wants M® — H duality
in strong form and thus without need for SH, one should assume that both these regions are
co-associative.

1. The simplest option is that the real Minkowskian time coordinate becomes imaginary. In-
stead of the canonical (I1,ils,il5,il7) the basis would be (ily,il3,il5,4l7) having Euclidian
signature and SO(4) as isometry group. The signature would naturally change at light-like
3-surface the time coordinate along light-like curves becomes zero - proper time for photon
vanishes - and can ransforms continuously from real to imaginary.

2. Wormbhole contacts in H behave like pairs of magnetic monopoles with monopole charges at
throats. If one does not allow point-like singularity, the monopole flux must go to a parallel
Minkowskian space-time sheet through the opposite wormhole throat. Wormhole contact
with effective magnetic charge would correspond in M2 to a distribution of normal 4-planes
at the partonic 2-surfaces analogous to the radial magnetic field of monopole at a sphere
surrounding it. To avoid singularity of the distribution, there must be another light-like
3-surface M® such that its partonic throat has a topologically similar distribution of normal
planes.

In the case of X2 dimension does not allow co-quaternion structure: could they allow 4-D
co-associative sub-manifolds? It will be found that this option is not included since co-associative
tangent space distributions in a quaternion manifold (now O) are always integrable.

3.3 Octonionic Dirac equation and co-associativity

Also the role of associativity concerning octonionic Dirac equation in M?® must be understood.
It is found that co-associativity allows very elegant formulation and suggests the identification
of the points appearing as the ends of quark propagator lines in H as points of boundary of CD
representing light-like momenta of quarks. Partonic vertices would involve sub-CDs and momentum
conservation would have purely geometric meaning bringing strongly in mind twistor Grassmannian
approach [?, 7, ?]. T have discussed the twistor lift of TGD replacing twistors as fields with surfaces
in twistor space having induced twistor structure in [K10l [K9) [K11] [L14] L.15].

3.3.1 Octonionic Dirac equation

The following arguments lead to the understanding of co-associativity in the case of octonion
spinors. The constant spinor basis includes all spinors but the gamma matrices appearing in the
octonionic Dirac equation correspond to co-associative octonion units.
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1. At the level of O, the idea about massless Dirac equation as partial differential equation
does not make sense. Dirac equation must be algebraic and the obvious idea is that it
corresponds to the on mass shell condition for a mode of ordinary Dirac equation with well-
define momentum: pFv, ¥ = 0 satisfying p*pr = 0. This suggests that octonionic polynomial
P defines the counterpart of p*~, so that gamma matrices v, would be represented as octonion
components. Does this make sense?

2. Can one construct octonionic counterparts of gamma matrices? The imaginary octonion
units [, indeed define the analogs of gamma matrices as 7, = ilj satisfying the conditions
{Vk, i} = 20k defining Euclidian gamma matrices. The problem is that one has Io[}k +
1.1y = 2I;. One manner to solve the problem would be to consider tensor products Igos
and Ioo where o3 and sigmas are Pauli’s sigma matrices with anti-commutation relations
{0i,0;} = 0; ;. Note that I}, do not allow a matrix representation.

Co-associativity condition suggests an alternative solution. The restriction of momenta to be
co-associative and therefore vanishing component p° as octonion, would selects a sub-space
spanned by say the canonical choice {I3,iI3,il5,il7} satisfying the anticommutation rela-
tions of Minkowskian gamma matrices. Octonion units do not allow a matrix representation
because they are not associative. The products for a co-associative subset of octonion units
are however associative (a(bc) = (ab)c so that they can be mapped to standard gamma ma-
trices in Minkowski space. Co-associativity would allow the representation of 4-D gamma
matrices as a maximal associative subset of octonion units.

3. What about octonionic spinors. The modes of the ordinary Dirac equation with a well-defined
momentum are obtained by applying the Dirac operator to an orthogonal basis of constant
spinors u; to give ¥ = pFy,u;. Now the counterparts of constant spinors u; would naturally
be octonion units {Iy, I }: this would give the needed number 8 of real spinor components
as one has for quark spinors.

Dirac equation reduces to light-likeness conditions pFp;, = 0 and pj, must be chosen to be real
- if pk are complex, the real and imaginary parts of momentum are parallel. One would obtain
an entire 3-D mass shell of solution and a single mode of Dirac equation would correspond
to a point of this mass shell.

Remark: Octonionic Dirac equation is associative since one has a product of form (pgvyi)%u;
and octonion products of type 22y are associative.

4. p* would correspond to the restriction of P(o.) to M* as sub-space of octonions. Since co-
associativity implies P(0.) = Y (0.)o, restricted to counterpart of M* (say subspace spanned
by {I,il3,ils,il;}), Dirac equation reduces to the condition o*or = 0 in M* defining a
light-cone of M*. This light-cone is mapped to a curved light-like 3-surface X2 in o, as
0. — P(o.) = Yo.. M® — H duality maps points of space-time surface on M® H and
therefore the light-cone of M* corresponds to either light-like boundary of CD. It seems that
the image of X3 in H has M* projection to the light-like boundary of CD.

Co-associative space-time surfaces have 3-D intersections X2 with the surface P = 0: the
conjecture is that X3 corresponds to a light-like orbit of partonic 2-surfaces in H at which the
induced metric signature changes. At X3 one has besides X = 0 also Y = 0 so that octonionic
Dirac equation P(0.)¥ = P*I U = Yp*I, ¥ = 0 is trivially satisfied for all momenta p* = o¥
defined by the M* projections of points of X? and one would have P*¥ = Yp* = 0 so that
the identification of P* as 4-momentum would not allow to assign non-vanishing momenta
to X3. The direction of p* is constrained only by the condition of belonging to X3 and the
momentum would be in general time-like since X3 is inside future light-cone.

Y = 0 condition conforms with the proposal that X2 defines a boundary of Minkowskian and
Euclidian region: Euclidian mass shell condition for real P* requires P* = 0. The general
complex solution to P? = 0 condition is P = P, + iP, with P? = P?.

A single mode of Dirac equation with a well-defined value of p* as the analog of 4-momentum
would correspond to a selection of single time-like point at X3 or light-like point at the light-like
boundary of CD. X? intersects light-cone boundary as part of boundary of 7-D light-cone. The
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picture about scattering amplitudes - consistent with the view about cognitive representations as a
unique discretization of space-time surface - is that quarks are located at discrete points of partonic
2-surfaces representing the ends of fermionic propagator lines in H and that one can assign to them
light-like momenta.

3.3.2 Challenging the form of M8 — H duality for the map M* c M8 to M*C H

The assumption that the map M* c M® to M* C H in M® — H duality is a simple identification
map has not been challenged hitherto.

1. Octonionic Dirac equation forces the identification of M® as analog of 8-D momentum space
and the earlier simple identification is in conflict with Uncertainty Principle. Inversion
allowed by conformal invariance is highly suggestive: what comes first in mind is a map
mF — Reppm® /mPmy.

At the light-cone boundary the map is ill-defined. Here on must take as coordinate the linear
time coordinate m® or equivalently radial coordinate r3; = m°. In this case the map would
be of fporm ¢ — hesp/m°: mP has interpretation as energy of massless particle.

The map would give a surprisingly precise mathematical realization for the intuitive argu-
ments assigning to mass a length scale by Uncertainty Principle.

2. Additional constraints on M® — H duality in M* degrees of freedom comes from the fol-
lowing argument. The two half-cones of CD contain space-time surfaces in M® as roots of
polynomials P;(0) and P»(2T — o) which need not be identical. The simplest solution is
Py(0) = P1(2T — 0): the space-time surfaces at half-cones would be mirror images of each
other. This gives P(T,Impg(0)) = Pi(T — Img(0)) Since P; depends on ¢?> — 3> only, the
condition is identically satisfied for both options.

There are two options for the identification of the coordinate t.

Option a): t is identified as octonionic real coordinate o identified and also time coordinate
as in the original option. In the recent option octonion or would correspond to the Euclidian
analog of time coordinate. The breaking of symmetry from SO(4) to SO(3) would distinguish
t as a Newtonian time.

At the level of M8, The M* projection of CDg is a union of future and past directed light-
cones with a common tip rather than CD4. Both incoming and outgoing momenta have the
same origin automatically. This identification is the natural one at the level of M.

Option b): t is identified as a Minkowski time coordinate associated with the imaginary
unit I in the canonical decomposition {Iy,il3,il5,iI7}. The half-cone at 0 = 0 would be
shifted to O = (0,2T,0...0) and reverted. M?* projection would give CD, so that this option
is consistent with ZEQ. This option is natural at the level of Hbut not at the level of M?.

If Option a) is realized at the level of M® and Option b) at the level of H, as seems
natural, a time translation m® — m® + 27" of the past directed light-cone in M* C H is
required in order to to give upper half-cone of C'Dy.

3. The map of the momenta to imbedding space points does not prevent the interpretation of the
points of M8 as momenta also at the level of H since this information is not lost. One cannot
identify p* as such as four-momentum neither at the level of M® nor H as suggested by the
naive identification of the Cartesian factors M* for M® and H. This problem is circumvented
by a conjugation in M? changing the sign of 3-momentum. The light-like momenta along
the light-cone boundary are non-physical but transform to light-like momenta arriving into
light-cone as the physical intuition requires.

Therefore the map would have in the interior of light-cone roughly the above form but there
is still a question about the precise form of the map. Does one perform inversion for the
M* projection or does one take M* projection for the inversion of complex octonion. The
inversion of M* projection seems to be the more plausible option. Denoting by P(o.) the
real M* projection of X* point one therefore has:
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N

Ploc) = gy (35)

oc) - P(o.)

Note that the conjugation changes the direction of 3-momentum.

At the light-cone boundary the inversion is ill-defined but Uncertainty Principle comes in
rescue, and one can invert the M*? time coordinate:

1
Re(mo) =t— heff; . (36)

A couple of remarks are in order.

1. The presence of h.yy instead of A is required by the vision about dark matter. The value of
Rers/ho is given by the dimension of extension of rationals identifiable as the degree of P.

2. The image points p* in H would naturally correspond to the ends of the propagator lines in
the space-time representation of scattering amplitudes.

The information about momenta is not lost in the map. What could be the interpretation of
the momenta 7" at the level of H?

1. Super-symplectic generators at the partonic vertices in H do not involve momenta as labels.
The modes of the imbedding space spinor field assignable to the ground states of super-
symplectic representations at the boundaries of CD have 4-momentum and color as labels.
The identification of p* as this momentum label would provide a connection with the classical
picture about scattering events.

At the partonic 2-surfaces appearing as vertices, one would have a sum over the ground states
(spinor harmonics). This would give integral over momenta but M® — H duality and number
theoretic discretization would select a finite subset and the momentum integral would reduce
to a discrete sum. The number of M?® points with coordinates in a given extension of rationals
is indeed finite.

2. M* C M?® could be interpreted as the space of 4-momenta labeling the spinor harmonics of
M?3. Same would apply at the level of H: spinor harmonics would correspond to the ground
states of super-symplectic representations.

3. The interpretation of the points of M2 as complex 4-momenta inspires the question whether
the interpretation of the imaginary part of the momentum squared in terms of decay decay
width so that M?® picture would code even information about the dynamics of the particles.

4 Can one construct scattering amplitudes also at the level
of M3?

M?® — H duality suggests that the construction is possible both at the level of H and M®. These
pictures would be based on differential geometry on one hand and algebraic geometry and number
theory on the other hand. The challenge is to understand their relationship.

4.1 Intuitive picture

H picture is phenomenological but rather detailed and M?® picture should be its pre-image under
M?® — H duality. The following general questions can be raised.

1. Can one construct the counterparts of the scattering amplitudes also at the level of M3?

2. Can one use M® — H duality to map scattering diagrams in M?® to the level of H?
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Consider first the notions of CD and sub-CD.

1. The intuitive picture is that at the level of H that one must surround partonic vertices with
sub-CDs, and assign the external light-like momenta with the ends of propagator lines from
the boundaries of CD and other sub-CDs. The incoming momenta 5* would be assigned to
the boundary of sub-CD.

2. What about the situation in M8? Sub-CDs must have different origin in the general case
since the momentum spectrum would be shifted. Therefore the sub-CDs have the same tip
- either upper or lower tip, and have as their boundary part of either boundary of CD. A
hierarchy of CDs associated with the same upper or lower tip is suggestive and the finite
maximal size of CD in H gives IR cutoff and the finite maximal size of CD in M?® gives UV
cutoff.

3. Momentum conservation at the vertices in M?® could decompose the diagram to sub-diagrams
for which the momentum conservation is satisfied. On the basis of QFT experience, one
expects that there are some minimal diagrams from which one can construct the diagram:
in the TGD framework this diagram would describe 4-quark scattering. The condition that
the momenta belong to the extension of rationals gives extremely strong constraints and it is
not clear that one obtains any solutions to the conditions unless one poses some conditions
on the polynomials assigned with the two boundaries of CD.

The two half-cones (HCs) of CD contain space-time surfaces in M8 as roots of polynomi-
als Py(0) and P2(2T — o) which need not be identical. The simplest solution is Pa(0) =
Py (2T — 0): the space-time surfaces at HCs would be mirror images of each other. This
gives P1(T,Img(0)) = Pi(T — Img(0)) Since P; depends on t? — r? only, the condition is
identically satisfied for both options.

There are two options for the identification of the coordinate ¢.

Option (a): tis identified as octonionic real coordinate og identified and also time coordinate
as in the original option. In the recent option octonion or would correspond to the Euclidian
analog of time coordinate. The breaking of symmetry from SO(4) to SO(3) would distinguish
t as a Newtonian time. The M* projection of CDg gives a union of future and past directed
light-cones with a common tip rather than CD4 in M* at the level of M® . Both incoming
and outgoing momenta have the same origin automatically. This identification seems to be
the natural one at the level of M8.

Option (b): ¢ is identified as a Minkowski time coordinate associated with the imaginary
unit [; in the canonical decomposition {Iy,il3,il5,iI;}. The HC at o = 0 would be shifted
to O = (0,27,0...0) and reverted. M?* projection would give CDy4 so that this option is
consistent with ZEO. This option is natural at the level of Hbut not at the level of M8.

If Option (a) is realized at the level of M® and Option b) at the level of H, as seems natural,
a time translation of the past directed light-cone by T in M* C H is required to give CDj.
The momentum spectra of the two HCs differ only by sign and at least a scattering diagram
in which all points are involved is possible. In fact all the pairs of subsets with opposite
momenta are allowed. These however correspond to a trivial scattering. The decomposition
to say 4-vertices with common points involving momentum space propagator suggests a
decomposition into sub-CDs. The smaller the sub-CDs at the tips of the CD, the smaller the
momenta are and the better is the IR resolution.

4. The proposal has been that one has a hierarchy of discrete size scales for the CDs. Momentum
conservation gives a constraint on the positions of quarks at the ends of propagator lines in
M?® mapped to a constraint for their images in H: the sum of image points in H is however
not vanishing since inversion is not a linear map.

5. QFT intuition would suggest that at the level of M?® the scattering diagrams decompose
to sub-diagrams for which momentum conservation is separately satisfied. If two such sub-
diagrams A and B have common momenta, they correspond to internal lines of the diagram
involving local propagator D,,, whose non-local counterpart at the level of H connects the
image point to corresponding point of all copies of B.
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The usual integral over the endpoint of the propagator line D(z,y) at space-time level should
correspond to a sum in which the H image of B is shifted in M*. Introduction of a large
number of copies of H image of the sub-diagram looks however extremely ugly and challenges
the idea of starting from the QFT picture.

What comes in mind is that all momenta allowed by cognitive representation and summing up
to zero define the scattering amplitude as a kind of super-vertex and that Yanigian approach
allows this construction.

4.2 How do the algebraic geometry in M® and the sub-manifold geom-
etry in H relate?

Space-time surfaces in H have also Euclidian regions - in particular wormhole contacts - with
induced metric having Euclidian signature due to the large C'P, contribution to the induced metric.
They are separated from Minkowskian regions by a light-like 3-surfaces identifiable as partonic
orbits at which the induced metric becomes degenerate.

1. The possible M® counterparts of these regions are expected to have Euclidian signature of
the number theoretic metric defined by complexified octonion inner product, which must be
real in these regions so that the coordinates for the canonical basis {I,il3, 5, iI;} are either
imaginary or real. This allows several signatures.

2. The first guess is that the energy p° assignable to I; becomes imaginary. This gives tachyonic
p?. The second guess is that all components of 3-momentum {il3,il5,iI;} become imaginary
meaning that the length of 3-momentum becomes imaginary.

3. One cannot exclude the other signatures, for instance the situation in which 1 or 2 compo-
nents of the 3-momentum become imaginary. Hence the transition could occur in 3 steps
as (1,—1,—-1—,1) = (1,1,-1,-1) — (1,1,1,—1) — (1,1,1,1). The values of p? = Re(p?)
would be non-negative and also their images in M* C H would be inside future light-cone.
This could relate to the fact that all these signatures are possible inthe twistor Grassmannian
approach.

4. These regions belong to the complex mass shell p? = r, = m3 = r,, appearing as a root to
the co-associativity condition X = 0. This gives the conditions

(4.1)

Consider first the case (1,1,1,1).

1. The components of p. are either real or imaginary. Using the canonical basis {I;,il3,il5,iI7}
the components of p. are real in the Minkowskian region and imaginary in the totally time-
like Euclidian region. One has for the totally time-like momentum p = (pg,ilm(ps)) in the
canonical basis.

This would give

Re(p?) = p* = py = —Im(ps)® +m3, . (4.2)

The number theoretic metric is Euclidian and totally time-like but one has p? > 0 in the
range [mZ,0]. This region is a natural counterpart for an Euclidian space-time region in H.
The region p? > m3 has Minkowskian signature and counterpart for Minkowskian regions in
H. The region 0 < p? < m2 is a natural candidate for an Euclidian region in M*.

Remark: A possible objection is that Euclidian regions in O, are totally time-like and totally
space-like in H.
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2. The image of these regions under the map Re(p*) — M* under inversion plus octonionic
conjugation defined as p* — he 7%/ p? (to be discussed in more detail in the sequel) consists
of points M¥ in the future light-cone of M* C H. The image of the real Euclidian region of
O.. with p? € [0,m3) is mapped to the region M* M, < hgff/m% of M* C H.

3. The contribution of C'P, metric to the induced metric is space-like so that it can become
Fuclidian. This would naturally occur in the image of a totally time-like Euclidian region
and this region would correspond to small scales M*M,; < hgf ¥ /mé. The change of the
signature should take place at the orbits of partonic 2-surfaces and the argument does not
say anything about this. The boundary of between the two regions corresponds to momenta
p = (po,0) which is is a time-like line perhaps identifiable as the analog of the light-like
geodesic defining the M* projection of CP, type extremal, which is an idealized solution to
actual field equations.

This transition does not explain the M?® counterpart of the 3-D light-like partonic orbit to
which the light-light geodesic thickens in the real situation?

The above argument works also for the other signatures of co-associative real sub-spaces and
provides additional insights. Besides the Minkowskian signature, 3 different situations with signa-
tures (1,1,1,1), (1,—1,1,1), and (1, —1—1, 1) with non-space-like momentum squared are possible.

The following formulas list the signatures, the expressions of real momentum squared, and
dimension D of the transition transition Im(p?) = 0 as generalization of partonic orbit and the
possible identification of the transition region.

Signature P2, D

(+7 T T +) : (pO)Q - (p1)2 - (p2)2 = _Im(p3)2 + m721 3 )
Identification partonic orbit

Signature p? D

(+,—++H) @)= @) =—Im@?*)* —ImpP*)* +m3 ., 2, (4.3)
Identification string world sheet

Signature P2 D

(+,+++H) (002 =—Im(p')® — Im@p*)* — Im(p*)* +m;, , 1.
Identification string boundary

Since the map of the co-associative normal space to C' P, does not depend on the signature, M8 — H
duality is well defined for all these signatures. One can ask whether a single transition creates
partonic orbit, two transitions a string world sheet and 3 transitions ends of string world sheet
inside partonic orbit or even outside it.

4.3 Quantization of octonionic spinors

There are questions related to the quantization of octonionic spinors.

1. Co-associative gamma matrices identified as octonion units are associative with respect to
their octonionic product so that matrix representation is possible. Do second quantized
octonionic spinors in M® make sense? Is it enough to second 