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Abstract

A critical re-examination of M8 − H duality is discussed. M8 − H duality is one of the
cornerstones of Topological Geometrodynamics (TGD). The original version of M8−H duality
assumed that space-time surfaces in M8 can be identified as associative or co-associative
surfaces. If the surface has associative tangent or normal space and contains a complex or
co-complex surface, it can be mapped to a 4-surface in H = M4 × CP2.

Later emerged the idea that octonionic analyticity realized in terms of real polynomials P
algebraically continued to polynomials of complexified octonion could fulfill the dream. The
vanishing of the real part ReQ(P ) (imaginary part ImQ(P )) in the quaternionic sense would
give rise to an associative (co-associative) space-time surface.

The realization of the general coordinate invariance motivated the notion of strong form
of holography (SH) in H allowing realization of a weaker form of M8−H duality by assuming
that associativity/co-associativity conditions are needed only at 2-D string world sheet and
partonic 2-surfaces and possibly also at their light-like 3-orbits.

The outcome of the re-examination yielded both positive and negative surprises.

1. Although no interesting associative space-time surfaces are possible, every distribution
of normal associative planes (co-associativity) is integrable.

2. Another positive surprise was that Minkowski signature is the only possible option.
Equivalently, the image of M4 as real co-associative subspace of Oc (complex valued
octonion norm squared is real valued for them) by an element of local G2 or rather, its
subgroup SU(3), gives a real co-associative space-time surface.

3. The conjecture based on naive dimensional counting, which was not correct, was that the
polynomials P determine these 4-D surfaces as roots of ReQ(P ). The normal spaces of
these surfaces possess a fixed 2-D commuting sub-manifold or possibly their distribution
allowing the mapping to H by M8 −H duality as a whole.

If this conjecture were correct, strong form of holography (SH) would not be needed and
would be replaced with extremely powerful number theoretic holography determining
space-time surface from its roots and selection of real subspace of Oc characterizing the
state of motion of a particle. erate

4. The concrete calculation of the octonion polynomial was the most recent step - carried
already earlier [L4, L5, L6] but without realizing the implications of the extremely simple
outcome. The imaginary part of the polynomial is proportional to the imaginary part
of octonion itself. It turned out that the roots P = 0 of the octonion polynomial
P are 12-D complex surfaces in Oc rather than being discrete set of points defined as
zeros X = 0, Y = 0 of two complex functions of 2 complex arguments. The analogs
of branes are in question. Already earlier 6-D real branes assignable to the roots of the
real polynomial P at the light-like boundary of 8-D light-cone were discovered: also their
complex continuations are 12-D [L10, L13].

5. P has quaternionic de-composition P = ReQ(P )+I4ImQ(P ) to real and imaginary parts
in a quaternionic sense. The naive expectation was that the condition X = 0 implies
that the resulting surface is a 4-D complex surface X4

c with a 4-D real projection X4
r ,

which could be co-associative.

The expectation was wrong! The equations X = 0 and Y = 0 involve the same(!)
complex argument o2c as a complex analog for the Lorentz invariant distance squared from
the tip of the light-cone. This implies a cold shower. Without any additional conditions,
X = 0 conditions have as solutions 7-D complex mass shells H7

c determined by the roots
of P . The explanation comes from the symmetries of the octonionic polynomial.

There are solutions X = 0 and Y = 0 only if the two polynomials considered have a
common a2

c as a root! Also now the solutions are complex mass shells H7
c .

How could one obtain 4-D surfaces X4
c as sub-manifolds of H7

c ? One should pose a condition
eliminating 4 complex coordinates: after that a projection to M4 would produce a real 4-
surface X4 .

1. The key observation is that G2 acts as the automorphism group of octonions respects the
co-associativity of the 4-D real sub-basis of octonions. Therefore a local G2 gauge trans-
formation applied to a 4-D co-associative sub-space M4 gives a co-associative four-surface
as a real projection. Octonion analyticity would correspond to G2 gauge transformation:
this would realize the original idea about octonion analyticity.
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2. A co-associative X4
c satisfying also the conditions posed by the existence of M8 − H

duality is obtained by acting with a local SU3 transformation g to a co-associative plane
M4 ⊂ M8

c . If the image point g(p) is invariant under U(2), the transformation cor-
responds to a local CP2 element and the map defines M8 − H duality even if the co-
associativity in geometric sense were not satisfied.

The co-associativity of the plane M4 is preserved in the map because G2 acts as an
automorphism group of the octonions. If this map also preserves the value of 4-D complex
mass squared, one can require that the intersections of X4

c with H7
c correspond to 3-D

complex mass shells. One obtains holography with mass shells defined by the roots of P
giving boundary data. The condition H images are analogous to Bohr orbits, corresponds
to number theoretic holography.

The group SU(3) has interpretation as a Kac-Moody type analog of color group and
the map defining space-time surface. This picture conforms with the H-picture in which
gluon gauge potentials are identified as color gauge potentials. Note that at QFT limit
the gauge potentials are replaced by their sums over parallel space-time sheets to give
gauge fields as the space-time sheets are approximated with a single region of Minkowski
space.

3. Octonionic Dirac equation as analog of momentum space variant of ordinary Dirac equa-
tion forces the interpretation of M8 as an analog of momentum space and Uncertainty
Principle forces to modify the map M4 ⊂ M8 → M4 ⊂ H from an identification to an
almost inversion. The octonionic Dirac equation reduces to the mass shell condition
m2 = rn, where rn is a root of the polynomial P defining the 4-surface but only in the
co-associative case.

This picture combined with zero energy ontology leads also to a view about quantum
TGD at the level of M8. A local SU(3) element defining 4-surface in M8, which suggests
a Yangian symmetry assignable to string world sheets and possibly also partonic 2-surfaces.
The representation of Yangian algebra using quark oscillator operators would allow to con-
struct zero energy states at representing the scattering amplitudes. The physically allowed
momenta would naturally correspond to algebraic integers in the extension of rationals de-
fined by P . The co-associative space-time surfaces (unlike generic ones) allow infinite-cognitive
representations making possible the realization of momentum conservation and on-mass-shell
conditions.

1 Introduction

M8 − H duality [L12, L10, L11, L18] has become a cornerstone of quantum TGD but several
aspects of this duality are still poorly understood.

1.1 Development of the idea about M8 −H duality

A brief summary about the development of the idea is in order.

1. The original version of M8−H duality assumed that space-time surfaces in M8 can be iden-
tified as associative or co-associative surfaces. If the surface has associative tangent/normal
space and contains a complex co-complex surface, it can be mapped to a 4-surface in
M4 × CP2.

2. Later emerged the idea that octonionic analyticity realized in terms of a real polynomials
P algebraically continued to polynomials of complexified octonion might realize the dream
[L4, L5, L6]. The original idea was that the vanishing condition for the real/imaginary part
of P in quaternion sense could give rise to co-assocative/associative sense.

M8 − H duality concretizes number theoretic vision [L7, L8] summarized as adelic physics
fusing ordinary real number based physics for the correlates of sensory experience and various
p-adic physics (p = 2, 3, ...) as physics for the correlates of cognition. The polynomials of
real variable restricted to be rational valued defines an extension or rationals via the roots of
the polynomials and one obtains an evolutionary hierachy associated with these extensions
increasing in algebraic complexity. These extensions induce extensions of p-adic numbers
and the points of space-time surface in M8 with coordinates in the extension of rationals
define cognitive representations as unique discretizations of the space-time surface.
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3. The realization of the general coordinate invariance in TGD framework [K6, K3, K10, L23]
[L20] motivated the idea that strong form of holography (SH) in H could allow realizing
M8 − H duality by assuming associativity/co-associativity conditions only at 2-D string
world sheet and partonic 2-surfaces and possibly also at their light-like 3-orbits at which the
signature of the induced metric changes from Minkowskian to Euclidian.

1.2 Critical re-examination of the notion

In this article M8 −H duality is reconsidered critically.

1. The healthy cold shower was the learning that quaternion (associative) sub-spaces of quater-
nionic spaces are geodesic manifolds [A6]. The distributions of quaternionic normal spaces
are however always integrable. Hence, co-associativity remains the only interesting option.
Also the existence of co-commutative sub-manifolds of space-time surface demanding the ex-
istence of a 2-D integrable sub-distribution of subspaces is possible. This learning experience
motivated a critical examination of the M8 −H duality hypothesis.

2. The basic objection is that for the conjectured associative option, one must assign to each
state of motion of a particle its own octonionic structure since the time axis would correspond
to the octonionic real axis. It was however clear from the beginning that there is an infinite
number of different 4-D planes Oc in which the number theoretical complex valued octonion
inner product reduces to real - the number theoretic counterpart for Riemann metric. In
the co-associative case this is the only option. Also the Minkowski signature for the real
projection turns out to be the only physically acceptable option. The mistake was to assume
that Euclidian regions are co-associative and Minkowskian regions associative: both must be
co-associative.

3. The concrete calculation of the octonion polynomial was the most recent step - carried already
earlier [L4, L5, L6] but without realizing the implications of the extremely simple outcome.
The imaginary part of the polynomial is proportional to the imaginary part of octonion itself.
It turned out that the roots P = 0 of the octonion polynomial P are 12-D complex surfaces
in Oc rather than being discrete set of points defined as zeros X = 0, Y = 0 of two complex
functions of 2 complex arguments. The analogs of branes are in question. Already earlier
6-D real branes assignable to the roots of the real polynomial P at the light-like boundary
of 8-D light-cone were discovered: also their complex continuations are 12-D [L10, L13].

4. P has quaternionic de-composition P = ReQ(P ) + I4ImQ(P ) to real and imaginary parts in
a quaternionic sense. The naive expectation was that the condition X = 0 implies that the
resulting surface is a 4-D complex surface X4

c with a 4-D real projection X4
r , which could be

co-associative.

The expectation was wrong! The equations X = 0 and Y = 0 involve the same(!) complex
argument o2c as a complex analog for the Lorentz invariant distance squared from the tip
of the light-cone. This implies a cold shower. Without any additional conditions, X = 0
conditions have as solutions 7-D complex mass shells H7

c determined by the roots of P . The
explanation comes from the symmetries of the octonionic polynomial.

There are solutions X = 0 and Y = 0 only if the two polynomials considered have a common
a2c as a root! Also now the solutions are complex mass shells H7

c .

5. How could one obtain 4-D surfaces X4
c as sub-manifolds of H7

c ? One should pose a condition
eliminating 4 complex coordinates: after that a projection to M4 would produce a real
4-surface X4 .

A co-associativeX4
c is obtained by acting with a local SU3 transformation g to a co-associative

plane M4 ⊂ M8
c . If the image point g(p) is invariant under U(2), the transformation corre-

sponds to a local CP2 element and the map defines M8−H duality even if the co-associativity
in geometric sense were not satisfied.

The co-associativity of the plane M4 is preserved in the map because G2 acts as an au-
tomorphism group of the octonions. If this map also preserves the value of 4-D complex
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mass squared, one can require that the intersections of X4
c with H7

c correspond to 3-D com-
plex mass shells. One obtains holography with mass shells defined by the roots of P giving
boundary data. The condition H images are analogous to Bohr orbits, corresponds to number
theoretic holography.

It this, still speculative, picture is correct, it would fulfil the original dream about solving
classical TGD exactly in terms of roots for real/imaginary parts of octonionic polynomials in M8

and by mapping the resulting space-time surfaces to H by M8 −H duality. In particular, strong
form of holography (SH) would not be needed at the level of H, and would be replaced with a
dramatically stronger number theoretic holography.

Octonionic Dirac equation, which is purely algebraic equation and the counterpart for ordinary
Dirac equation in momentum space, serves as a second source of information.

1. The first implication is that Oc has interpretation as an analog of momentum space for
quarks: this has profound implications concerning the interpretation. The space-time surface
in M8 would be analog of Fermi ball. The octonionic Dirac equation reduces to the mass
shell condition m2 = rn, where rn is a root of the polynomial P defining the 4-surface but
only in the co-associative case.

2. Cognitive representations are defined by points of M8 with coordinates having values in the
extensions of rational defined by P and allowing an interpretation as 4-momenta of quarks.
In the generic case the cognitive representations are finite. If the points of M8 correspond to
quark momenta, momentum conservation is therefore expected to make the scattering trivial.

However, a dramatic implication of the reduction of the co-associativity conditions to the
vanishing of ordinary polynomials Y is that by the Lorentz invariance of roots of P , the 3-D
mass shells ofd M4 have an infinite number of points in a cognitive representation defined by
points with coordinates having values in the extensions of rational defined by P and allowing
an interpretation as 4-momenta. This is what makes interesting scattering amplitudes for
massive quarks possible.

3. What is the situation for the images of M4 points under the effective local CP2 element
defined by local SU(3) element g preserving the mass squared and mapping H3 to g(H3)? If
g is expressible in terms of rational functions with rational coefficients, algebraic points are
mapped to algebraic points. This is true also in the interior of M4.

This would mean a kind of cognitive explosion for massive quark momenta. Without the
symmetry one might have only forward scattering in the interior of X4

r . Note that massless
quarks can however arrive at the boundary of CD which also allows cognitive representation
with an infinite number of points.

4. In the number theoretic approach, kinematics becomes a highly non-trivial part of the scatter-
ing. The physically allowed momenta would naturally correspond to algebraic integers in the
extension E of rationals defined by P . Momentum conservation and on-mass-shell conditions
together with the condition that momenta are algebraic integers in E are rather strong. The
construction of Pythagorean squared generalize to the case of quaternions provides a general
solutions to the conditions: the solutions to the conditions are combinations of momenta
which correspond to squares of quaternions having algebraic integers as components.

5. The original proposal was that local G2,c element g(x) defines a vanishing holomorphic gauge
field and its restriction to string world sheet or partonic 2-surface defines conserved current.
M8 − H duality however requires that local SU(3) element with the property that image
point is invariant under U(2) is required by M8 −H duality defines X4 ⊂M8.

In any case, these properties suggest a Yangian symmetry assignable to string world sheets
and partonic 2-surfaces. The representation of Yangian algebra using quark oscillator oper-
ators would allow to construct zero energy states at representing the scattering amplitudes.
The generators of the Yangian algebra have a representation as Hamiltonians which are in
involution. They define conserved charges at the orbits for a Hamiltonian evolution defined
by any combination of these the Hamiltonians. ZEO suggests a concrete representation of
this algebra in terms of quark and antiquark oscillator operators. This algebra extends also
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to super-algebra. The co-product of the associated Yangian would give rise to zero energy
states defining as such the scattering amplitudes.

1.3 Octonionic Dirac equation

The octonionic Dirac equation allows a second perspective on associativity. Everything is algebraic
at the level of M8 and therefore also the octonionic Dirac equation should be algebraic. The
octonionic Dirac equation is an analog of the momentum space variant of the ordinary Dirac
equation and also this forces the interpretation of M8 as momentum space.

Fermions are massless in the 8-D sense and massive in 4-D sense. This suggests that octonionic
Dirac equation reduces to a mass shell condition for massive particle with q · q = m2 = rn, where
q · q is octonionic norm squared for quaternion q defined by the expression of momentum p as
p = I4q, where I4 is octonion unit orthogonal to q. rn represents mass shell as a root of P .

For the co-associative option the co-associative octonion p representing the momentum is given
in terms of quaternion q as p = I4q. One obtains p · p = qq = m2 = rn at the mass shell defined
as a root of P . Note that for M4 subspace the space-like components of p p are proportional to i
and the time-like component is real. All signatures of the number theoretic metric are possible.

For associative option one would obtain qq = m2, which cannot be satisfied: q reduces to a
complex number zx+ Iy and one has analog of equation z2 = z2− y2 + 2Ixy = m2

n, which cannot
be true. Hence co-associativity is forced by the octonionic Dirac equation.

Before continuing, I must apologize for the still fuzzy organization of the material related to
M8 −H duality. The understanding of its details has been a long and tedious process, which still
continues, and there are unavoidably inaccuracies and even logical inconsistencies caused by the
presence of archeological layers present.

2 The situation before the cold shower

The view about M8 −H duality before the cold shower - leading to what I dare to call a break-
through - helps to gain idea about the phenomenological side of M8 − H duality. Most of the
phenomenology survives the transition to a more precise picture. This section is however not
absolutely necessary for what follows it.

2.1 Can one deduce the partonic picture from M8 −H duality?

The M8 counterparts for partons and their light like orbits in H can be understood in terms of
octonionic Dirac equation in M8 as an analog for the algebraic variant of ordinary Dirac equation
at the level of momentum space [L18, L17] but what about the identification of partonic 2-surfaces
as interaction vertices at which several partonic orbits meet? Can one deduce the phenomenological
view about elementary particles as pairs of wormhole contacts connected by magnetic flux tubes
from M8−H duality? There is also the question whether partonic orbits correspond to their own
sub-CDs as the fact that their rest systems correspond to different octonionic real axes suggests.

There are also some questions which have become obsolote. For instance: qhy should the
partonic vertices reside at t = rn branes? This became obsolste with the realization that M8 is
analogous to momentum space so that the identification as real octonionic coordinate corresponds
now to a component of 8-momentum identifiable as energy. Furthermore, the assumption the
associativity of the 4-surface in M8 had to be replaced with-co-associtivity and octonionic real
coordinate does not have interpretation as time coordinate is associative surface

M8−H duality indeed conforms with the phenomenological picture about scattering diagrams
in terms of partonic orbits [L23, L22] [L22, L23] [L23], and leads to the view about elementary
particles as pairs of Euclidian wormhole contacts associated with flux tubes carrying monopole
flux.

2.2 What happens to the ”very special moments in the life of self”?

The original title was ”What happens at the ”very special moments in the life of self?” but it
turned out that ”at” must be replaced with ”to”. The answer to the new question would be ”They
disappear from the glossary”.
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The notion of ”very special moments in the life of self” (VPM) [L10, L13] makes sense if M8

has interpretation as an 8-D space-time. M4 projections of VPMs were originally identified as
hyperplanes t = rn, where t is time coordinate and rn is a root of the real polynomial defining
octonionic polynomial as its algebraic continuation.

The interpretation of M8 as cotangent space of H was considered from the beginning but
would suggest the interpretation of M8 as the analog of momentum space. It is now clear that this
interpretation is probably correct and that M8 − H duality generalizes the momentum-position
duality of wave mechanics. Therefore one should speak of E = rn plane and simply forget the
misleading term VMP. VPMs would correspond to constant values of the M8 energy assignable to
M4 time coordinate.

The identification of space-time surface as co-associative surface with quaternionic normal space
containing integrable distribution of 2-D commutative planes essential for M8 −H duality is also
in conflict with the original interpretation. Also the modification of M8−H duality in M4 degrees
of freedom forced by Uncertainty Principle [L28] has led to the conclusion that VMPs need not
have a well-defined images in H.

2.3 What does SH mean and its it really needed?

SH has been assumed hitherto but what is its precise meaning?

1. Hitherto, SH at the level of H is believed to be needed: it assumes that partonic 2-surfaces
and/or string world sheets serve as causal determinants determining X4 via boundary con-
ditions.

(a) The normal or tangent space of X4 at partonic 2-surfaces and possibly also at string
world sheets has been assumed to be associative that is quaternionic. This condition
should be true at the entire X4.

(b) Tangent or normal space has been assumed to contain preferred M2 which could be
replaced by an integrable distribution of M2(x) ⊂ M4. At string world sheets only
the tangent space can be associative. At partonic 2-surfaces also normal space could
be associative. This condition would be true only at string world sheets and partonic
2-surfaces so that only these can be mapped to H by M8−H duality and continued to
space-time surfaces as preferred extremals satisfying SH.

The current work demonstrates that although SH could be used at the level of SH, this is not
necessary. Co-associativity together with co-commutativity for string world sheets allows the
mapping of the real space-time surfaces in M8 to H implying exact solvability of the classical
TGD.

2.4 Questions related to partonic 2-surfaces

There are several questions related to partonic 2-surfaces.

Q1: What are the M8 pre-images of partons and their light-like partonic orbits in H?

It will be found that the octonionic Dirac equation in M8 implies that octo-spinors are located
to 3-D light-like surfaces Y 3

r - actually light-cone boundary and its 3-D analogs at which
number theoretic norm squared is real and vanishes - or to the intersections of X3

r with the
6-D roots of P in which case Dirac equation trivializes and massive states are allowed. They
are mapped to H by M8 −H duality.

Remark: One can ask whether the same is true in H in the sense that modified Dirac
action would be localized to 3-D light-like orbits and 3-D ends of the space-time surfaces
at the light-like boundaries of CD having space-like induced metric. Modified Dirac action
would be defined by Cherm-Simons term and would force the classical field equations for
the bosonic Chern-Simons term. If the interior part of the modified Dirac action is absent,
the bosonic action is needed to define the space-time surfaces as extremals. They would be
minimal surfaces and universal by their holomorphy and would not depend on coupling
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parameters so that very general actions can have them as preferred extremals. This issue
remains still open.

The näıve - and as it turned out, wrong - guess was that the images of the light-like surfaces
should be light-like surfaces in H at the boundaries of Minkowskian and Euclidian regions
(wormhole contacts). In the light-like case Y 3

r corresponds to the light-cone boundary so
that this would be the case. X3

r however turns out to correspond to a hyperboloid in M4

as an analog of a mass shell and is not identifiable as a partonic orbit.

It turned out that the complex surface X4
c allows real sections in the sense that the number

theoretic complex valued metric defined as a complex continuation of Minkowski norm is
real at 4-D surfaces: call them Z4

r . They are bounded by a 3-D region at Z3
r at which the

value of norm squared vanishes. This surface is an excellent candidate for the pre-image of
the light-like orbit of partonic 2-surface serving as a topological vertex. One has therefore
strings worlds sheets, partonic 2-surfaces and their light-like orbits and they would connect
the ”mass shells” at X4

r . All ingredients for SH would be present.

The intersections of Z3
r with X3

r identifiable as the section of X4
r a = constant hyperboloid

would give rise to partonic 2-surfaces appearing as topological reaction vertices.

The assumption that the 4-D tangent space at these light-like 3-surfaces is co-associative,
would give an additional condition determining the image of this surface in H, so that the
boundary conditions for SH would become stronger. One would have boundary conditions
at light-like partonic orbits. Note that string world sheets are assumed to have light-like
boundaries at partonic orbits.

Q2: Why should partonic 2-surfaces appear as throats of wormhole contact in H? Wormhole
contacts do not appear in M8.

1. In M8 light-like orbits are places where the Minkowskian signature changes to Euclid-
ian. Does M8 − H duality map the images of these coinciding roots for Euclidian and
Minkowskian branches to different throats of the wormhole contact in H so that the
intersection would disappear?

2. This is indeed the case. The intersection of Euclidian and Minkowskian branches defines a
single 3-surface but the tangent and normal spaces of branches are different. Therefore
their H images under M8 −H duality for the partonic 2-surface are different since normal
spaces correspond to different CP2 coordinates. These images would correspond to the two
throats of wormhole contact so that the H-image by SH is 2-sheeted. One would have
wormhole contacts in H whereas in M8 the wormhole contact would reduce to a single
partonic 2-surface.

3. The wormhole contact in H can have only Euclidian signature of the induced metric. The
reason is that the M4 projections of the partonic surfaces in H are identical so that the points
with same M4 coordinates have different CP2 coordinates and their distance is space-like.

Q3: In H picture the interpretation of space-time surfaces as analogs of Feynman graphs
assumes that several partonic orbits intersect at partonic 2-surfaces. This assumption could be of
course wrong.This raises questions.

What the pre-images of partonic 2-surfaces are in M8? Why should several partonic orbits
meet at a given partonic 2-surface? Is this needed at all?

The space-time surface X4
r associated intersects the surface X6

r associated with different particle
- say with different value of mass along 2-D surface. Could this surface be identified as partonic
2-surface X2

r ? This occurs symmetrically so that one has a pair of 2-surfaces X2
r . What does this

mean? Could these surface map to the throats of wormhole contact in H?
Why several partonic surfaces would co-incide in topological reaction vertex at the level of H?

At this moment is is not clear whether this is forced by M8 picture.
Octonionic Dirac equation implies that M8 has interpretation as analog of momentum space so

that interaction vertices are replaced by multilocal vertices representing momenta and propagators
become local being in this sense analogous to vertices of QFT. One could of course argue that
without the gluing along ends there would be no interactions since the interactions in X6

r for two
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3-surfaces consist in the generic case of a discrete set of points. One could also ask whether the
surfaces Y 3

r associated with the space-time surfaces X4
r associated with incoming particles must

intersect along partonic 2-surface rather than at discrete set of points.
The meeting along ends need not be true at the level of M8 since the momentum space inter-

pretation would imply that momenta do not differ much so that particles should have identical
masses: for this to make sense one should assume that the exchanged virtual particles are massless.
One other hand, if momenta are light-like for Y 3

r , this might be the case.
Q4: Why two wormhole contacts and monopole flux tubes connecting them at the level of H?

Why monopole flux?

1. The tangent spaces of the light-like orbits have different light-like direction. Intuitively, this
corresponds to different directions of light-like momenta. Momentum conservation requires
more than one partonic orbit changing its direction meeting at partonic 2-surface. By light-
likeness, the minimum is 2 incoming and two outgoing lines giving a 4-vertex. This allows the
basic vertices involving Ψ and Psi at opposite throats of wormhole contacts. Also a higher
number of partonic orbits is possible.

2. A two-sheeted closed monopole flux tube having wormhole contacts as its ”ends” is suggested
by elementary particle phenomenology. Since M8 homology is trivial, there is no monopole
field in M8. If M8−H duality is continuous it maps homologically trivial partonic 2-surfaces
to homologically trivial 2-surfaces in H. This allows the wormhole throats in H to have
opposite homology charges. Since the throats cannot correspond to boundaries there must
be second wormhole contact and closed flux tube.

3. What does the monopole flux for a partonic 2-surface mean at the level of M8? The distri-
bution of quaternionic 4-D tangent/normal planes containing preferred M2 and associated
with partonic 2-surface in M8 would define a homologically on-trivial 2-surface in CP2. The
situation is analogous to a distribution of tangent planes or equivalently normal vectors in
S2.

Q4: What is the precise form of M8−H duality: does it apply only to partonic 2-surfaces and
string world sheets or to the entire space-time surfaces?

M8 − H duality is possible if the X4 in M8 contains also integrable distribution of complex
tangent or normal 2-planes at which 4-D tangent space is quaternionic/associative. String world
sheets and partonic 2-surfaces define these distributions.

The minimum condition allowed by SH in H is that string world sheets and there is a finite
number of partonic 2-surfaces and string world sheets. In this case only these 2-surfaces can be
mapped to H and SH assigns to them a 4-D space-time surface. The original hypothesis was that
these surfaces define global orthogonal slicings of the X4 so that M8−H duality could be applied
to the entire X4. This condition is probably too strong.

3 Challenging M 8 −H duality

M8−H duality involves several alternative options and in the following arguments possibly leading
to a unique choice are discuses.

1. Are both associativity and co-associativity possible or is only either of these options allowed?
Is it also possible to pose the condition guaranteeing the existence of 2-D complex sub-
manifolds identifiable as string world sheets necessary to map the entire space-time surface
from M8 to H? In other words, is the strong form of holography (SH) needed in M8 and/or
H or is it needed at all?

2. The assignment of the space-time surface at the level of M8 to the roots of real or imaginary
part (in quaternionic sense) of octonionic polynomial P defined as an algebraic continuation
of real polynomial is an extremely powerful hypothesis in adelic physics [L8, L7] and would
mean a revolution in biology and consciousness theory.

Does P fix the space-time surface with the properties needed to realize M8−H duality or is
something more needed? Does the polynomial fix the space-time surface uniquely - one would
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have extremely strong number theoretic holography - so that one would have number theoretic
holography with coefficients of a real polynomial determining the space-time surface?

3. M8 − H duality involves mapping of M4 ⊂ M8 to M4 ⊂ H. Hitherto it has been
assumed that this map is direct identification. The form of map should however depend
on the interpretation of M8. In octonionic Dirac equation M8 coordinates are in the role of
momenta [L18]. This suggests the interpretation of M8 as an analog of 8-D momentum
space. If this interpretation is correct, Uncertainty Principles demands that the map M4 ⊂
M8 →M4 ⊂ H is analogous to inversion mapping large momenta to small distances.

4. Twistor lift of TGD [K13] is an essential part of the TGD picture. Ttwistors and momen-
tum twistors provide dual approaches to twistor Grassmann amplitudes. Octonionic Dirac
equation suggests that M8 and H are in a similar dual relation. Could M8 − H duality
allow a generalization of twistorial duality to TGD framework?

3.1 Explicit form of the octonionic polynomial

What does the identification of the octonionic polynomial P as an octonionic continuation of a
polynomial with real or complexified coefficients imply? In the following I regard M8

c as O8
c and

consider products for complexified octonions.
Remark: In adelic vision the coefficients of P must be rationals (or at most algebraic numbers

in some extension of rationals).
One interesting situation corresponds to the real subspace of Oc spanned by {I0, iIk}, = 1, ..7,

with a number theoretic metric signature (1,−1,−1...,−1) of M8 which is complex valued except at
in various reals subspaces.This subspace is associative. The original proposal was that Minkowskian
space-time regions as projections to this signature are associative whereas Euclidian regions are co-
associative. It however turned out that associative space-time surfaces are physically uninteresting.

The canonical choice (iI0, I1, I2, iI3, I4, iI5, I6, iI7) defining the complexification of the tangent
space represents a co-associative sub-space realizing Minkowski signature. It turns out that both
Minkowskian and Euclidian space-time regions must be co-associative .

3.1.1 Surprises

The explicit calculation of the octonionic polynomial yielded a chilling result. If one poses (co-
)associativity conditions as vanishing of the imaginary or real part in quaterionic sense: ImQ(P ) =
0 or ReQ(P ) = 0, the outcome is that the space-time surface is just M4 or E4. Second chilling
result is that quaternionic sub-manifolds are geodesic sub-manifolds. This led to the question how
to modify the (co-)associativity hypothesis.

The vision has been that space-time surfaces can be identified as roots for the imaginary
(co-associative) part ImQ(O) or real part ImQ(O) of octonionic polynomial using the standard
decomposition (1, e1, e2, e3).

1. The näıve counting of dimensions suggests that one obtains 4-D surfaces. The surprise was
that also 6-D brane like entities located at the boundary of M8 light-cone and with topology
of 6-sphere S6 are possible. They correspond to the roots of a real polynomial P (o) for the
choice (1, iI1, ..., iI7). The roots correspond to the values of the real octonion coordinate
interpreted as values of linear M4 time in the proposal considered. Also for the canonical
proposal one obtains a similar result. In Oc they correspond to 12-D complex surfaces X6

c

satisfying the same condition conditions x20 + r2 = 0 and P (x0) = 0.

2. There was also another surprise. As already described, the general form for the octo-
nionic polynomial P (o) induced from a real polynomial is extremely simple and reduces
to X(t2, r2)I0 + iY (t2, r2)Im(o). There are only two complex variables t and r2 involved and
the solutions of P = 0 are 12-D complex surfaces X6

c in Oc. Also the special solutions have
the same dimension.

3. In the case of co-associativity 8 conditions are needed for ReQ(P ) = 0: note that X = 0
is required. The naive expectation is that this gives a complex manifold X4

c with 4-D real
projection X4

r as an excellent candidate for a co-associative surface.
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The expectation turned out to be wrong: in absence of any additional conditions the solutions
are complex 7-dimensional mass shells! This is due to the symmetries of the octonionic
polynomials as algebraic continuation of a real polynomial.

4. The solution of the problem is to change the interpretation completely. One must assign to
the 7-D complex mass shell H7

c a 3-D complex mass shell H3
c .

One can do this by assuming space-time surface is surface intersecting the7-D mass shell
obtained as a deformation of M4

c ⊂ M8
c by acting with local SU(3) gauge transformation

and requiring that the image point is invariant under U(2). If the 4-D complex mass squared
remains invariant in this transformation, X4

c intersects H7
c .

With these assumptions, a local CP2 element defines X4
c and X4

r is obtained as its real
projection in M4. This definition assigns to each point of M4 a point of CP2 so that M8−H
duality is well-defined.

One obtains holography in which the fixing of 3-D mass shells fixes the 4-surface and also
assigns causal diamond with the pair of mass shells with opposite energies. If the space-time
surface is analog of Bohr orbit, also its preimage under M8 −H duality should be such and
P would determine 4-surface highly uniquely [L30] and one would have number theoretic
holography.

3.1.2 General form of P and of the solutions to P = 0, ReQ(P ) = 0, and ImQ(P ) = 0

It is convenient to introduce complex coordinates for Oc since the formulas obtained allow projec-
tions to various real sections of Oc.

1. To see what happens, one can calculate o2c . Denote oc by oc = tI0 +oc and the norm squared
of o by r2, where r2 =

∑
o2k where ok are the complex coordinates of octonion. Number

theoretic norm squared for oc is t2 + r2 and reduces to a real number in the real sections of
Oc. For instance, in the section (I1, iI3, iI5, iI7) the norm squared is −x21 + x23 + x25 + x27 and
defines Minkowskian norm squared.

For o2 one has:

o2 = t2 − r2 + 2to ≡ X2 + Y 2 .

For o3 one obtains

o3 = tX2 − o · Y 2 + tY 2 +X2o .

Clearly, ImQ(on) has always the same direction as ImQ(o). Hence one can write in the
general case

on = X + Y o . (3.1)

This trivial result was obtained years ago but its full implications became evident only while
preparing the current article. The point is that the solutions to associativity/co-associativity
conditions by putting Re(Q(P ) = 0 or ImQ(P ) = 0 are trivial: just M4 or E4. What goes
wrong with basic assumptions, will be discussed later.

Remark: In M8 sub-space one has imaginary o is proportional to the commuting imaginary
unit.

2. It is easy to deduce a recursion formula for the coefficients for X and Y for n:th power of
oc. Denote by t the coordinate associated with the real octonion unit (not time coordinate).
One obtains

onc = XnI0 + Yno ,
Xn = tXn−1 − rYn−1 ,
Yn = tYn−1 + rXn−1 .

(3.2)
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In the co-associative case one has t = 0 or possibly constant t = T (note that in the recent
interpretation t does not have interpretation as time coordinate). The reason is that the
choice of octonionic coordinates is unique apart from translation along the real axis from the
condition that the coefficients of P remain complex numbers in powers of the new variable.

3. The simplest option correspond to t = 0. One can criticize this option since the quaternion-
icity of normal space should not be affected if t is constant different from zero. In any case,
for t = 0 the recursion formula gives for the polynomial P (oc) the expression

P (oc) =
∑

(−1)nr2n(p2n−1I0 + p2no) . (3.3)

Denoting the even and of odd parts of P by Peven and Podd, the roots rk,odd of X = Re(P (oc))
are roots Podd and roots rk,even of Y = Im(P (oc)) are roots of Peven. Co-associativity gives
roots of X and the roots of P as simultaneous roots of Podd and Peven. The interpretation
of roots is as in general complex mass squared values.

In the general case, the recursion relation would give the solution

(
Xn

Yn

)
= An

(
t
r

)
A =

(
t −r
r t

)
(3.4)

One can diagonalize the matrix appearing in the iteration by solving the eigenvalues λ± =
t ± ir and eigenvectors X± = (±i, 1) and by expressing (X1, Y1) = (t, r) in terms of the
eigenvectors as (t, r) = ((it+ r)X+ + (r − it)X−)/2. This gives

(
Xn

Yn

)
=

1

2

(
(t+ ir)ni− (t− ir)ni
(t+ ir)n + (t− ir)n

)
(3.5)

This gives

P (oc) = P1I0 + P2o ,
P1(r) =

∑
Xnpnr

2n ,
P2(r) =

∑
Ynpnr

2n .
(3.6)

For the restriction to M4
c , r2 reduces to complex 4-D mass squared given by the root rn.

In general case r2 corresponds to complex 8-D mass squared. All possible signatures are
obtained by assuming M8

c coordinates to be either real or imaginary (the number theoretical
norm squared is real with this restriction).

3.1.3 How does one obtain 4-D space-time surfaces?

Contrary to the naive expections, the solutions of the vanishing conditions for the ReQ(P )
(ImQ(P )) (real (imaginary) part in quaternionic sense) are 7-D complex mass shells r2 = rn,1 as
roots of P1(r) = 0 or r2 = rn,2 of P2(r) = 0 rather than 4-D complex surfaces (for a detailed
discussion see [K2]) A solution of both conditions requires that P1 and P2 have a common root
but the solution remains a 7-D complex mass shell! This was one of the many cold showers during
the development of the ideas about M8 −H duality! It seems that the adopted interpretation is
somehow badly wrong. Here zero energy ontology (ZEO) and holography come to the rescue.
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1. Could the roots of P1 or P2 define only complex mass shells of the 4-D complex momentum
space identifiable as M4

c ? ZEO inspires the question whether a proper interpretation of mass
shells could be as pre-images of boundaries of cd:s (intersections of future and past directed
light-cones) as pairs of mass shells with opposite energies. If this is the case, the challenge
would be to understand how X4

c is determined if P does not determine it.

Here holography, considered already earlier, suggests itself: the complex 3-D mass shells
belonging to X4

c would only define the 3-D boundary conditions for holography and the real
mass shells would be mapped to the boundaries of cds. This holography can be restricted
to X4

R. Bohr orbit property at the level of H suggests that the polynomial P defines the
4-surface more or less uniquely.

2. Let us take the holographic interpretation as a starting point. In order to obtain an X4
c mass

shell from a complex 7-D light-cone, 4 complex degrees of freedom must be eliminated.
M8 −H duality requires that X4

c allows M4
c coordinates.

Note that if one has X4
c = M4

c , the solution is trivial since the normal space is the same
for all points and the H image under M8 − H duality has constant CP2 = SU(3)/U(2)
coordinates. X4

c should have interpretation as a non-trivial deformation of M4
c in M8.

3. ByM8−H duality, the normal spaces should be labelled by CP2 = SU(3)/U(2) coordinates.
M8 − H duality suggests that the image g(p) of a momentum p ∈ M4

c is determined
essentially by a point s(p) of the coset space SU(3)/U(2). This is achieved if M4

c is deformed
by a local SU(3) transformation p→ g(p) in such a way that each image point is invariant
under U(2) and the mass value remains the same: g(p)2 = p2 so that the point represents a
root of P1 or P2.

Remark: I have earlier considered the possibility of G2 and even G2,c local gauge transfor-
mation. It however seems that that local SU(3) transformation is the only possibility since
G2 and G2,c would not respect M8 − H duality. One can also argue that only real SU(3)
maps the real and imaginary parts of the normal space in the same manner: this is indeed
an essential element of M8 −H duality.

4. This option defines automatically M8−H duality and also defines causal diamonds as images
of mass shells m2 = rn. The real mass shells in H correspond to the real parts of rn.
The local SU(3) transformation g would have interpretation as an analog of a color gauge
field. Since the H image depends on g, it does not correspond physically to a local gauge
transformation but is more akin to an element of Kac-Moody algebra or Yangian algebra
which is in well-defined half-algebra of Kac-Moody with non-negative conformal weights.

The following summarizes the still somewhat puzzling situation as it is now.

1. The most elegant interpretation achieved hitherto is that the polynomial P defines only the
mass shells so that mass quantization would reduce to number theory. Amusingly, I started
to think about particle physics with a short lived idea that the d’Alembert equation for a
scalar field could somehow give the mass spectrum of elementary particles so that the issue
comes full circle!

2. Holography assigns to the complex mass shells complex 4-surfaces for which M8−H duality
is well-defined even if these surfaces would fail to be 4-D co-associative. These surfaces are
expected to be highly non-unique unless holography makes them unique. The Bohr orbit
property of their images in H indeed suggests this apart from a finite non-determinism [L30].
Bohr orbit property could therefore mean extremely powerful number theoretical duality for
which the roots of the polynomial determine the space-time surface almost uniquely. SU(3)
as color symmetry emerges at the level of M8. By M8 − H duality, the mass shells are
mapped to the boundaries of CDs in H.

3. Do we really know that X4
r co-associative and has distribution of 2-D commuting subspaces

of normal space making possible M8 − H duality? The intuitive expectation is that the
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answer is affirmative [A6]. In any case, M8 − H duality is well-defined even without this
condition.

4. The special solutions to P = 0, discovered already earlier, are restricted to the boundary of
CD8 and correspond to the values of energy (rather than mass or mass squared) coming as
roots of the real polynomial P . These mass values are mapped by inversion to ”very special
moments in the life of self” (a misleading term) at the level of H as special values of light-cone
proper time rather than linear Minkowski time as in the earlier interpretation [L10]. The
new picture is Lorenz invariant.

Octonionic Dirac equation as analog of momentum space variant of ordinary Dirac equation
forces the interpretation of M8 as an analog of momentum space and Uncertainty Principle forces
to modify the map M4 ⊂ M8 → M4 ⊂ H from identification to inversion. The equations for
ReQ(P ) = 0 reduce to simultaneous roots of the real polynomials defined by the odd and even
parts of P having interpretation as complex values of mass squared mapped to light-cone proper
time constant surfaces in H. This leads to the idea that the formulation of scattering amplitudes
at M8 levels provides the counterpart of momentum space description of scattering whereas the
formulation at the level of H provides the counterpart of space-time description.

This picture combined with zero energy ontology (ZEO) leads also to a view about quantum
TGD at the level of M8. Local SU(3) element has properties suggesting a Yangian symme-
try assignable to string world sheets and possibly also partonic 2-surfaces. The representation of
Yangian algebra using quark oscillator operators would allow to construct zero energy states at rep-
resenting the scattering amplitudes. The physically allowed momenta would naturally correspond
to algebraic integers in the extension of rationals defined by P . The co-associative space-time sur-
faces (unlike generic ones) allow infinite-cognitive representations making possible the realization
of momentum conservation and on-mass-shell conditions.

3.2 The input from octonionic Dirac equation

The octonionic Dirac equation allows a second perspective on associativity. Everything is algebraic
at the level of M8 and therefore also the octonionic Dirac equation should be algebraic. The
octonionic Dirac equation is an analog of the momentum space variant of ordinary Dirac equation
and also this forces the interpretation of M8 as momentum space.

Fermions are massless in the 8-D sense and massive in 4-D sense. This suggests that octonionic
Dirac equation reduces to a mass shell condition for massive particle with q · q = m2 = rn, where
q · q is octonionic norm squared for quaternion q defined by the expression of momentum p as
p = I4q, where I4 is octonion unit orthogonal to q. rn represents mass shell as a root of P .

For the co-associative option the co-associative octonion p representing the momentum is given
in terms of quaternion q as p = I4q. One obtains p · p = qq = m2 = rn at the mass shell defined
as a root of P . Note that for M4 subspace the space-like components of p p are proportional to i
and the time-like component is real. All signatures of the number theoretic metric are possible.

For associative option one would obtain qq = m2, which cannot be satisfied: q reduces to a
complex number zx+ Iy and one has analog of equation z2 = z2− y2 + 2Ixy = m2

n, which cannot
be true. Hence co-associativity is forced by the octonionic Dirac equation.

One of the big surprises was that the cognitive representations for both light-like boundary and
X4
r are not generic meaning that they would consist of a finite set of points but infinite due to

the Lorentz symmetry: a kind of cognitive explosion would happen by the Lorentz symmetry. The
natural assumption is that for a suitable momentum unit, physical momenta satisfying mass shell
conditions are algebraic integers in the extension of rationals defined by P . Periodic boundary
conditions in turn suggest that for the physical states the total momenta are ordinary integers and
this leads to Galois confinement as a universal mechanism for the formation of bound states.

3.2.1 Hamilton-Jacobi structure and Kähler structure of M4 ⊂ H and their counter-
parts in M4 ⊂M8

The Kähler structure of M4 ⊂ H, forced by the twistor lift of TGD, has deep physical implications
and seems to be necessary. It implies that for Dirac equation in H, modes are eigenstates of
only the longitudinal momentum and in the 2 transversal degrees of freedom one has essentially
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harmonic oscillator states [L28, L27], that is Gaussians determined by the 2 longitudinal momentum
components. For real longitudinal momentum the exponents of Gaussians are purely imaginary
or purely real.

The longitudinal momentum space M2 ⊂ M4 and its orthogonal complement E2 is in a
preferred role in gauge theories, string models, and TGD. The localization of this decomposition
leads to the notion of Hamilton-Jacobi (HJ) structure of M4 and the natural question is how
this relates to Kähler structures of M4. At the level of H spinors fields only the Kähler structure
corresponding to constant decomposition M2⊕E2 seems to make sense and this raises the question
how the H-J structure and Kähler structure relate. TGD suggests the existence of two geometric
structure in M4: HJ structure and Kähler structure. It has remained unclear whether HJ structure
and Kähler structure with covariantly constant self-dual Kähler form are equivalent notions or
whether there several H-J structures accompaning the Kähler structure.

In the following I argue that H-J structures correspond to different choices of symplectic coor-
dinates for M4 and that the properties of X4 ⊂ H determined bt M−H duality make it natural
to to choose particular symplectic coordinates for M4.

Consider first what H-J structure and Kähler structure could mean in H.

1. The H-J structure of M4 ⊂ H would correspond to an integrable distribution of 2-D
Minkowskian sub-spaces of M4 defining a distribution of string world sheets X2(x) and
orthogonal distribution of partonic 2-surfaces Y 2(x). Could this decomposition correspond
to self-dual covariantly Kähler form in M4?

What do we mean with covariant constancy now? Does it mean a separate covariant con-
stancy for the choices of M2(x) and Y 2(x) or only of their sum, which in Minkowski
coordinates could correspond to a constant electric and magnetic fields orthogonal to each
other?

2. The non-constant choice of M2(x) (E2(x)) cannot be covariantly constant. One can write
J(M4) = J(M2(x)) ⊕ J(E2(x) corresponding to decomposition to electric and magnetic
parts. Constancy of J(M2(x) would require that the gradient of J(M2(x) is compensated
by the gradient of an antisymmetric tensor with square equal to the projector to M2(x).
Same condition holds true for J(E2(x)). The gradient of the antisymmetric tensor would
be parallel to itself implying that the tensor is constant.

3. H-J structure can only correspond to a transformation acting on J but leaving Jkldm
kdml

invariant. One should find analogs of local gauge transformations leaving J invariant. In
the case of CP2, these correspond to symplectic transformations and now one has a general-
ization of the notion. The M4 analog of the symplectic group would parameterize various
decompositions of J(M4).

Physically the symplectic transformations define local choices of 2-D space E2(x) of transver-
sal polarization directions and longitudinal momentum space M2 emerging in the construc-
tion of extremals of Kähler action.

4. For the simplest Kähler form for M4 ⊂ H, this decomposition in Minkowski coordinates
would be constant: orthogonal constant electric and magnetic fields. This Kähler form
extends to its number theoretical analog in M8. The local SU(3) element g would
deform M4 to g(M4) and define an element of local CP2 defining M8−H duality. g should
correspond to a symplectic transformation of M4.

Consider next the number theoretic counterparts of H-J- and Kähler structures of M4 ⊂ H in
M4 ⊂M8.

1. In M4 coordinates H-J structure would correspond to a constant M2 × E2 decomposition.
In M4 coordinates Kähler structure would correspond to constant E and B orthogonal to
each other. Symplectic transformations give various representations of this structure as H-J
structures.

2. The number theoretic analog of H-J structure makes sense also for X4 ⊂ M8 as obtained
from the distribution of quaternionic normal spaces containing 2-D commutative sub-space
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at each point by multiplying then by local unit I4(x) orthogonal to the quaternionic units
{1, I1 = I2 = I3} with respect to octonionic inner product. There is a hierarchy of CDs
and the choices of these structures would be naturally parameterized by G2.

This would give rise to a number theoretically defined slicing of X4
c ⊂M8

c by complexified
string world sheets X2

c and partonic 2-surfaces Y 2
c orthogonal with respect to the octonionic

inner product for complexified octonions.

3. In M8 −H duality defined by g(p) ⊂ SU(3) assigns a point of CP2 to a given point of M4.
g(p) maps the number theoretic H-J to H-J in M4 ⊂ M8. The space-time surface itself
- that is g(p) - defines these symplectic coordinates and the local SU(3) element g would
naturally define this symplectic transformation.

4. For X4 ⊂M8 g reduces to a constant color rotation satisfying the condition that the image
point is U(2) invariant. Unit element is the most natural option. This would mean that g is
constant at the mass and energy shells corresponding to the roots of P and the mass shell is
a mass shell of M4 rather than some deformed mass shell associated with images under g(p).

This alone does not yet guarantee that the 4-D tangent space corresponds to M4. The
additional physically very natural condition on g is that the 4-D momentum space at these
mass shells is the same. M8 −H duality maps these mass shells to the boundaries of these
cd:s in M4 (CD= cd×CP2). This conforms with the identification of zero energy states as
pairs of 3-D states at the boundaries of CD.

This generalizes the original intuitive but wrong interpretation of the roots rn of P as ”very
special moments in the life of self” [L10].

1. Since the roots correspond to mass squared values, they are mapped to the boundaries of cd
with size L = ~eff/m by M8−H duality in M4 degrees of freedom. During the sequence of
SSFRs the passive boundary of CD remains does not shift only changes in size, and states
at it remain unaffected. Active boundary is shifted due to scaling of cd.

The hyperplane at which upper and lower half-cones of CD meet, is shifted to the direction
of geometric future. This defines a geometric correlate for the flow of experienced time.

2. A natural proposal is that the moments for SSFRs have as geometric correlates the roots of
P defined as intersections of geodesic lines with the direction of 4-momentum p from the tip
of CD to its opposite boundary (here one can also consider the possibility that the geodesic
lines start from the center of cd ). Also energy shells as roots E = rn of P are predicted.
They decompose to a set of mass shells mn.,k with the same E = rn : similar interpretation
applies to them.

3. What makes these moments very special is that the mass and energy shells correspond to
surfaces in M4 defining the Lorentz quantum numbers. SSFRs correspond to quantum
measurements in this basis and are not possible without this condition. At X4 ⊂ M8 the
mass squared would remain constant but the local momentum frame would vary. This is
analogous to the conservation of momentum squared in general relativistic kinematics of
point particle involving however the loss of momentum conservation.

4. These conditions, together with the assumption that g is a rational function with real co-
efficients, strongly suggest what I have referred to as preferred extremal property, Bohr
orbitology, strong form of holography, and number theoretical holography.

In principle, by a suitable choice of M4 one can make the momentum of the system light-like:
the light-like 8-momentum would be parallel to M4. I have asked whether this could be behind the
fact that elementary particles are in a good approximation massless and whether the small mass
of elementary particles is due to the presence of states with different mass squares in the zero state
allowed by Lorentz invariance.

The recent understanding of the nature of right-handed neutrinos based on M4 Kähler structure
[L27] makes this mechanism un-necessary but poses the question about the mechanism choosing
some particular M4. The conditions that g(p) leaves mass shells and their 4-D tangent spaces
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invariant provides this kind of mechanism. Holography would be forced by the condition that the
4-D tangent space is same for all mass shels representing inverse images for very special moments
of time.

3.2.2 What about string world sheets and partonic 2-surfaces?

One can apply the above arguments also to the identification of 2-D string world sheets and
partonic 2-surfaces.

1. One has two kinds of solutions: M2 and 3-D surfaces of X4 as analogs of 6-brane. The
interpretation for 3-D resp. 2-D branes as a light-like 3-surface associated with the octonionic
Dirac equation representing mass shell condition resp. string world sheet is attractive.

2. M2 would be replaced with an integrable distribution of M2(x) in local tangent space
M4(x). The space for the choices of M2(x) would be S3 corresponding to the selection of
a preferred quaternion imaginary unit equal to the choices of preferred octonion imaginary
unit.

The choices of the preferred complex subspace M2(x) at a given point would be char-
acterized by its normal vector and parameterized by sphere S2: the interpretation as a
quantization axis of angular momentum is suggestive. One would have space S3 × S2. Also
now the integrability conditions deA = 0 would hold true.

3. String world sheets could be regarded as analogs of superstrings connecting 3-D brane like
entities defined by the light-like partonic orbits. The partonic 2-surfaces at the ends of light-
like orbits defining also vertices could correspond to the 3-surfaces at which quaternionic
4-surfaces intersect 6-branes.

3.3 Is (co-)associativity possible?

The number theoretic vision relying on the assumption that space-time surfaces are 8-D complex
4-surfaces in o8c determined as algebraic surfaces for octonionic continuations of real polynomials,
which for adelic physics would have coefficients which are rational or belong to an extension of
rationals. The projections to subspaces Re8 of o8c defined as space for which given coordinate is
purely real or imaginary so that complexified octonionic norm is real would give rise to real 4-D
space-time surfaces. M8−H duality would map these surfaces to geometric objects in M4×CP2.
This vision involves several poorly understood aspects and it is good to start by analyzing them.

3.3.1 Challenging the notions of associativity and co-associativity

Consider first the notions of associativity resp. co-associativity equivalent with quaternionicity
resp. co-quaternionicity. The original hope was that both options are possible for surfaces of real
sub-spaces of Oc (”real” means here that complexified octonionic metric is real).

1. The original idea was that the associativity of the tangent space or normal space of a
real space-time surface X4 reduces the classical physics at the level of M8 to associativ-
ity. Associativity/co-associativity of the space-time surface states that at each point of the
tangent-/normal space of the real space-time surface in O is quaternionic. The notion gen-
eralizes also to X4

c ⊂ O8
c . (Co-)associativity makes sense also for the real subspaces space of

O with Minkowskian signature.

2. It has been however unclear whether (co-)associativity is possible. The cold shower came as I
learned that associativity allows only for geodesic sub-manifolds of quaternionic spaces about
which octonions provide an example [A6]. The good news was that the distribution of co-
associative tangent spaces always defines an integrable distribution in the sense that one can
find sub-manifold for which the associative normal space at a given point has tangent space
as an orthogonal complement. Should the number theoretic dynamics rely on co-associativity
rather than associativity?
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3. Minkowskian space-time regions have been assumed to be associative and to correspond
to the projection to the standard choice for basis as {1, iI1, iI2, iI3}. The octonionic units
{1, I1, I2, I3} define quaternionic units and associative subspace and their products with unit
I4 define the orthogonal co-associative subspace as {I4, I5 = I4I1, I6 = I4I2, I7 = I4I3}.
This result forces either to weaken the notion of associativity or to consider alternative
identifications of Minkowskian regions, which can be co-associative: fortunately, there exists
a large number of candidates.

The article [A6] indeed kills the idea about the associativity of the space-time surface. The
article starts from a rather disappointing observation that associative sub-manifolds are geodesic
sub-manifolds and therefore trivial. Co-associative quaternion sub-manifolds are however possible.
With a motivation coming from this observation, the article discusses what the author calls RC
quaternionic sub-manifolds of quaternion manifolds. For a quaternion manifold the tangent space
allows a realization of quaternionic units as antisymmetric tensors. These manifolds are constant
curvature spaces and typically homogeneous spaces.

1. Quaternion sub-manifold allows a 4-D integrable distribution of quaternion units. The normal
complement of this distribution is expressible in terms of the second fundamental form and
the condition that it is trivial implies that the second fundamental form is vanishing so
that one has a geodesic submanifold. Quaternionic sub-manifolds are thus too trivial to be
interesting. As a diametric opposite, one can also define totally real submanifolds for which
the normal space contains a distribution of quaternion units. In this case the distribution is
always integrable. This case is much more interesting from the TGD point of view.

2. Author introduces the notion of CR quaternion sub-manifold N ⊂M , where M is quaternion
manifold with constant sectional curvatures. N has quaternion distribution D in its tangent
spaces if the action of quaternion units takes D to itself. D⊥ is the co-quaternionic orthogonal
complement D in the normal space N . D would take also D⊥ to itself. D⊥ can be expressed
in terms of the components of the second fundamental form and vanishes for quaternion
sub-manifolds.

3. Author deduces results about CR quaternion sub-manifolds, which are very interesting from
the TGD point of view.

(a) Sub-manifold is CR quaternion sub-manifold only if the curvature tensor of RM of
the embedding space satisfies RM (D,D,D⊥, D ) = 0. The condition is trivial if the
quaternion manifold is flat. In the case of octonions this would be the case.

(b) D is integrable only if the second fundamental form restricted to it vanishes meaning
that one has a geodesic manifold. Totally real distribution D⊥ is always integrable to a
co-associative surface.

(c) If D⊥ integrates to a minimal surface then N itself is a minimal surface.

Could one consider RC quaternion sub-manifolds in TGD framework? Both octonions and
their complexifixation can be regarded as quaternionic spaces. Consider the real case.

1. If the entire D is quaternionic then N is a geodesic sub-manifold. This would leave only E4

and its Minkowskian variants with various signatures. One could have however 4-D totally
real (co-associative) space-time surfaces. Simple arguments will show that the intersections
of the conjectured quaternionic and co-quaternionic 4-surfaces have 2- and 3-D intersections
with 6-branes.

Should one replace associative space-time surfaces with CR sub-manifolds with d ≤ 3 inte-
grable distribution D whereas the co-quaternionic surfaces would be completely real having
4-D integrable D⊥? Could one have 4-D co-associative surfaces for which D⊥ integrates to
n ≥ 1-dimensional minimal surface (geodesic line) and the X4 itself is a minimal surface?

Partially associative CR manifold do not allow M8H duality. Only co-associative surfaces
allow it and also their signature must be Minkowskian: the original idea [L12, L4, L5, L6]
about Euclidian (Minkowskian) signature for co-associative (associative) surfaces was wrong.



3.3 Is (co-)associativity possible? 21

2. The integrable 2-D sub-distributions D defining a distribution of normal planes could define
foliations of the X4 by 2-D surfaces. What springs to mind is foliations by string world sheets
and partonic 2 surfaces orthogonal to them and light-like 3-surfaces and strings transversal
to them. This expectation is realized.

3.3.2 How to identify the Minkowskian sub-space of Oc?

There are several identifications of subspaces of Oc with Minkowskian signature. What is the
correct choice has been far from obvious. Here symmetries come in rescue.

1. Any subspace ofOc with 3 (1) imaginary coordinates and 1 (3) real coordinates has Minkowskian
signature in octonionic norm algebraically continued to Oc (complex valued continuation of
real octonion norm instead of real valued Hilbert space norm for Oc). Minkowskian regions
should have local tangent space basis consisting of octonion units which in the canonical
case would be {I1, iI3, iI5, iI7}, where i is commutative imaginary unit. This particular basis
is co-associative having whereas its complement {iI0, I2, I4, I6} is associative and has also
Minkowskian signature.

2. The size of the isometry group of the subspace of M8
c depends on whether the tangent basis

contains real octonion unit 1 or not. The isometry group for the basis containing I0 is SO(3)
acting as automorphisms of quaternions and SO(k, 3− k) when 3− k units are proportional
to i. The reason is that G2 (and its complexification G2,c) and its subgroups do not affect
I0. For the tangent spaces built from 4 imaginary units Ik and iIl the isometry group is
SO(k, 4− k) ⊂ G2,c.

The choice therefore allows larger isometry groups and also co-associativity is possible for a
suitable choice of the basis. The choice {I1, iI3, iI5, iI7} is a representative example, which
will be called canonical basis. For these options the isometry group is the desired SO(1, 3)
as an algebraic continuation of SO(4) ⊂ G2 acting in {I1, I3, I5, I7}, to SO(1, 3) ⊂ G2,c.

Also Minkowskian signature - for instance for the original canonical choice {I0, iI1, iI2, iI3} -
can have only SO(k, 3−k) as isometries. This is the basic objection against the original choice
{I0, iI1, iI2, iI3}. This identification would force the realization of SO(1, 3) as a subgroup of
SO(1, 7). Different states of motion for a particle require different octonion structure with
different direction of the octonion real axis in M8. The introduction of the notion of moduli
space for octonion structures does not look elegant. For the option {I1, iI3, iI5, iI7} only a
single octonion structure is needed and G2,c contains SO(1, 3).

Note that also the signatures (4, 0), (0, 4) and (2, 2) are possible and the challenge is to
understand why only the signature (1,3) is realized physically.

Co-associative option is definitely the only physical alternative. The original proposal for the
interpretation of the Minkowski space in terms of an associative real sub-space of M4 had a serious
problem. Since time axis was identified as octonionic real axis, one had to assign different octonion
structure to particles with non-parallel moment: SO(1, 7) would relate these structures: how to
glue the space-time surfaces with different octonion structures together was the problem. This
problem disappears now. One can simply assign to particles with different state of motion real
space-time surface defined related to each other by a transformation in SO(1, 3) ⊂ G2,c.

3.3.3 The condition that M8 −H duality makes sense

The condition that M8 −H duality makes sense poses strong conditions on the choice of the real
sub-space of M8

c .

1. The condition that tangent space of Oc has a complexified basis allowing a decomposition to
representations of SU(3) ⊂ G2 is essential for the map to M8 → H although it is not enough.
The standard representation of this kind has basis {±iI0 + I1} behaving like SU(3) singlets
{I2 + εiI3, I4 + εiI5, εI6 ± iI7} behaves like SU(3) triplet 3 for ε = 1 and its conjugate 3 for
ε = −1. G2,c provides new choices of the tangent space basis consistent with this choice.
SU(3) leaves the direction I1 unaffected but more general transformations act as Lorentz
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transformation changing its direction but not leaving the M4 plane. Even more general G2,c

transformations changing M4 itself are in principle possible.

Interestingly, for the canonical choice the co-associative choice has SO(1, 3) as isometry
group whereas the complementary choice failing to be associative correspond to a smaller
isometry group SO(3). The choice with M4 signature and co-associativity would provide
the highest symmetries. For the real projections with signature (2, 2) neither consistent with
color structure, neither full associativity nor co-associativity is possible.

2. The second essential prerequisite of M8 − H duality is that the tangent space is not only
(co-)associative but contains also (co-)complex - and thus (co-)commutative - plane. A more
general assumption would be that a co-associative space-time surface contains an integrable
distribution of planes M2(x), which could as a special case reduce to M2.

The proposal has been that this integrable distribution of M2(x) could correspond to string
sheets and possibly also integrable orthogonal distribution of their co-complex orthogonal
complements as tangent spaces of partonic 2-surfaces defining a slicings of the space-time
surface. It is now clear that this dream cannot be realized since the space-time surface
cannot be even associative unless it is just E4 or its Minkowskian variants.

3. As already noticed, any distribution of the associative normal spaces integrates to a co-
associative space-time surface. Could the normal spaces also contain an integrable distribu-
tion of co-complex planes defined by octonionic real unit 1 and real unit Ik(x), most naturally
I1 in the canonical example? This would give co-commutative string world sheet. Commuta-
tivity would be realized at the 2-D level and associativity at space-time level. The signature
of this plane could be Minkowskian or Euclidian. For the canonical example {I1, iI3, iI5, iI7}
the 2-D complex plane in quaternionic sense would correspond to (a×1,+n2I2 +n4I6 +n6I6,
where the unit vector ni has real components and one has a = 1 or a = i is forced by the
complexification as in the canonical example.

Since the distribution of normal planes integrates to a 4-surface, one expects that its sub-
distribution consting of commutative planes integrates to 2-D surface inside space-time sur-
face and defines the counterpart of string worlds sheet. Also its normal complement could
integrate to a counterpart of partonic 2-surface and a slicing of space-time surface by these
surfaces would be obtained.

4. The simplest option is that the commutative space does not depend on position at X4. This
means a choice of a fixed octonionic imaginary unit, most naturally I1 for the canonical
option. This would make SU(3) and its sub-group U(2) independent of position. In this case
the identification of the point of CP2 = SU(3)/U(2) labelling the normal space at a given
point is unique.

For a position dependent choice SU(3)(x) it is not clear how to make the specification of
U(2)(x) unique: it would seem that one must specify a unique element of G2(x) relating
SU(3)(x) to a choice at special point x0 and defining the conjugation of both SU(3)(x) and
U(2)(x). Otherwise one can have problems. This would also mean a unique choice for the
direction of time axis in O and fixing of SO(1, 3) as a subgroup of G2,c. Also this distribution
of associative normal spaces is integrable. Physically this option is attractive but an open
question is whether it is consistent with the identification of space-time surfaces as roots
ReQ(P ) = 0 of P .

3.3.4 Co-associativity from octonion analyticity or/and from G2 holography?

Candidates for co-associative space-time surfaces X4
r are defined as restrictions X4

r for the roots
X4
c of the octonionic polynomials such that the Oc coordinates in the complement of a real co-

associative sub-space of Oc vanish or are constant. Could the surfaces X4
r or even X4

c be co-
associative?

1. X4
r is analogous to the image of real or imaginary axis under a holomorphic map and defines a

curve in complex plane preserving angles. The tangent vectors ofX4
r andX4

c involve gradients
of all coordinates of Oc and are expressible in terms of all octonionic unit vectors. It is not
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obvious that their products would belong to the normal space of X4
r a strong condition would

be that this is the case for X4
c .

2. Could octonion analyticity in the proposed sense guarantee this? The products of octonion
units also in the tangent space of the image would be orthogonal to the tangent space.
Ordinary complex functions preserve angles, in particular, the angle between x- and y-axis is
preserved since the images of coordinate curves are orthogonal. Octonion analyticity would
preserve the orthogonality between tangent space vectors and their products.

3. This idea could be killed if one could apply the same approach to associative case but this
is not possible! The point is that when the real tangent space of Oc contains the real
octonion unit, the candidate for the 4-D space-time surface is a complex surface X2

c . The
number theoretic metric is real only for 2-D X2

r so that one obtains string theory with co-
associativity replaced with co-commutativity and M4 × CP2 with M2 × S2. One could of
course ask whether this option could be regarded as a ”sub-theory” of the full theory.

My luck was that I did not realize the meaning of the difference between the two cases first
and realized that one can imagine an alternative approach.

1. G2 as an automorphism group of octonions preserves co-associativity. Could the image of a
co-associative sub-space of Oc defined by an octonion analytic map be regarded as an image
under a local G2 gauge transformation. SU(3) ⊂ G2 is an especially interesting subgroup
since it could have a physical interpretation as a color gauge group. This would also give a
direct connection with M8 −H duality since SU(3) corresponds to the gauge group of the
color gauge field in H.

2. One can counter-argue that an analog of pure gauge field configuration is in question at the
level of M8. But is a pure gauge configuration for G2,c a pure gauge configuration for G2?
The point is that the G2,c connection g−1∂µg trivial for G2,c contains by non-linearity cross
terms from g2g, c = g2,1 + ig2,2, which are of type Re = X[g2,1, g2,1] −X[g2,2, g2,2] = 0 and
Im = iZ[g2,1, g2,2] = 0. If one puts g2,2 contributions to zero, one obtains Re = X[g2,1, g2,1],
which does not vanish so that SU(3) gauge field is non-trivial.

3. X4
r could be also obtained as a map of the co-associative M4 plane by a local G2,c element.

It will turn out that G2,c could give rise to the speculated Yangian symmetry [L3] at string
world sheets analogous to Kac-Moody symmetry and gauge symmetry and crucial for the
construction of scattering amplitudes in M8.

4. The decomposition of the co-associative real plane of Oc should contain a preferred complex
plane for M8 −H duality to make sense. G2,c transformation should trivially preserve this
property so that SH would not be necessary at H side anymore.

There is a strong motivation to guess that the two options are equivalent so that G2,c holography
would be equivalent with octonion analyticity. The original dream was that octonion analyticity
would realize both associative and co-associative dynamics but was exaggeration!

3.3.5 Does one obtain partonic 2-surfaces and strings at boundaries of ∆CD8?

It is interesting to look for the dimensions of the intersections of the light-like branes at the
boundary of CD8 giving rise to the boundary of CD4 in M4 to see whether it gives justification for
the existing phenomenological picture involving light-like orbits of partonic 2-surfaces connected
by string world sheets.

1. Complex light-cone boundary has dimension D = 14. P = 0 as an additional condition at
δCD8 gives 2 complex conditions and defines a 10-D surface having 5-D real projections.

2. The condition ImQ(P ) = 0 gives 8 conditions and gives a 2-D complex surface with 1-D real
projection. The condition ReQ(P ) = 0 gives 3 complex conditions since X = 0 is already
satisfied and the solution is a 4-D surface having 2-D real projection. Could the interpretation
be in terms of the intersection of the orbit of a light-like partonic surface with the boundary
of CD8?
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3. Associativity is however not a working option. If only co-associative Minkowskian surfaces
allowing mapping to H without SH are present then only 4-D space-time surfaces with
Minkowskian signature, only partonic 2-surfaces and their light-like orbits would emerge
from co-associativity.

This option would not allow string world sheets for which there is a strong intuitive support.
What could a co-complex 2-surface of a co-associative manifold mean? In the co-associative
case the products of octonion imaginary units are in the normal space of space-time surface.
Could co-complex surface X2

c ⊂ X4
c be defined by an integrable co-complex sub-distribution

of co-associative distribution. The 4-D distribution of normal planes is always integrable.

Could the 2-D sub-distributions of co-associative distribution integrate trivially and define
slicings by string world sheets or partonic 2-surfaces. Could the distribution of string distri-
butions and its orthogonal complement be both integrable and provide orthogonal slicings
by string world sheets and partonic 2-surfaces? String world sheets with Minkowskian signa-
ture should intersect the partonic orbits with Euclidian signature along light-like lines. This
brings in mind the orthogonal grid of flow lines defined by the Re(f) = 0 and Im(f) = 0
lines of an analytic function in plane.

4. In this picture the partonic 2-surfaces associated with light-like 3-surface would be physically
unique and could serve as boundary values for the distributions of partonic 2-surfaces. But
what about string world sheets connecting them? Why would some string world sheets be
exceptional? String world sheets would have a light-like curve as an intersection with the
partonic orbit but this is not enough.

Could the physically special string world sheets connect two partonic surfaces? Could the
string associated with a generic string world sheet be like a flow line in a hydrodynamic
flow past an obstacle - the partonic 2-surface? The string as a flowline would go around the
obstacle along either side but there would be one line which ends up to the object.

Interactions would correspond geometrically to the intersections of co-associative space-time
surfaces X4

r associated with particles and corresponding to different real sub-spaces of Oc related
by Lorentz boost in SO(1, 3) ⊂ G2,c. In the generic case the intersection would be discrete. In
the case that X and Y have a common root the real surfaces X4

r ⊂ X6
r associated with quarks and

depending on their state of motion would reside inside the same 6-D surface X6
r and have a 2-D

surface X2
r as intersection. Could this surface be interpreted as a partonic 2-surface? One must

however bear in mind that partonic 2-surfaces as topological vertices are assumed to be non-generic
in the sense that the light-like partonic orbits meet at them. At the level of H, the intersections
would be partonic 2-surfaces X2 at which the four 3-D partonic orbits would meet along their
ends. Does this hold true at the level of M8? Or can it hold true even at the level H?

The simplest situation corresponds to 4 external quarks. There are 6 different intersections.
Not all of them are realized since a given quark can belong only to a single intersection. One must
have two disjoint pairs -say 12 and 34. Most naturally positive resp. negative energy quarks
form a pair. These pairs are located in different half-cones. The intersections would give two
partonic 2-surfaces and this situation would be generic. This suggests a modification of the
description of particle reaction in M8 . M8 −H duality suggests a similar description in H.

3.3.6 What could be the counterparts of wormhole contacts at the level of M8?

The experience with H, in particular the presence of extremals with Euclidian signature of the
induced metric and identified as building bricks of elementary particles, suggest that also the light-
like 3-surfaces in M8

c could have a continuation with an Euclidian signature of the number theoretic
metric with norm having real values only for the projections to planes allowing real coordinates.

The earlier picture has been that the wormhole contacts as CP2 type extremals correspond
to co-associative regions and their exteriors to associative regions. If one wants M8 −H duality
in strong form and thus without need for SH, one should assume that both these regions are
co-associative.

1. The simplest option is that the real Minkowskian time coordinate becomes imaginary. In-
stead of the canonical (I1, iI3, iI5, iI7) the basis would be (iI1, iI3, iI5, iI7) having Euclidian
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signature and SO(4) as isometry group. The signature would naturally change at light-like
3-surface the time coordinate along light-like curves becomes zero - proper time for photon
vanishes - and can ransforms continuously from real to imaginary.

2. Wormhole contacts in H behave like pairs of magnetic monopoles with monopole charges at
throats. If one does not allow point-like singularity, the monopole flux must go to a parallel
Minkowskian space-time sheet through the opposite wormhole throat. Wormhole contact
with effective magnetic charge would correspond in M8

c to a distribution of normal 4-planes
at the partonic 2-surfaces analogous to the radial magnetic field of monopole at a sphere
surrounding it. To avoid singularity of the distribution, there must be another light-like
3-surface M8 such that its partonic throat has a topologically similar distribution of normal
planes.

In the case of X3
c dimension does not allow co-quaternion structure: could they allow 4-D

co-associative sub-manifolds? It will be found that this option is not included since co-associative
tangent space distributions in a quaternion manifold (now O) are always integrable.

3.4 Octonionic Dirac equation and co-associativity

Also the role of associativity concerning octonionic Dirac equation in M8 must be understood.
It is found that co-associativity allows very elegant formulation and suggests the identification
of the points appearing as the ends of quark propagator lines in H as points of boundary of CD
representing light-like momenta of quarks. Partonic vertices would involve sub-CDs and momentum
conservation would have purely geometric meaning bringing strongly in mind twistor Grassmannian
approach [?, ?, ?]. I have discussed the twistor lift of TGD replacing twistors as fields with surfaces
in twistor space having induced twistor structure in [K13, K11, K14] [L15, L16].

3.4.1 Octonionic Dirac equation

The following arguments lead to the understanding of co-associativity in the case of octonion
spinors. The constant spinor basis includes all spinors but the gamma matrices appearing in the
octonionic Dirac equation correspond to co-associative octonion units.

1. At the level of Oc the idea about massless Dirac equation as partial differential equation
does not make sense. Dirac equation must be algebraic and the obvious idea is that it
corresponds to the on mass shell condition for a mode of ordinary Dirac equation with well-
define momentum: pkγkΨ = 0 satisfying pkpk = 0. This suggests that octonionic polynomial
P defines the counterpart of pkγk so that gamma matrices γk would be represented as octonion
components. Does this make sense?

2. Can one construct octonionic counterparts of gamma matrices? The imaginary octonion
units Ik indeed define the analogs of gamma matrices as γk ≡ iIk satisfying the conditions
{γk, γl} = 2δkl defining Euclidian gamma matrices. The problem is that one has I0Ilk +
IkI0 = 2Ik. One manner to solve the problem would be to consider tensor products I0σ3
and Ikσ2 where σ3 and sigma2 are Pauli’s sigma matrices with anti-commutation relations
{σi, σj} = δi,j . Note that Ik do not allow a matrix representation.

Co-associativity condition suggests an alternative solution. The restriction of momenta to be
co-associative and therefore vanishing component p0 as octonion, would selects a sub-space
spanned by say the canonical choice {I2, iI3, iI5, iI7} satisfying the anticommutation rela-
tions of Minkowskian gamma matrices. Octonion units do not allow a matrix representation
because they are not associative. The products for a co-associative subset of octonion units
are however associative (a(bc) = (ab)c so that they can be mapped to standard gamma ma-
trices in Minkowski space. Co-associativity would allow the representation of 4-D gamma
matrices as a maximal associative subset of octonion units.

3. What about octonionic spinors. The modes of the ordinary Dirac equation with a well-defined
momentum are obtained by applying the Dirac operator to an orthogonal basis of constant
spinors ui to give Ψ = pkγkui. Now the counterparts of constant spinors ui would naturally
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be octonion units {I0, Ik}: this would give the needed number 8 of real spinor components
as one has for quark spinors.

Dirac equation reduces to light-likeness conditions pkpk = 0 and pk must be chosen to be real
- if pk are complex, the real and imaginary parts of momentum are parallel. One would obtain
an entire 3-D mass shell of solution and a single mode of Dirac equation would correspond
to a point of this mass shell.

Remark: Octonionic Dirac equation is associative since one has a product of form (pkγk)2ui
and octonion products of type x2y are associative.

4. pk would correspond to the restriction of P (oc) to M4 as sub-space of octonions. Since co-
associativity implies P (oc) = Y (oc)oc restricted to counterpart of M4 (say subspace spanned
by {I2, iI3, iI5, iI7}), Dirac equation reduces to the condition okok = 0 in M4 defining a
light-cone of M4. This light-cone is mapped to a curved light-like 3-surface X3 in oc as
oc → P (oc) = Y oc. M8 − H duality maps points of space-time surface on M8 H and
therefore the light-cone of M4 corresponds to either light-like boundary of CD. It seems that
the image of X3 in H has M4 projection to the light-like boundary of CD.

Co-associative space-time surfaces have 3-D intersections X3 with the surface P = 0: the
conjecture is that X3 corresponds to a light-like orbit of partonic 2-surfaces in H at which the
induced metric signature changes. At X3 one has besides X = 0 also Y = 0 so that octonionic
Dirac equation P (oc)Ψ = P kIkΨ = Y pkIkΨ = 0 is trivially satisfied for all momenta pk = ok

defined by the M4 projections of points of X3 and one would have P k = Y pk = 0 so that
the identification of P k as 4-momentum would not allow to assign non-vanishing momenta
to X3. The direction of pk is constrained only by the condition of belonging to X3 and the
momentum would be in general time-like since X3 is inside future light-cone.

Y = 0 condition conforms with the proposal that X3 defines a boundary of Minkowskian and
Euclidian region: Euclidian mass shell condition for real P k requires P k = 0. The general
complex solution to P 2 = 0 condition is P = P1 + iP2 with P 2

1 = P 2
2 .

A single mode of Dirac equation with a well-defined value of pk as the analog of 4-momentum
would correspond to a selection of single time-like point at X3 or light-like point at the light-like
boundary of CD. X3 intersects light-cone boundary as part of boundary of 7-D light-cone. The
picture about scattering amplitudes - consistent with the view about cognitive representations as a
unique discretization of space-time surface - is that quarks are located at discrete points of partonic
2-surfaces representing the ends of fermionic propagator lines in H and that one can assign to them
light-like momenta.

3.4.2 Challenging the form of M8 −H duality for the map M4 ⊂M8 to M4 ⊂ H

The assumption that the map M4 ⊂M8 to M4 ⊂ H in M8 −H duality is a simple identification
map has not been challenged hitherto.

1. Octonionic Dirac equation forces the identification of M8 as analog of 8-D momentum space
and the earlier simple identification is in conflict with Uncertainty Principle. Inversion
allowed by conformal invariance is highly suggestive: what comes first in mind is a map
mk → ~effmk/mkmk.

At the light-cone boundary the map is ill-defined. Here on must take as coordinate the linear
time coordinate m0 or equivalently radial coordinate rM = m0. In this case the map would
be of fporm t→ ~eff/m0: m0 has interpretation as energy of massless particle.

The map would give a surprisingly precise mathematical realization for the intuitive argu-
ments assigning to mass a length scale by Uncertainty Principle.

2. Additional constraints on M8 − H duality in M4 degrees of freedom comes from the fol-
lowing argument. The two half-cones of CD contain space-time surfaces in M8 as roots of
polynomials P1(o) and P2(2T − o) which need not be identical. The simplest solution is
P2(o) = P1(2T − o): the space-time surfaces at half-cones would be mirror images of each
other. This gives P1(T, ImR(o)) = P1(T − ImR(o)) Since P1 depends on t2 − o2 only, the
condition is identically satisfied for both options.
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There are two options for the identification of the coordinate t.

Option a): t is identified as octonionic real coordinate oR identified and also time
coordinate as in the original option. In the recent option octonion oR would correspond
to the Euclidian analog of time coordinate. The breaking of symmetry from SO(4) to
SO(3) would distinguish t as a Newtonian time.

At the level of M8, The M4 projection of CD8 is a union of future and past directed light-
cones with a common tip rather than CD4. Both incoming and outgoing momenta have the
same origin automatically. This identification is the natural one at the level of M8.

Option b): t is identified as a Minkowski time coordinate associated with the imaginary
unit I1 in the canonical decomposition {I1, iI3, iI5, iI7}. The half-cone at o = 0 would be
shifted to O = (0, 2T, 0...0) and reverted. M4 projection would give CD4 so that this
option is consistent with ZEO. This option is natural at the level of Hbut not at the level
of M8.

If Option a) is realized at the level of M8 and Option b) at the level of H, as seems
natural, a time translation m0 → m0 + 2T of the past directed light-cone in M4 ⊂ H is
required in order to to give upper half-cone of CD4.

3. The map of the momenta to embedding space points does not prevent the interpretation of the
points of M8 as momenta also at the level of H since this information is not lost. One cannot
identify pk as such as four-momentum neither at the level of M8 nor H as suggested by the
näıve identification of the Cartesian factors M4 for M8 and H. This problem is circumvented
by a conjugation in M8

c changing the sign of 3-momentum. The light-like momenta along
the light-cone boundary are non-physical but transform to light-like momenta arriving into
light-cone as the physical intuition requires.

Therefore the map would have in the interior of light-cone roughly the above form but there
is still a question about the precise form of the map. Does one perform inversion for the
M4 projection or does one take M4 projection for the inversion of complex octonion. The
inversion of M4 projection seems to be the more plausible option. Denoting by P (oc) the
real M4 projection of X4 point one therefore has:

P (oc)→ ~eff
P (oc)

P (oc) · P (oc)
. (3.7)

Note that the conjugation changes the direction of 3-momentum.

At the light-cone boundary the inversion is ill-defined but Uncertainty Principle comes in
rescue, and one can invert the M4 time coordinate:

Re(m0) = t→ ~eff
1

t
. (3.8)

A couple of remarks are in order.

1. The presence of ~eff instead of ~ is required by the vision about dark matter. The value of
~eff/h0 is given by the dimension of extension of rationals identifiable as the degree of P .

2. The image points pk in H would naturally correspond to the ends of the propagator lines in
the space-time representation of scattering amplitudes.

The information about momenta is not lost in the map. What could be the interpretation of
the momenta pk at the level of H?

1. Super-symplectic generators at the partonic vertices in H do not involve momenta as labels.
The modes of the embedding space spinor field assignable to the ground states of super-
symplectic representations at the boundaries of CD have 4-momentum and color as labels.
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The identification of pk as this momentum label would provide a connection with the classical
picture about scattering events.

At the partonic 2-surfaces appearing as vertices, one would have a sum over the ground states
(spinor harmonics). This would give integral over momenta but M8−H duality and number
theoretic discretization would select a finite subset and the momentum integral would reduce
to a discrete sum. The number of M8 points with coordinates in a given extension of rationals
is indeed finite.

2. M4 ⊂ M8 could be interpreted as the space of 4-momenta labeling the spinor harmonics of
M8. Same would apply at the level of H: spinor harmonics would correspond to the ground
states of super-symplectic representations.

3. The interpretation of the points of M4
c as complex 4-momenta inspires the question whether

the interpretation of the imaginary part of the momentum squared in terms of decay decay
width so that M8 picture would code even information about the dynamics of the particles.

4 How to achieve periodic dynamics at the level of M 4×CP2?

Assuming M8 −H duality, how could one achieve typical periodic dynamics at the level of H - at
least effectively?

It seems that one cannot have an ”easy” solution to the problem?

1. Irreducible polynomials which are products of monomials corresponding to roots rn which
are in good approximation evenly spaced rn = r0+nr1∆rn would give ”very special moments
in the life of self” as values of M4 time which are evenly spaced [L12, L10]. This could give
rise to an effective periodicity but it would be at the level of M8, not H, where it is required.

2. Is it enough that the periodic functions are only associated with the spinor harmonics of H
involved with the construction of scattering amplitudes in H [L22]? For the modified Dirac
equation [K16] the periodic behavior is possible. Note also that the induced spinors defining
ground states of super-symplectic representations are restrictions of second quantized spinors
of H proportional to plane waves in M4. These solutions do not guarantee quantum classical
correspondence.

4.1 The unique aspects of Neper number and number theoretical uni-
versality of Fourier analysis

Could one assume more general functions than polynomials at the level of H? Discrete Fourier basis
is certainly an excellent candidate in this respect but does it allow number theoretical universality?

1. Discrete Fourier analysis involves in the Euclidian geometry periodic functions exp(2πx), n
integer and in hyperbolic geometry exponential functions exp(kx).

Roots of unity exp(i2π/n) allow to generalize Fourier analysis. The p-adic variants of exp(ix)
exist for rational values of x = k2π/n for n = K if exp(i2π/K) belongs to the extension of
rationals. x = k = 2pi/n does not exist as a p-adic number but exp(x) = exp(i2π/n) can
exist as phase replacing x as coordinate in extension of p-adics. One can therefore define
Fourier basis {exp(inx)|n ∈ Z} which exist at discrete set of rational points x = k/n

Neper number e is also p-adically exceptional in that ep exists as a p-adic number for all
primes p. One has a hierarchy of finite-D extensions of p-adic numbers spanned by the roots
e1/n. Finiteness of cognition might allow them. Hyperbolic functions exp(nx), n = 1, 2...
would have values in extension of p-adic number field containing exp(1/N) in a discrete set
of points {x = k/N |k ∈ Z}.

2. (Complex) rationality guarantees number theoretical universality and is natural since CP2

geometry is complex. This would correspond to the replacement x→ exp(ix) or x→ exp(x)
for powers xn. The change of the signature by replacing real coordinate x with ix would
automatically induce this change.
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3. Exponential functions are in a preferred position also group theoretically. Exponential map
maps g → exp(itg) the points of Lie algebra to the points of the Lie group so that the tangent
space of the Lie algebra defines local coordinates for the Lie group. One can say that tangent
space is mapped to space itself. M4 defines an Abelian group and the exponential map would
mean replacing of the M4 coordinates with their exponential, which are p-adically more
natural. Ordinary Minkowski coordinates have both signs so that they would correspond to
the Lie algebra level.

4. CP2 is a coset space and its points are obtained as selected points of SU(3) using exponenti-
ation of a commutative subalgebra t in the decomposition g = h+ t+ t in the Lie-algebra of
SU(3). One could interpret the CP2 points as exponentials and the emergence of exponential
basis as a basis satisfying number theoretical universality.

4.2 Are CP2 coordinates as functions of M4 coordinates expressible as
Fourier expansion

Exponential basis is not natural at the level of M8. Exponential functions belong to dynamics,
not algebraic geometry, and the level H represents dynamics.

It is the dependence of CP2 coordinates on M4 coordinates, where the periodicity is needed.
The map of the tangent spaces of X4 ⊂ M8 to points of CP2 is slightly local since it depends on
the first derivatives crucial for dynamics. Could this bring in dynamics and exponential functions
at the level of H?

These observations inspire the working hypothesis that CP2 points as functions of M4 coordi-
nates are expressible as polynomials of hyperbolic and trigonometric exponentials of M4 coordi-
nates.

Consider now the situation in more detail.

1. The basis for roots of e would be characterized by integer K in e1/K . This brings in a
new parameter characterizing the extension of rationals inducing finite extensions of p-adic
numbers. K is analogous to the dimension of extension of rationals: the p-adic extension has
dimension d = Kp depending on the p-adic prime explicitly.

2. If CD size T is given, e−T/K defines temporal and spatial resolution in H. K or possibly
Kp could naturally correspond to the gravitational Planck constant [L9] [K1] [?] K = ngr =
~gr/h0.

3. In [L24] many-sheetedness with respect to CP2 was proposed to correspond to flux tubebun-
dles in M4 forming quantum coherent structures. A given CP2 point corresponds to several
M4 points with the same tangent space and their number would correspond to the number
of the flux tubes in the bundle.

Does the number of these points relate to K or Kp? p-Adic extension would have finite
dimension d = Kp. Could d = Kp be analogous to a degree of polynomial defining the
dimension of extension of rationals? Could this be true in p-adic length scale resolution
O(p2) = 0 The number of points would be Kp and very large. For electron one has p =
M127 = 2127 − 1.

4. The dimension nA Abelian extension associated with EQ would naturally satisfy nA = K
since the trigonometric and hyperbolic exponentials are obtained from each other by replacing
a real coordinate with an imaginary one.

5. There would be two effective Planck constants. heff = nh0 would be defined by the degree
n of the polynomial P defining X4 ⊂ M8. ~gr = ngrh0 would define infra-red cutoff in
M4 as the size scale of CD in H = M4 × CP2. n resp. ngr = Kp would characterize
many-sheetedness in M4 resp. CP2 degrees of freedom.

4.3 Connection with cognitive measurements as analogs of particle re-
actions

There is an interesting connection to the notion of cognitive measurement [L24, L25, L26].
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1. The dimension n of the extension of rationals as the degree of the polynomial P = Pn1◦Pn2◦...
is the product of degrees of degrees ni: n =

∏
i ni and one has a hierarchy of Galois groups Gi

associated with Pni
◦.... Gi+1 is a normal subgroup ofGi so that the coset spaceHi = Gi/Gi+1

is a group of order ni. The groups Hi are simple and do not have this kind of decomposition:
simple finite groups appearing as building bricks of finite groups are classified. Simple groups
are primes for finite groups.

2. The wave function in group algebra L(G) of Galois group G of P has a representation as an
entangled state in the product of simple group algebras L(Hi). Since the Galois groups act
on the space-time surfaces in M8 they do so also in H. One obtains wave functions in the
space of space-time surfaces. G has decomposition to a product (not Cartesian in general) of
simple groups. In the same manner, L(G) has a representation of entangled states assignable
to L(Hi) [L24, L26].

This picture leads to a model of analysis as a cognitive process identified as a cascade of ”small
state function reductions” (SSFRs) analogous to ”weak” measurements.

1. Cognitive measurement would reduce the entanglement between L(H1) and L(H2), the be-
tween L(H2) and L(H3) and so on. The outcome would be an unentangled product of wave
functions in L(Hi) in the product L(H1) × L(H2) × .... This cascade of cognitive measure-
ments has an interpretation as a quantum correlate for analysis as factorization of a Galois
group to its prime factors. Similar interpretation applies in M4 degrees of freedom.

2. This decomposition could correspond to a replacement of P with a product
∏
i Pi of polyno-

mials with degrees n = n1n2..., which is irreducible and defines a union of separate surfaces
without any correlations. This process is indeed analogous to analysis.

3. The analysis cannot occur for simple Galois groups associated with extensions having no
decomposition to simpler extensions. They could be regarded as correlates for irreducible
primal ideas. In Eastern philosophies the notion of state empty of thoughts could corre-
spondto these cognitive states in which SSFRs cannot occur.

4. An analogous process should make sense also in the gravitational sector and would mean
the splitting of K = nA appearing as a factor ngr = Kp to prime factors so that the sizes
of CDs involved with the resulting structure would be reduced. This process would reduce
to a simultaneous measurement cascade in hyperbolic and trigonometric Abelian extensions.
The IR cutoffs having interpretation as coherence lengths would decrease in the process as
expected. Nature would be performing ordinary prime factorization in the gravitational
degrees of freedom.

Cognitive process would also have a geometric description.

1. For the algebraic EQs, the geometric description would be as a decay of n-sheeted 4-surface
with respect to M4 to a union of ni-sheeted 4-surfaces by SSFRs. This would take place for
flux tubes mediating all kinds of interactions.

In gravitational degrees of freedom, that is for trascendental EQs, the states with ngr = Kp
having bundles of Kp flux tubes would deca to flux tubes bundles of ngr,i = Kip, where Ki is
a prime dividing K. The quantity log(K) would be conserved in the process and is analogous
to the corresponding conserved quantity in arithmetic quantum field theories (QFTs) and
relates to the notion of infinite prime inspired by TGD [K12].

2. This picture leads to ask whether one could speak of cognitive analogs of particle reactions
representing interactions of ”thought bubbles” i.e. space-time surfaces as correlates of cogni-
tion. The incoming and outgoing states would correspond to a Cartesian product of simple
subgroups: G =

∏×
i Hi. In this composition the order of factors does not matter and the sit-

uation is analogous to a many particle system without interactions. The non-commutativity
in general case leads to ask whether quantum groups might provide a natural description of
the situation.
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3. Interestingly, Equivalence Principle is consistent with the splitting of gravitational flux tube
structures to smaller ones since gravitational binding energies given by Bohr model in 1/r
gravitational potential do not depend on the value of ~gr if given by Nottale formula ~gr =
GMm/v0 [L29]. The interpretation would be in terms of spontaneous quantum decoherence
taking place as a decay of gravitational flux tube bundles as the distance from the source
increases.

4.4 Still some questions about M8 −H duality

There are still on questions to be answered.

1. The map pk → mk = ~effpk/p · p defining M8 −H duality is consistent with Uncertainty
Principle but this is not quite enough. Momenta in M8 should correspond to plane waves
in H.

Should one demand that the momentum eigenstate as a point of cognitive representation
associated with X4 ⊂ M8 carrying quark number should correspond to a plane wave with
momentum at the level of H = M4 × CP2? This does not make sense since X4 ⊂ CD
contains a large number of momenta assignable to fundamental fermions and one does not
know which of them to select.

2. One can however weaken the condition by assigning to CD a 4-momentum, call it P . Could
one identify P as

(a) the total momentum assignable to either half-cone of CD

(b) or the sum of the total momenta assignable to the half-cones?

The first option does not seem to be realistic. The problem with the latter option is that
the sum of total momenta is assumed to vanish in ZEO. One would have automatically zero
momentum planewave. What goes wrong?

1. Momentum conservation for a single CD is an ad hoc assumption in conflict with Uncertainty
Principle, and does not follow from Poincare invariance. However, the sum of momenta
vanishes for non-vanishing planewave when defined in the entire M4 as in QFT, not for
planewaves inside finite CDs. Number theoretic discretization allows vanishing in finite
volumes but this involves finite measurement resolution.

2. Zero energy states represent scattering amplitudes and at the limit of infinite size for the
large CD zero energy state is proportional to momentum conserving delta function just as
S-matrix elements are in QFT. If the planewave is restricted within a large CD defining the
measurement volume of observer, four-momentum is conserved in resolution defined by the
large CD in accordance with Uncertainty Principle.

3. Note that the momenta of fundamental fermions inside half-cones of CD in H should be
determined at the level of H by the state of a super-symplectic representation as a sum
of the momenta of fundamental fermions assignable to discrete images of momenta in
X4 ⊂ H.

4.4.1 M8 −H-duality as a generalized Fourier transform

This picture provides an interpretation for M8−H duality as a generalization of Fourier transform.

1. The map would be essentially Fourier transform mapping momenta of zero energy as points of
X4 ⊂ CD ⊂M8 to plane waves in H with position interpreted as position of CD in H. CD
and the superposition of space-time surfaces inside it would generalize the ordinary Fourier
transform . A wave function localized to a point would be replaced with a superposition of
space-time surfaces inside the CD having interpretation as a perceptive field of a conscious
entity.
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2. M8 −H duality would realize momentum-position duality of wave mechanics. In QFT this
duality is lost since space-time coordinates become parameters and quantum fields replace
position and momentum as fundamental observables. Momentum-position duality would
have much deeper content than believed since its realization in TGD would bring number
theory to physics.

4.4.2 How to describe interactions of CDs?

Any quantum coherent system corresponds to a CD. How can one describe the interactions of
CDs? The overlap of CDs is a natural candidate for the interaction region.

1. CD represents the perceptive field of a conscious entity and CDs form a kind of conscious
atlas for M8 and H. CDs can have CDs within CDs and CDs can also intersect. CDs can
have shared sub-CDs identifiable as shared mental images.

2. The intuitive guess is that the interactions occur only when the CDs intersect. A milder
assumption is that interactions are observed only when CDs intersect.

3. How to describe the interactions between overlapping CDs? The fact the quark fields are
induced from second quantized spinor fields in in H resp. M8 solves this problem. At the
level of H, the propagators between the points of space-time surfaces belonging to different
CDs are well defined and the systems associated with overlapping CDs have well-defined
quark interactions in the intersection region. At the level of M8 the momenta as discrete
quark carrying points in the intersection of CDs can interact.

4.4.3 Zero energy states as scattering amplitudes and subjective time evolution as
sequence of SSFRs

This is not yet the whole story. Zero energy states code for the ordinary time evolution in the QFT
sense described by the S-matrix. What about subjective time evolution defined by a sequence of
”small” state function reductions (SSFRs) as analogs of ”weak” measurements followed now and
then by BSFRs? How does the subjective time evolution fit with the QFT picture in which single
particle zero energy states are planewaves associated with a fixed CD.

1. The size of CD increases at least in statistical sense during the sequence of SSFRs. This
increase cannot correspond to M4 time translation in the sense of QFTs. Single unitary
step followed by SSFR can be identified as a scaling of CD leaving the passive boundary of
the CD invariant. One can assume a formation of an intermediate state which is quantum
superposition over different size scales of CD: SSFR means localization selecting single size
for CD. The subjective time evolution would correspond to a sequence of scalings of CD.

2. The view about subjective time evolution conforms with the picture of string models in
which the Lorentz invariant scaling generator L0 takes the role of Hamiltonian identifiable in
terms of mass squared operator allowing to overcome the problems with Poincare invariance.
This view about subjective time evolution also conforms with super-symplectic and Kac-
Moody symmetries of TGD.

One could perhaps say that the Minkowski time T as distance between the tips of CDs
corresponds to exponentiated scaling: T = exp(L0t). If t has constant ticks, the ticks of T
increase exponentially.

The precise dynamics of the unitary time evolutions preceding SSFRs has remained open.

1. The intuitive picture that the scalings of CDs gradually reveal the entire 4-surface determined
by polynomial P in M8: the roots of P as ”very special moments in the life of self” would
correspond to the values of time coordinate for which SSFRs occur as one new root emerges.
These moments as roots of the polynomial defining the space-time surface would correspond
to scalings of the size of both half-cones for which the space-time surfaces are mirror images.
Only the upper half-cone would be dynamical in the sense that mental images as sub-CDs
appear at ”geometric now” and drift to the geometric future.
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2. The scaling for the size of CD does not affect the momenta associated with fermions at the
points of cognitive representation in X4 ⊂M8 so that the scaling is not a genuine scaling of
M4 coordinates which does not commute with momenta. Also the fact that L0 for super
symplectic representations corresponds to mass squared operator means that it commutes
with Poincare algebra so that M4 scaling cannot be in question.

3. The Hamiltonian defining the time evolution preceding SSFR could correspond to an expo-
nentiation of the sum of the generators L0 for super-symplectic and super-Kac Moody rep-
resentations and the parameter t in exponential corresponds to the scaling of CD assignable
to the replaced of root rn with root rn+1 as value of M4 linear time (or energy in M8). L0

has a natural representation at light cone boundaries of CD as scalings of light-like radial
coordinate.

4. Does the unitary evolution create a superposition over all over all scalings of CD and does
SSFR measure the scale parameter and select just a single CD?

Or does the time evolution correspond to scaling? Is it perhaps determined by the increase
of CD from the size determined by the root rn as ”geometric now” to the root rn+1 so that
one would have a complete analogy with Hamiltonian evolution? The scaling would be the
ratio rn+1/rn which is an algebraic number.

Hamiltonian time evolution is certainly the simplest option and predicts a fixed arrow of time
during SSFR sequence. L0 identifiable essentially as a mass squared operator acts like
conjugate for the logarithm of the logarithm of light-cone proper time for a given half-cone.

One can assume that L0 as the sum of generators associated with upper and lower half-cones
if the fixed state at the lower half-cone is eigenstate of L0.

How does this picture relate to p-adic thermodynamics in which thermodynamics isdetermined
by partition function which would in real sector be regarded as a vacuum expectation value of
an exponential exp(iL0t) of a Hamiltonian for imaginary time t = iβ β = 1/T defined by
temperature. L0 is proportional to mass squared operator.

1. In p-adic thermodynamics temperature T is dimensionless parameter and β = 1/T is integer
valued. The partition function as exponential exp(−H/T ) is replaced with pβL0), β = n,
which has the desired behavior if L0 has integer spectrum. The exponential form eL0/TR),
βR = nlog(p) equivalent in the real sector does not make sense p-adically since the p-adic
exponential function has p-adic norm 1 if it exists p-adically.

2. The time evolution operator exp(−iL0t) for SSFRs (t would be the scaling parameter) makes
sense for the extensions of p-adic numbers if the phase factors for eigenstates are roots of
unity belonging to the extension. t = 2πk/n since L0 has integer spectrum. SSFRs would
define a clock. The scaling exp(t) = exp(2πk/n) is however not consistent with the scaling
by rn−1/rn.

Both the temperature and scaling parameter for time evolution by SSFRs would be quantized
by number theoretical universality. p-Adic thermodynamics could have its origins in the
subjective time evolution by SSFRs.

3. In the standard thermodynamics it is possible to unify temperature and time by introducing
a complex time variable τ = t + iβ, where β = 1/T is inverse temperature. For the space-
time surface in complexified M8, M4 time is complex and the real projection defines the
4-surface mapped to H. Could thermodynamics correspond to the imaginary part of the
time coordinate?

Could one unify thermodynamics and quantum theory as I have indeed proposed: this
proposal states that quantum TGD can be seen as a ”complex square root” of thermo-
dynamics. The exponentials U = exp(τL0/2) would define this complex square root and
thermo-dynamical partition function would be given by UU† = exp(−βL0).
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5 Can one construct scattering amplitudes also at the level
of M 8?

M8 −H duality suggests that the construction is possible both at the level of H and M8. These
pictures would be based on differential geometry on one hand and algebraic geometry and number
theory on the other hand. The challenge is to understand their relationship.

5.1 Intuitive picture

H picture is phenomenological but rather detailed and M8 picture should be its pre-image under
M8 −H duality. The following general questions can be raised.

1. Can one construct the counterparts of the scattering amplitudes also at the level of M8?

2. Can one use M8 −H duality to map scattering diagrams in M8 to the level of H?

Consider first the notions of CD and sub-CD.

1. The intuitive picture is that at the level of H that one must surround partonic vertices with
sub-CDs, and assign the external light-like momenta with the ends of propagator lines from
the boundaries of CD and other sub-CDs. The incoming momenta pk would be assigned to
the boundary of sub-CD.

2. What about the situation in M8? Sub-CDs must have different origin in the general case
since the momentum spectrum would be shifted. Therefore the sub-CDs have the same tip
- either upper or lower tip, and have as their boundary part of either boundary of CD. A
hierarchy of CDs associated with the same upper or lower tip is suggestive and the finite
maximal size of CD in H gives IR cutoff and the finite maximal size of CD in M8 gives UV
cutoff.

3. Momentum conservation at the vertices in M8 could decompose the diagram to sub-diagrams
for which the momentum conservation is satisfied. On the basis of QFT experience, one
expects that there are some minimal diagrams from which one can construct the diagram:
in the TGD framework this diagram would describe 4-quark scattering. The condition that
the momenta belong to the extension of rationals gives extremely strong constraints and it is
not clear that one obtains any solutions to the conditions unless one poses some conditions
on the polynomials assigned with the two boundaries of CD.

The two half-cones (HCs) of CD contain space-time surfaces in M8 as roots of polynomi-
als P1(o) and P2(2T − o) which need not be identical. The simplest solution is P2(o) =
P1(2T − o): the space-time surfaces at HCs would be mirror images of each other. This
gives P1(T, ImR(o)) = P1(T − ImR(o)) Since P1 depends on t2 − r2 only, the condition is
identically satisfied for both options.

There are two options for the identification of the coordinate t.

Option (a): t is identified as octonionic real coordinate oR identified and also time
coordinate as in the original option. In the recent option octonion oR would correspond
to the Euclidian analog of time coordinate. The breaking of symmetry from SO(4) to
SO(3) would distinguish t as a Newtonian time. The M4 projection of CD8 gives a union
of future and past directed light-cones with a common tip rather than CD4 in M4 at the
level of M8 . Both incoming and outgoing momenta have the same origin automatically.
This identification seems to be the natural one at the level of M8.

Option (b): t is identified as a Minkowski time coordinate associated with the imaginary
unit I1 in the canonical decomposition {I1, iI3, iI5, iI7}. The HC at o = 0 would be shifted
to O = (0, 2T, 0...0) and reverted. M4 projection would give CD4 so that this option is
consistent with ZEO. This option is natural at the level of Hbut not at the level of M8.

If Option (a) is realized at the level of M8 and Option b) at the level of H, as seems
natural, a time translation of the past directed light-cone by T in M4 ⊂ H is required
to give CD4. The momentum spectra of the two HCs differ only by sign and at least a
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scattering diagram in which all points are involved is possible. In fact all the pairs of subsets
with opposite momenta are allowed. These however correspond to a trivial scattering. The
decomposition to say 4-vertices with common points involving momentum space propagator
suggests a decomposition into sub-CDs. The smaller the sub-CDs at the tips of the CD, the
smaller the momenta are and the better is the IR resolution.

4. The proposal has been that one has a hierarchy of discrete size scales for the CDs. Momentum
conservation gives a constraint on the positions of quarks at the ends of propagator lines in
M8 mapped to a constraint for their images in H: the sum of image points in H is however
not vanishing since inversion is not a linear map.

5. QFT intuition would suggest that at the level of M8 the scattering diagrams decompose
to sub-diagrams for which momentum conservation is separately satisfied. If two such sub-
diagrams A and B have common momenta, they correspond to internal lines of the diagram
involving local propagator Dp, whose non-local counterpart at the level of H connects the
image point to corresponding point of all copies of B.

The usual integral over the endpoint of the propagator line D(x, y) at space-time level should
correspond to a sum in which the H image of B is shifted in M4. Introduction of a large
number of copies of H image of the sub-diagram looks however extremely ugly and challenges
the idea of starting from the QFT picture.

What comes in mind is that all momenta allowed by cognitive representation and summing up
to zero define the scattering amplitude as a kind of super-vertex and that Yanigian approach
allows this construction.

5.2 How do the algebraic geometry in M8 and the sub-manifold geom-
etry in H relate?

Space-time surfaces in H have also Euclidian regions - in particular wormhole contacts - with
induced metric having Euclidian signature due to the large CP2 contribution to the induced metric.
They are separated from Minkowskian regions by a light-like 3-surfaces identifiable as partonic
orbits at which the induced metric becomes degenerate.

1. The possible M8 counterparts of these regions are expected to have Euclidian signature of
the number theoretic metric defined by complexified octonion inner product, which must be
real in these regions so that the coordinates for the canonical basis {I1, iI3, iI5, iI7} are either
imaginary or real. This allows several signatures.

2. The first guess is that the energy p0 assignable to I1 becomes imaginary. This gives tachyonic
p2. The second guess is that all components of 3-momentum {iI3, iI5, iI7} become imaginary
meaning that the length of 3-momentum becomes imaginary.

3. One cannot exclude the other signatures, for instance the situation in which 1 or 2 compo-
nents of the 3-momentum become imaginary. Hence the transition could occur in 3 steps
as (1,−1,−1−, 1) → (1, 1,−1,−1) → (1, 1, 1,−1) → (1, 1, 1, 1). The values of p2 ≡ Re(p2c)
would be non-negative and also their images in M4 ⊂ H would be inside future light-cone.
This could relate to the fact that all these signatures are possible inthe twistor Grassmannian
approach.

4. These regions belong to the complex mass shell p2c = rn = m2
0 = rn appearing as a root to

the co-associativity condition X = 0. This gives the conditions

Re(pc) · Im(p2c) = Im(rn) ,

Re(p2c) ≡ p2 = Im(p2c) +m2
n ,

m2
n ≡ Re(rn) ≥ 0 .

(5.1)

Consider first the case (1, 1, 1, 1).
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1. The components of pc are either real or imaginary. Using the canonical basis {I1, iI3, iI5, iI7}
the components of pc are real in the Minkowskian region and imaginary in the totally time-
like Euclidian region. One has for the totally time-like momentum p = (p0, iIm(p3)) in the
canonical basis.

This would give

Re(p2c) ≡ p2 = p20 = −Im(p3)2 +m2
n . (5.2)

The number theoretic metric is Euclidian and totally time-like but one has p2 ≥ 0 in the
range [m2

0, 0]. This region is a natural counterpart for an Euclidian space-time region in H.
The region p2 ≥ m2

0 has Minkowskian signature and counterpart for Minkowskian regions in
H. The region 0 ≤ p2 < m2

0 is a natural candidate for an Euclidian region in M4.

Remark: A possible objection is that Euclidian regions in Oc are totally time-like and totally
space-like in H.

2. The image of these regions under the map Re(pk) → Mk under inversion plus octonionic

conjugation defined as pk → ~effpk/p2 (to be discussed in more detail in the sequel) consists
of points Mk in the future light-cone of M4 ⊂ H. The image of the real Euclidian region of
Oc with p2 ∈ [0,m2

0) is mapped to the region MkMk < ~2eff/m2
0 of M4 ⊂ H.

3. The contribution of CP2 metric to the induced metric is space-like so that it can become
Euclidian. This would naturally occur in the image of a totally time-like Euclidian region
and this region would correspond to small scales MkMk < ~2eff/m2

0. The change of the
signature should take place at the orbits of partonic 2-surfaces and the argument does not
say anything about this. The boundary of between the two regions corresponds to momenta
p = (p0, 0) which is is a time-like line perhaps identifiable as the analog of the light-like
geodesic defining the M4 projection of CP2 type extremal, which is an idealized solution to
actual field equations.

This transition does not explain the M8 counterpart of the 3-D light-like partonic orbit to
which the light-light geodesic thickens in the real situation?

The above argument works also for the other signatures of co-associative real sub-spaces and
provides additional insights. Besides the Minkowskian signature, 3 different situations with signa-
tures (1, 1, 1, 1), (1,−1, 1, 1), and (1,−1−1, 1) with non-space-like momentum squared are possible.

The following formulas list the signatures, the expressions of real momentum squared, and
dimension D of the transition transition Im(p2c) = 0 as generalization of partonic orbit and the
possible identification of the transition region.

Signature p2, D
(+,−,−,+) : (p0)2 − (p1)2 − (p2)2 = −Im(p3)2 +m2

n 3 ,
Identification partonic orbit .

Signature p2 D
(+,−,+,+) : (p0)2 − (p1)2 = −Im(p2)2 − Im(p3)2 +m2

n , 2 ,
Identification string world sheet .

Signature p2 D
(+,+,+,+) : (p0)2 = −Im(p1)2 − Im(p2)2 − Im(p3)2 +m2

n , 1 .
Identification string boundary .

(5.3)

Since the map of the co-associative normal space to CP2 does not depend on the signature, M8−H
duality is well defined for all these signatures. One can ask whether a single transition creates
partonic orbit, two transitions a string world sheet and 3 transitions ends of string world sheet
inside partonic orbit or even outside it.
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5.3 Quantization of octonionic spinors

There are questions related to the quantization of octonionic spinors.

1. Co-associative gamma matrices identified as octonion units are associative with respect to
their octonionic product so that matrix representation is possible. Do second quantized
octonionic spinors in M8 make sense? Is it enough to second quantize them in M4 as
induced octonionic spinors? Are the anti-commutators of oscillator operators Kronecker
deltas or delta functions in which case divergence difficulties might be encountered? This is
not needed since the momentum space propagators can be identified as those for E8

c restricted
to X4

r as a subspace with real octonion norm.

The propagators are just massless Dirac propagators for the choice of M4 for which light-like
M8 momentum reduces to M4 momentum. Could one formulate the scattering amplitudes
using only massless inverse propagators as in the twistor Grassmannian approach?This does
not seem to be the case.

2. Could the counterpart of quark propagator as inverse propagator in M8 as the idea about
defining momentum space integrals as residue integrals would suggest? This would allow
on-mass-shell propagation like in twistor diagrams and would conform with the idea that
inversion relates M8 and H descriptions. This is suggested by the fact that no integration
over intermediate virtual momenta appears in the graphs defined by the algebraic points of
the pre-images of the partonic 2-surfaces X2

r .

How to identify external quarks? Note that bosons would consist of correlated quark-antiquark
pairs with the propagator obtained as a convolution of quark propagators. The correlation would
be present for the external states and possibly also for the states in the diagram and produced by
topologically.

1. The polynomial P and the P = 0 surface with 6-D real projection X6
r is not affected by

octonion automorphisms. Quarks with different states of motion would correspond to the
same P but to different choices of M4 as co-associative subspace for M8

c . P could be seen as
defining a class of scattering diagrams. P determines the vertices.

2. The space-time surface associated with a quark carrying given 4-momentum should be ob-
tainable by a Lorenz transformation in SO(3, 1) ⊂ G2,c to give it light-like M4 so that
complexified octonionic automorphisms would generate 3-surfaces representing particles. If
M4 ⊂M8 and thus the CD associated with the quark is chosen suitably, the quark is mass-
less. Any incoming particle would be massless in this frame.

Lorentz invariance however requires a common Lorentz frame provided by the CD. The
momentum of a quark in CD would be obtained by G2,c transformation. In the frame of
CD the external quark momenta arriving to the interior of CD at vertices associated with
X3
r ∩ Y 3

r are time-like. Momentum conservation would hold in this frame. The difference
between massive constituent quarks and massless current quarks could be understood as
reflecting M8 picture.

To sum up, the resulting picture is similar to that at the level of H these diagrammatic struc-
tures would be mapped to H by momentum inversion. Quantum classical correspondence would
be very detailed providing both configuration space and momentum space pictures.

5.4 Does M8−H duality relate momentum space and space-time repre-
sentations of scattering amplitudes?

It would seem that the construction of the scattering amplitudes is possible also at the level of
M8 [L22]. M8 picture would provide momentum representation of scattering diagrams whereas H
picture would provide the space-time representation.

Consider first a possible generalization of QFT picture involving propagators and vertices.

1. At first it seems that it is not possible to talk about propagation at the level of momentum
space: in positive energy ontology nothing propagates in momentum space if the propagator
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is a free propagator Dp! In ZEO this is not quite so. One can regard annihilation operators
as creation operators for the fermionic vacuum associated with the opposite HC of CD (or
sub-CD): one has momentum space propagation from p to −p! The expressions of bosonic
charges would be indeed bi-local with annihilation and creation operators associated with the
mirror paired points in the two HCs of CD forming pairs. The momentum space propagator
Dp would actually result from the pairing of creation creation operators with the opposite
values of p and the notation D(p,−p) would be more appropriate.

2. In QFT interaction vertices are local in space-time but non-local in momentum space. The
n-vertex conserves the total momentum. Therefore one should just select points of M8 and
they are indeed selected by cognitive representation and assign scattering amplitude to this
set of points. To each point one could assign momentum space propagator of quark in M8

c

but it would not represent propagation! The vertex would be a multilocal entity defined by
the vertices defining the masses involved at light cone boundary and mass shells.

The challenge would be to identify these vertices as poly-local entities. In the QFT picture
there would be a set of n-vertices with some momenta common. What could this mean
now? One would have subset sets of momenta summing up to zero as vertices. If two
subsets have a common momentum this would correspond to a propagator line connecting
them. Should one decompose the points of cognitive representation so that it represents
momentum space variant of Feynman graph? How unique this decomposition is and do
this kind of decompositions exist unless one poses the condition that the total momenta
associated with opposite boundaries sum up to zero as done in ZEO. A given n-vertex in the
decomposition means the presence of sub-CDs for which the external momenta sum up to
zero. This poses very tight constraints on the cognitive representation, and one can wonder
they can be satisfied if the cognitive representation is finite as it is in the generic case.

3. Note that for given a polynomial P allowing only points in cognitive representation, one
would not have momentum space integrations as in QFT: they could however come from
integrations over the polynomial coefficients and would correspond to integration of WCW. In
adelic picture one allows only rational coefficients for the polynomials. This strongly suggests
that the twistor Grasmmannian picture [?, ?, ?, ?] in which residue integral in the momentum
space gives as residues inverse quark propagators at the poles. M8 picture would represent
the end result of this integration and only on mass shell quarks would be involved. One could
even challenge the picture based on propagators and vertices and start from Yangian algebra
based on the generalization of local symmetries to multilocal symmetries [A5, A7] [?] [L3].

4. In the case of H restriction of the second quantized free quark field of H to space-time surface
defines the propagators. In the recent case one would have a second quantized octonionic
spinor field in M8. The allowed modes of H spinor field are just the co-associative modes for
fixed selection of M4 analogous to momentum space spinors and restricted to Y 3

r . One could
speak of wave functions at Y 3

r , which is very natural since they correspond to mass shells.

The induced spinor field would have massless part corresponding to wave functions at the M4

light-cone boundary and part corresponding to X3 at which the modes would have definite
mass. P = 0 would select a discrete set of masses. Could second quantization have the
standard meaning in terms of anti-commutation relations posed on a free M8 spinor field. In
the case of M8

c one avoids normal ordering problems since there is no Dirac action. The anti-
commutators however have singularities of type 7-D delta function. The anti-commutators
of oscillator operators at the same point are the problem. If only a single quark oscillator
operator at a given point of M8 is allowed since there is no local action in coordinate space
with the interaction part producing the usual troubles.

5. Could one perform a second quantization for E8 spinor field using free Dirac action? Could
one restrict the expansion of the spinor field to co-associative space-time surfaces giving
oscillator operators at the points of cognitive representation with the additional restriction
to the pre-image of given partonic 2-surface, whose identification was already considered.
Scattering amplitudes would involve n-vertices consisting of momenta summing up to zero
and connected to opposite incoming momenta at the opposite sides of the HCs with the
same tip in M8. Scattering amplitude would decompose to sub-diagrams defining a cluster
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decomposition, and would correspond to sub-CDs. The simplest option is that there
are no internal propagator lines. The vanishing of the total momenta poses stringent
conditions on the points of cognitive representation.

Normal ordering divergences can however produce problems for this option in the case of
bosonic charges bilear in oscillator operators. At the level of H the solution came from
a bilocal modified Dirac action leading to bilocal expressions for conserved charges. Now
Yangian symmetry suggests a different approach: local vertices in momentum space can
involve only commuting oscillator operators.

Indeed, in ZEO one can regard annihilation operators as creation operators for the fermionic
vacuum associated with the opposite HC of CD (or sub-CD). The expressions of bosonic
charges would be indeed bi-local with annihilation and creation operators associated with
the mirror paired points in the two HCs of CD forming pairs. As already noticed, also the
momentum space propagator Dp = D(p,−p) would be also a bi-local object.

6. This is not enough yet. If there is only a single quark at given momentum, genuine particle
creation is not possible and the particle reactions are only re-arrangements of quarks but
already allowing formation of bosons as bound states of quarks and antiquarks. Genuine
particle creation demands local composites of several quarks at the same point p having
interpretation as a state with collinear momenta summing up to p and able to decay to
states with the total momentum p. This suggests the analog of SUSY proposed in [L14].
Also Yangian approach is highly suggestive.

To sum up, momentum conservation together with the assumption of finite cognitive repre-
sentations is the basic obstacle requiring new thinking.

5.5 Is the decomposition to propagators and vertices needed?

One can challenge the QFT inspired picture.

1. As already noticed, the relationship P1(t) = P (2T − t) makes it possible to satisfy this con-
dition at least for the entire set of momenta. This does not yet allow non-trivial interactions
without posing additional conditions on the momentum spectrum. This does not look nice.
One can ask whether there is a kind of natural selection leading to polynomials defining
space-time surfaces allowing cognitive representations with vertex decompositions and poly-
nomials P (t) and Pr(t) without this symmetry? This idea looks ugly. Or could evolution
start from simplest surfaces allowing 4 vertices and lead to an engineering of more complex
scattering diagrams from these?

2. The map of momentum space propagators regarded as completely local objects in M8 to H
propagators is second ugly feature. The beauty and simplicity of the original picture would
be lost by introducing copies of sub-diagrams mapped to the various translations in H.

3. The Noether charges of the Dirac action in H fail to give rise to 4-fermion vertex operator.
The theory would be naturally just free field theory if one assumes cognitive representations.

The first heretic question is whether the propagators are really needed at the level of momentum
space. This seems to be the case.

1. In ZEO the propagators pair creation and operators with opposite 4-momenta assignable
to the opposite HCs of CD having conjugate fermionic vacua (Dirac sea of negative energy
fermions and Dirac sea of positive energy fermions) so that momentum space propagators
D(p,−p) are non-local objects. The propagators would connect positive and negative energy
fermions at the opposite HCs and this should be essential in the formulation of scattering
amplitudes. They cannot be avoided.

2. The propagators would result from the contractions of fermion oscillator operators giving
a 7-D delta function at origin in continuum theory. This catastrophe is avoided in the
number theoretic picture. Since one allows only points with M8 coordinates in an exten-
sion of rationals, one can assume Kronecker delta type anti-commutators. Besides cognitive
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representations, this would reflect the profound difference between momentum space and
space-time.

This would also mean that the earlier picture about the TGD analog of SUSY based on local
composites of oscillator operators [L14] makes sense at the level of M8. The composites could
be however local only for oscillator operators associated with the HC of CD. With the same
restriction they could be local also in theH picture.

What about vertices? Could Yangian algebra give directly the scattering amplitudes? This
would simplify dramatically the M8 − H duality for transition amplitudes. For this option the
P1(t) = P (2T − t) option required by continuity would be ideal.

1. Without vertices the theory would be a free field theory. The propagators would connect op-
posite momenta in opposite HCs of CD. Vertices are necessary and they should be associated
with sub-CDs. Unless sub-CDs can have different numbers of positive and negative energy
quarks at the opposite HCs, the total quark number is the same in the initial and final states
if quarks and antiquarks associated with bosons as bound states of fermion and antiquark are
counted. This option would require minimally 4-quark vertex having 2 fermions of opposite
energies at the two hemi-spheres of the CD. A more general option looks more plausible. One
obtains non-trivial scattering amplitudes by contracting fermions assigned to the boundary P
(F ) past (future) HC of CD to the past (future) boundary Psub (Fsub) of a sub-CD. Sub-CD
and CD must have an opposite arrow of time to get the signs of energies correctly.

Sub-CDs would thus make particle creation and non-trivial scattering possible. There could
be an arbitrary number of sub-CDs and they should be assignable to the pre-images of the
partonic 2-surfaces X2

r if the earlier picture is correct. The precise identification of the
partonic 2-surfaces is still unclear as also the question whether light-like orbits of partonic
2-surfaces meet along their ends in the vertices.

2. As in the case of H, one could assign the analogs of n-vertices at pre-images of partonic 2-
surfaces at X2

r representing the momenta of massive modes of the octonionic Dirac equation
and belonging to the cognitive representations. The idea is to use generators of super-Yangian
algebra to be discussed later which are both bosonic and fermionic. The simplest construction
would assign these generators to the vertices as points in cognitive representation.

An important point is that Yangian symmetry would be a local symmetry at the level of
momentum space and correspond to non-local symmetry at the level of space-time rather than
vice versa as usually. The conserved currents would be local composites of quark oscillator
operators with same momentum just as they are in QFTs at space-time level representing
parallelly propagating quarks and antiquarks.

The simplest but not necessary assumption is that they are linear and bilinear in oscillator
operators associated with the same point of M8 and thus carrying 8-momenta assignable to
the modes of E8 spinor field and restricted to the co-associative 4-surface. Their number of
local composites is finite and corresponds to the number 8 of different states of 8-spinors of
given chirality.

Also a higher number of quarks is possible, and this was indeed suggested in [L14]. The
proposal was that instance leptons would correspond to local composites of 3 quarks. The
TGD based view about color allows this. These states would be analogous to the monomials
of theta parameters in the expansion of super-field. The H picture allows milder assumptions:
leptonic quarks reside at partonic 2-surface at different points but this is not necessary.

3. Instead of super-symplectic generators one has G2,c as the complexified automorphism group.
Also the Galois group of the extension acts as an automorphism group and is proposed to
have a central role in quantum TGD with applications to quantum biology [L2, L21]. As
found, G2,c acts as an analog of gauge or Kac-Moody group. Yangian has analogous structure
but the analogs of conformal weights are non-negative.

4. The identification of the analogs of the poly-local vertex operators as produces of charges
generators associated with FHC anbd PHC is the basic challenge. They should consist of
quark creation operators (annihilation operators being associated as creation operators at
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the opposite HC) and be generators of infinitesimal symmetries which in number theoretic
physics would correspond instead of isometries of WCW to the octonionic automorphism
group G2 complexified to G2,c containing also the generators of SO(4) ⊂ G2 and thus also
those of Lorentz group SO(1, 3) ⊂ G2,c.

The construction Noether charges of E8 second quantized spinor field at momentum space
representation gives bilinear expressions in creation and annihilation operators associated
with opposite 3-momenta and would have a single fermion in a given HC. This is not enough:
there should be at least 4 fermions.

What strongly suggests itself are Yangian algebras [A5] [L3] having poly-local generators and
considered already earlier and appearing in the twistor Grassmannian approach [?, ?]. The sums
of various quantum numbers would vanish for the vertex operators. These algebras are quantum
algebras and the construction of n-vertices could involve co-algebra operation. What is new as
compared to Lie algebras is that Yangian algebras are quantum algebras having co-algebra structure
allowing to construct n-local generators representing scattering amplitudes. It might be possible
replace oscillator operators with the quantum group counterparts.

5.6 Does the condition that momenta belong to cognitive representa-
tions make scattering amplitudes trivial?

Yangian symmetry is associated with 2-D integrable QFTs which tend to be physically rather
uninteresting. The scattering is in the forward direction and only phase shifts are induced. There
is no particle creation. If the relationship P1(t) = P (2T − t) is applied the momentum spectra for
FHC and PHC differ only by the sign. If all momenta are involved and the cognitive representations
are finite, the situation would be the same! Also the existence of cluster compositions involving
summations of subsets of momenta to zero is implausible. Something seems to go wrong!

The basic reason for the problem is the assumption that the momenta belong to cognitive
representations assumed to be finite as they indeed are in the generic case. But are they finite in
the recent situation involving symmetries?

1. The assumption that all possible momenta allowed by cognitive representation are involved,
allows only forward scattering unless there are several subsets of momenta associated with
either HC such that the momenta sum-up to the same total momentum. This would allow
the change of the particle number. The subsets Si with same total momentum ptot in the
final state could save as final states of subsets Sj with the same total momentum p in the
initial state. What could be the number theoretical origin of this degeneracy?

2. In the generic case the cognitive representation contains only a finite set of points (Fermat
theorem, in which one considers rational roots of xn + yn = zn, n > 2 is a basic example of
this) . There are however special cases in which this is not true. In particular, M4 and its
geodesic sub-manifolds provide a good example: all points in the extension of rationals are
allowed in M4 coordinates (note that there are preferred coordinates in the number theoretic
context).

The recent situation is indeed highly symmetric due to the Lorentz invariance of space-time
surfaces as roots reducing the equations to ordinary algebraic equations for a single complex
variable. X = 0 condition gives as a result a2c = constant complex hyperboloid with a real
mass hyperboloid as a real projection. a2c = rn is in the extension of rationals as a root of
n:th order polynomial. One has the condition Re(m2)2 − Im(m2) = Re(rn) giving X4

r a
slicing by real mass hyperboloids. If Im(m) and the spatial part of Re(m) belongs to the
extension, one has for real time coordinate t =

√
r2M + Im(m2) + rn. If r2M + Im(m)2 + rn

is a square in the extension also t belongs to the extension. Cognitive representation would
contain an infinite number of points and the it would be possible to have non-trivial cluster
decompositions. Scattering amplitude would be a sum over different choices of the momenta
of the external particles satisfying momentum conservation condition.

As found, the intersection of X4
r and X6

r is either empty or X4
r belongs to X6

r , Cognitive
representations would have an infinite number of points also now by the previous argument.
Partonic 2-surfaces at X3

r would be replaced with 3-D surfaces in X4
r in this situation and
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would contain a large number of roots. The partonic 2-surfaces would be still present and
correspond to the intersections of incoming space-time surfaces of quarks inside X6

r . These
surfaces would also contain the vertices.

3. Could number theoretic evolution gradually select space-time surfaces for which the number
theoretic dynamics involving massive quarks is possible? First would be generic polynomials
for which X3

r would be empty and only massless quarks arriving at the light-cone boundary
would be possible. After that surfaces allowing non-empty X3

r and massive quarks would
appear. There is a strong resemblance with the view about cosmological evolution starting
from massless phases and proceeding as a sequence of symmetry breakings causing particle
massivation. Now the massivation would not be caused by Higgs like fields but have purely
number theoretic interpretation and conform with the p-adic mass calculations [K8].

Also a cognitive explosion would occur since these space-time surfaces would be cognitively
superior after the emergence of massive quarks. If this picture has something to do with re-
ality, the space-time surfaces contributing to the scattering amplitudes would be very special
and interactions could be seen as a kind of number theoretical resonance phenomenon.

4. Even is not enough to obtain genuine particle reaction instead of re-arrangements: one must
have also local composites of collinear quarks at the same momentum p identifiable as the
sum of parallel momenta discussed in [L14]. This kind of situation is also encountered for on-
mass-shell vertices in twistor Grassmannian approach. The local composites could decay to
local composites with a smaller number of quarks but respecting momentum conservation.
Here the representations of Yangian algebra would come in rescue.

5.7 Momentum conservation and on-mass-shell conditions for cognitive
representations

Momentum conservation and on-mass shell-conditions are very powerful for cognitive representa-
tions, which in the generic case are finite. At mass shells the cognitive representations consist of
momenta in the extension of rationals satisfying the condition p2 = Re(rn), rn a complex root of
X, which is polynomial of degree n in p2 defined by the odd part of P . If

√
Re(rn) does not belong

to the extension defined by P , it can be extended to contain also
√
Re(rn).

For Pythagorean triangles in the field of rationals, mass shell condition gives for the momentum
components in extension an equation analogous to the equation k2 + l2 = m2, which can be most
easily solved by noticing that the equation has rotation group SO(2) consisting of rational rotation
matrices as symmetries. The solutions are of form (k = r2 − s2, l = 2rs,m = r2 + s2). By SO(2)
invariance, one can choose the coordinate frame so that one has (k, l) = (r2+s2, 0). By applying to
this root a rational rotation with cos(φ) = (r2− s2)/(r2 + s2), sin(φ) = 2rs/(r2 + s2) to obtain the
general solution (k = r2 − s2, l = 2rs, n = r2 + s2). The expressions for k and l can be permuted,
which means replacing φ with φ − pi/2. For a more general case k2 + l2 = n one can replace n
with

√
n so that one has an extension of rationals.

For the hyperbolic variants of Pythagorean triangles, one has k2 − l2 = m2 or equivalently
l2 + m2 = k2 giving a Pythagorean triangle. The solution is k = r2 + s2, l = r2 − s2,m2 = 2rs.
The expressions for l and ma can be permuted. Rotation is replaced with 2-D Lorentz boost
cosh(η) = (r2 + s2)/(r2 − s2) and sinh(η) = 2rs/(r2 − s2) with rational matrix elements.

Consider now the 4-D case.

1. The algebra behind the solution depends in no manner on the number field considered and
makes sense even for the non-commutative case if m and n commute. Hence one can apply
the Pythagorean recipe also in 4-D case to the extension of rationals defined by P by adding
to it

√
rn.

2. Assume that a Lorentz frame can be chosen to be the rest frame in which one has p = (E =√
Rern, 0) (this might not be possible always). As in the Pythagorean case, there must be

a consistency condition. Now it would be of form E =
√
rn = p20 − p21 − p22 − p23 in the

extension defined by
√
rn. It is not clear whether this condition can be solved for all choices

of momentum components in the extension or assuming that algebraic integers of extension
are in question. One can also consider an option in which one has algebraic integer divided
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by some integer N . p-Adic considerations would suggest that prime powers N = pk might
be interesting.

The solutions
√
rn = p21 − p22 represent a special case. The general solution is obtained

by making Lorenz transformation with a matrix with elements in the discrete subgroup of
Lorentz group with matrix elements in the extension of rationals.

3. The solutions would define a discretization of the mass shell (3-D hyperbolic space) defined
as the orbit of the infinite discrete subgroup of SO(1, 3) considered - perhaps the subgroup
of SL(2, C) with matrix elements identified as algebraic integers.

If the entire subgroup of SL(2,C) with matrix elements in the extension of rationals is real-
ized, the situation would correspond effectively to a continuous momentum spectrum for infinite
cognitive representations. The quantization of momenta is however physically a more realistic
option.

1. An interesting situation corresponds to momenta with the same time component, in which
case the group would be a discrete subgroup of SO(3). The finite discrete symmetry sub-
groups act as symmetries of Platonic solids and polygons forming the ADE hierarchy associ-
ated to the inclusions of hyperfinite factors of type II1 and proposed to provide description
of finite measurement resolution in TGD framework.

2. The scattering would be analogous to diffraction and only to the directions specified by the
vertices of the Platonic solid. Platonic solids, in particular, icosahedron appear also in TGD
inspired quantum biology [L1, L19], and also in Nature. Could their origin be traced to
M8 −H duality mapping the Platonic momentum solids to H by inversion?

A more general situation would correspond to the restriction to a discrete non-compact sub-
group Γ ⊂ SL(2, C) with matrix elements in the extension of rationals. Sl(2, C) has a represen-
tation as Möbius transformations of upper half-plane H2 of complex plane acting as conformal
transformations whereas the action in H3 is as isometries. The Möbius transformation acting as
isometries of H2 corresponds to SL(2, Z) having also various interesting subgroups, in particular
congruence subgroups.

1. Subgroups Γ of the modular group SL(2, Z) define tessellations (analogs of orindary lattices
in a curved space) of both H2 and H4. The fundamental domain [A1] (https://cutt.ly/
ahBrtT5) of the tessellation defined by Γ ⊂ SL(2, C) contains exactly one point at from each
orbit of Γ. The fundamental domain is analogous to lattice cell for an Euclidian 3-D lattice.

Γ must be small enough since the orbits would be otherwise dense just like rationals are a
dense sub-set of reals. In the case of rationals this leaves into consideration tje modular sub-
group SL(2, Z) or its subgroups. In the recent situation an extension of the modular group
allowing matrix elements to be algebraic integers of the extension is natural. Physically this
would correspond to the quantization of momentum components as algebraic integers. The
tessellation in M8 and its image in H would correspond to reciprocal lattice and lattice in
condensed matter physics.

2. So called uniform honeycombs [A3, A2, A4] (see https://cutt.ly/xhBwTph, https://cutt.
ly/lhBwPRc, and https://cutt.ly/0hBwUOO) in H3 assignable to SL(2, Z) can be regarded
as polygons in 4-D space and H3 takes the roles of sphere S2 for platonic solids for which
the tessellation defined by faces is finite.

The four regular compact honeycombs in H3 for which the faces and vertex figures (the faces
meeting the vertex) are finite are of special interest physically. In the Schönflies notation
characterizing polytopes (tessellations are infinite variants of them) they are labelled by
(p, q, r), where p is the number of vertices of face, q is the number of faces meeting at vertex,
and s is the number of cells meeting at edge.

The regular compact honeycombs are listed by (5,3,4), (4,3,5), (3,5,3), (5,3,5). For Platonic
solids (5,3) characterizes dodecahedron, (4,3) cube, and (3,5) for icosahedron so that these
Platonic solids serve as basic building bricks of these tessellations. Rather remarkably, icosa-
hedral symmetries central in the TGD based model of genetic code [L1, L19], characterize
cells for 3 uniform honeycombs.

https://cutt.ly/ahBrtT5
https://cutt.ly/ahBrtT5
https://cutt.ly/xhBwTph
https://cutt.ly/lhBwPRc
https://cutt.ly/lhBwPRc
https://cutt.ly/0hBwUOO
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Consider now the momentum conservation conditions explicitly assuming momenta to be al-
gebraic integers. It is natural to restrict the momenta to algebraic integers in the extension of
rationals defined by the polynomial P . This allows linearization of the constraints from momen-
tum conservation quite generally.

Pythagorean case allows to guess what happens in 4-D case.

1. One can start from momentum conservation in the Pythagorean case having interpretation in
terms of complex integers p = (r+ is)2 = r2− s2 + 2irs. The momenta in the complex plane
are squares of complex integers z = r+is obtained by map z → w = z2 and complex integers.
One picks up in the w-plane integer momenta for the incoming and outgoing states satisfying
the conservation conditions

∑
i Pout,i =

∑
k Pin,k: what is nice is that the conditions are

linear in w-plane. After this one checks whether the inverse images
√
Pout,i and

√
Pin,i are

also complex integers.

2. To get some idea about constraints, one can check what CM system for a 2-particle system
means (it is not obvious whether it is always possible to find a CM system: one could have
massive particles which cannot form a rest system). One must have opposite spatial momenta
for P1 = (r1+is1)2 and P2 = (r2+is2)2. This gives rs1 = r2s2. The products risi correspond
to different compositions of the same integer N to factors. The values of r2i +si2 are different.

3. In hyperbolic case one obtains the same conditions since the roles of r2 − s2 and r2 + s2 in
the conditions are changed so that r2 − s2 corresponds now to mass mass mass and differs
for different decomposition of N to factors. The linearization of the conservation conditions
generalizes also to the algebraic extensions of rationals with integers replaced by algebraic
integers.

The generalization to the 4-D case is possible in terms of octonions.

1. Replace complex numbers by quaternions q = q0+q. The square of quaternion is q2 = q20−q ·
q+2iq0q. Allowed momenta for given mass correspond to points in q2-plane. Conservation
conditions in the q2 plane are linear and satisfied by quaternionic integers, which are squares.
So that in the q2 plane the allowed momenta form an integer lattice and the identification
as a square selects a subset of this lattice. This generalizes also to the algebraic integers in
the extension of rationals.

2. What about the co-associative case corresponding to the canonical basis {I1, iI3, iI5, iI7}?
Momenta would be as co-associative octonion o but o2 is a quaternion in the plane defined
by {I0, iI2, iI4, iI6}. o representable in terms of a complexified quaternion q = q0 + iq as
o = I4q and the in general complex values norm squared is give by oo with conjugation of
octonionic imaginary units but not i: this gives Minkowskian norm squared. This reduces
the situation to the quaternionic case.

3. In this case the CM system for two-particle case corresponds to the conditions q1,0q1 = q2,0q2
implying that q1 and q2 have opposite directions and q1,0|q1| = q2,0|q2|. The ratio of the
lengths of the momenta is integer. Now the squares qi,0|qi|2 , i = 1, 2 are factorizations of
the same integer N . Masses are in general different.

4. The situation generalizes also to complexified quaternions - the interpretation of the imagi-
nary part of momentum might be in terms of a decay width - and even to general octonions
since associativity is not involved with the conditions.

5.8 Further objections

The view about scattering amplitudes has developed rather painfully by objections creating little
shocks. The representation of scattering amplitudes is based on quark oscillator operator algebra.
This raises two further objections.

The non-vanishing contractions of the oscillator operators are necessary for obtaining non-trivial
scattering amplitudes but is this condition possible to satisfy.
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1. One of the basic deviations of TGD from quantum field theories (QFTs) is the hypothesis that
all elementary particles, in particular bosons, can be described as bound states of fermions,
perhaps only quarks. In TGD framework the exchange of boson in QFT would mean an
emission of a virtual quark pair and its subsequent absorption. In ZEO in its basic form this
seems to be impossible.

2. If scattering corresponds to algebra morphism mapping products to products of co-products
- the number of quarks in say future HC is higher than in the past HC as required.
But how to obtain non-vanishing scattering amplitudes? There should be non-vanishing
counterparts of propagators between points of FHC but this is not possible if only creation
operators are present in a given HC as ZEO requires. All particle reactions would be
re-arrangements of quarks and antiquarks to elementary fermions and bosons (OZI rule of
the hadronic string model: https://en.wikipedia.org/wiki/OZI_rule). The emission
of virtual or real bosons requires the creation of quark antiquark pairs and seems to be in
conflict with the OZI rule.

3. It would be natural to assign to quarks and bosons constructed as their bound states non-
trivial inner product in a given HC of CD. Is this possible if the counterparts of annihilation
operators act as creation operators in the opposite HC? Can one assign inner product to a
given boundary of CD by assuming that hermitian conjugates of quark oscillator operators
act in the dual Hilbert space of the quark Fock space? Could this dual Hilbert space relate
to the Drinfeld’s double?

How could one avoid the OZI rule?

1. Is it enough to also allow annihilation operators in given HC? Bosonic G2,c generators could
involve them. The decay of boson to quark pair would still correspond to re-arrangement
but one would have inner product for states at given HC. The creation of bosons would
still be a problem. Needless to say, this option is not attractive.

2. A more plausible solution for this problem is suggested by the phenomenological picture in
which quarks at the level of H are assigned with partonic 2-surfaces and their orbits, string
world sheets, and their boundaries at the orbits of partonic 2-surfaces. By the discussion in
the beginning of this section, these surfaces could correspond at the level of M8 to space-time
regions of complexified space-time surface with real number theoretic metric having signature
(+,+,-,-), (+,+,+,-), (+,+,+,+) having 2,3, or 4 time-like dimensions. They would allow
non-negative values of mass squared and would be separated from the region of Minkowskian
signature by a transition region space-time region with dimension D ∈ {3, 2, 1} mapped to
CP2.

In these regions one would have 1, 2, or 3 additional energy like momentum components
pi = Ei. Ei. Could the change of sign for Ei transform creation operator to annihilation
operator as would look natural. This would give bosonic states with a non-vanishing norm
and also genuine boson creation. What forces to take this rather radical proposal seriously
that it conforms with the phenomenological picture.

In this region one could have a non-trivial causal diamond CD with signature (+,+,-,-),
(+,+,+,-). For the signature (+,+,+,+) CD reduces to a point with a vanishing four-
momentum and would correspond to CP2 type extremals (wormhole contacts). Elementary
fermions and bosons would consist of quarks in regions with signature (+,+,-,-) and
(+,+,+,-). It would seem that the freedom to select signature in twistorial amplitude is not
mere luxury but has very deep physical content.

One can invent a further objection. Suppose that the above proposal makes sense and
allows to assign propagators to a given HC. Does Yangian co-product allow a construction of
zero energy states giving rise to scattering amplitudes, which typically have a larger number of
particles in the future HC (FHC) than in past HC (PHC) and represent a genuine creation of
quark pairs?

https://en.wikipedia.org/wiki/OZI_rule


6. Symmetries in M8 picture 46

1. One can add to the PHC quarks and bosons one-by-one by forming the product super
G(2, c) generators assignable to the added particles. To the FHC one would add the
product of co-products of these super G(2, c) generators (co-product of product is product
of co-products as an algebra morphism).

2. By the basic formula of co-product each addition would correspond to a superposition of
two states in FHC. The first state would be the particle itself having suffered a forward
scattering. Second state would involve 2 generators of super G2,c at different momenta
summing up to that for the initial state, and represent a scattering q → q + b for a quark
in the initial state and scattering b→ 2b, b→ 2b, or b→ 2q for a boson in the initial state.

Number theoretic momentum conservation assuming momenta to be algebraic integers should
allow processes in which quark oscillator operators are contracted between the states in FHC
and PHC or between quarks in the FHC.

3. Now comes the objection. Suppose that the state in PC consists of fundamental quarks.
Also the FC containing the product of co-products of quarks must contain these quarks
with the same momenta. But momentum conservation does not allow anything else in FC!
The stability of quarks is a desirable property in QFTs but something goes wrong! How
to solve the problem?

Also now phenomenological picture comes to the rescue and tells that elementary particles
- as opposed to fundamental fermions - are composites of fundamental fermions assignable to
flux tubes like structures involving 2 wormhole contacts. In particular, quarks as elementary
particles would involve quark at either throat of the first wormhole contact and quark-
antiquark pair associated with the second wormhole contact. The state would correspond
to a quantum superposition of different multilocal momentum configurations defining multi-
local states at M8 level. The momentum conservation constraint could be satisfied without
trivializing the scattering amplitudes since the contractions could occur between different
components of the superposition - this would be essential.

Note also that at H level there can be several quarks at a given wormhole throat defining
a multilocal state in M8: one could have a superposition of these states with different mo-
menta and again different components of the wave function could contract. By Uncertainty
Principle the almost locality in H would correspond to strong non-locality in M8. This could
be seen as an approximate variant of the TGD variant of H variant of SUSY considered
in [L14].

Could the TGD variant of SUSY proposed in [L14] but realized at the level of momentum
space help to circumvent the objection? Suppose that the SUSY multiplet in M8 can be
created by a local algebraic product possessing a co-product delocalizing the local product
of oscillator operators at point p in PC and therefore represents the decay of the local
composite to factors with momenta at p1 and p − p1 in FC. This would not help to
circumvent the objection. Non-locality and wave functions in momentum space is needed.

6 Symmetries in M 8 picture

6.1 Standard model symmetries

Can one understand standard model symmetries in M8 picture?

1. SU(3) ⊂ G2 would respect a given choice of time axis as preferred co-associative set of
imaginary units (I2 ⊂ {I2, iI3, iIb, iI7} for the canonical choice). The labels would therefore
correspond to the group SU(3). SU(3)c would be analogous to the local color gauge group in
the sense that the element of local SU(3)c would generate a complecofied space-time surface
from the flat and real M4. The real part of pure SU(3)c gauge potential would not however
reduce to pure SU(3) gauge potential. Could the vertex factors be simply generators of
SU(3) or SU(3)c?
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2. What about electroweak quantum numbers in M8 picture? Octonionic spinors have spin
and isospin as quantum numbers and can be mapped to H spinors. Bosons would be bound
states of quarks and antiquarks at both sides.

How could electroweak interactions emerge at the level of M8? At the level of H an anal-
ogous problem is met: spinor connection gives only electroweak spinor connection but color
symmetries are isometries and become manifest via color partial waves. Classical color gauge
potentials can be identified as projections of color isometry generators to the space-time
surface.

Could electroweak gauge symmetries at the level of M8 be assigned with the subgroup U(2) ⊂
SU(3) of CP2 = SU(3)/U(2) indeed playing the role of gauge group? There is a large
number of space-time surfaces mapped to the same surface in H and related by a local U(2)
transformation. If this transformation acted on the octonionic spinor basis, it would be a
gauge transformation but this is not the case: constant octonion basis serves as a gauge
fixing. Also the space-time surface in M8 changes but preserves its ”algebraic shape”.

6.2 How the Yangian symmetry could emerge in TGD?

Yangian symmetry [A5, A7] appears in completely 2-D systems. The article [?] (https://arxiv.
org/pdf/1606.02947.pdf) gives a representation which is easy to understand by a physicist like
me whereas the Wikipedia article remains completely incomprehensible to me.

Yangian symmetry is associated with 2-D QFTs which tend to be physically rather uninterest-
ing. The scattering is in forward direction and only phase shifts are induced. There is no particle
creation. Yangian symmetry appears in 4-D super gauge theories [?] and in the twistor approach
to scattering amplitudes [?, ?, ?, ?]. I have tried to understand the role of Yangian symmetry in
TGD [L3].

6.2.1 Yangian symmetry from octonionic automorphisms

An attractive idea is that the Yangian algebra having co-algebra structure could allow to construct
poly-local conserved charges and that these could define vertex operators in M8.

1. Yangian symmetry appears in 2-D systems only. In TGD framework strings world sheets
could be these systems as co-commutative 2-surfaces of co-associative space-time surface.

2. What is required is that there exists a conserved current which can be also regarded as
a flat connection. In TGD the flat connection would a connection for G2,c or its subgroup
associated with the map taking standard co-associative sub-space of Oc for which the number
theoretic norm squared is real and has Minkowski signature (M4 defined by the canonical
choice {I2, iI3, iI5, iI7}.
The recent picture about the solution of co-associativity conditions fixes the subgroup of G2

to SU(3). X4 corresponds to element g of the local SU(3) acting on preferred M4 ⊂M8
c with

the additional condition that the 4-surface X4 ⊂ M8 is invariant under U(2) ⊂ SU(3) so
that each point of X4 corresponds to a CP2 point. At the mas shells as roots of a polynomial
P , g reduces to unity and the 4-D tangent space is parallel to the preferred M4 on which g
acts.

One can induce this flat connection to string world sheet and holomorphy of g at this surface
would guarantee the conservation of the current given by j0) = g−1dg.

3. Under these conditions the integral of the time component of current along a space-like curve
at string world sheets with varying end point is well-defined and the current

j1)(x) = εµνj0),ν(x)− 1

2
[jµ0)(x, t),

∫ x

j00)(t, y)dy]

is conserved. This is called the current at first level. Note that the currents have values in
the Lie algebra considered. It is essential that the integration volume is 1-D and its boundary
is characterized by a value of single coordinate x.

https://arxiv.org/pdf/1606.02947.pdf
https://arxiv.org/pdf/1606.02947.pdf
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4. One can continue the construction by replacing j0 with j1 in the above formula and one
obtains an infinite hierarchy of conserved currents jn) defined by the formula

jn+1)(x) = εµνjn),ν(x)− 1

2
[jµn)(x, t),

∫ x

j0n)(t, y)dy] (6.1)

The corresponding conserved charges Qn define the generators of Yangian algebra.

5. 2-D metric appears in the formulas. In the TGD framework one does not have Riemann
metric - only the number theoretic metric which is real only at real space-time surfaces
already discussed. Is the (effective) 2-dimensionality and holomorphy enough to avoid the
possible problems? Holomorphy makes sense also number theoretically and implies that the
metric disappears from the formulas for currents. Also current conservation reduces to the
statement of that current is equivalent to complex differential form.

6. Conserved charges would however require a 1-D integral and number theory does not favor
this. The solution of the problem comes from the observation that one can construct a
slicing of string world sheet to time-like curves as Hamiltonian orbits with Hamiltonian
belonging to the Yangian algebra and defined by the conserved current by standard formula
jα = Jαβ∂βH in terms of Kähler form defined by the 2-D Kähler metric of string world
sheet. This generalizes to Minkowskian signature and also makes sense for partonic 2-surfaces.
Hamiltonians become the classical conserved charges constant along the Hamiltonian orbit.
This gives an infinite hierarchy of conserved Hamiltonian charges in involution. Hamiltonian
can be any combination of the Hamiltonians in the hierarchy and labelled by a non-negative
integer and the label of G2,c generator. This is just what integrability implied by Yangian
algebra means. Co-associativity and co-commutativity would be the deeper number theoretic
principles implying the Yangian symmetry.

7. Could one formulate this argument in dimension D = 4? Could one consider instead of local
current the integral of conserved currents over 2-D surfaces labelled by single coordinate x
for a given value of t? If the space-time surface in M8 (analog of Fermi sphere) allows a
slicing by orthogonal strings sheets and partonic 2-surfaces, one might consider the fluxes of
the currents g−1dg over the 2-D partonic 2-surfaces labelled by string coordinates (t, x) as
effectively 2-D currents, whose integrals over x would give the conserved charge. Induced
metric should disappear from the expressions so that fluxes of holomorphic differential forms
over partonic 2-surface at (t, x) should be in question. Whether this works is not clear.

One should interpret the above picture at the level of momentum space instead of ordinary
space-time. The roles of momentum space and space-time are changed. At this point, one can
proceed by making questions.

1. One should find a representation for the algebra of the Hamiltonians associated with g(x)
defining the space-time surface. The charges are associated with the slicings of string world
sheets or partonic 2-surfaces by the orbits of Hamiltonian dynamics defined by a combina-
tion of conserved currents so that current conservation becomes charge conservation. These
charges are labelled by the coordinate x characterizing the slices defined by the Hamilto-
nian orbits and from these one can construct a non-local basis discrete basis using Fourier
transform.

2. What the quantization of these classical charges - perhaps using fermionic oscillator op-
erators in ZEO picture for which the local commutators vanish - could mean (only the
anti-commutators of creation operators associated with the opposite half-cones of CD with
opposite momenta are non-vanishing)? Do the Yangian charges involve only creation opera-
tors of either type with the same 8-momentum as locality at M8 level suggests? Locality is
natural l since these Yangian charges are analogous to charges constructed from local currents
at space-time level.
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3. Could the Yangian currents give rise to poly-local charges assignable to the set of vertices in
a cognitive representation and labelled by momenta? Could the level n somehow correspond
to the number n of the vertices and could the co-product ∆ generate the charges? What
does the tensor product appearing in the co-product really mean: do the sector correspond
to different total quark numbers for the generators? Is it a purely local operation in M8

producing higher monomials of creation operators with the same momentum label or is
superposition over Hamiltonian slices by Fourier transform possibly involved ?

6.2.2 How to construct quantum charges

One should construct quantum charges. In the TGD framework the quantization of g(x) is not an
attractive idea. Could one represent the charges associated with g it in terms of quark oscillator
operators induced from the second quantized E8 spinors so that propagators would emerge in the
second quantization? Analogs of Kac Moody representations but with a non-negative spectrum of
conformal weights would be in question. Also super-symplectic algebra would have this property
making the formulation of the analogs of gauge conditions possible, and realizing finite measure-
ment resolution in terms of hierarchy of inclusions of hyper-finite factors of type II1 [K15, K5].
The Yangian algebra for G2,c or its subgroup could be the counterpart for these symmetries at the
level of H.

The following proposal for the construction for the charges and super-charges of Yangian algebra
in terms of quark oscillator operators is the first attempt.

1. One knows the Lie-algebra part of Yangian from the Poisson brackets of Hamiltonians asso-
ciated with string world sheet slicing and possibly also for a similar slicing for partonic 2-
surfaces. One should construct a representation in terms of quark ocillator operators in ZEO
framework for both Lie-algebra generators and their super-counterparts. Also co-product
should be needed.

2. The oscillator operators of E8 spinor field located at the points of X4 are available. The
charges must be local and describe states with non-linear quarks and antiquarks.

One must construct conserved charges as currents associated with the Hamiltonian orbits.
Bosonic currents are bilinear in quark and antiquark oscillator operators and their super
counterparts linear in quark or antiquark oscillator operators.

3. Since the system is 2-D one can formally assume in Euclidian signature (partonic 2-surface)
Kähler metric gzz and Kähler form Jzz = igzz, which is antisymmetric and real in real
coordinates (Jkl = −J lk) knowing that they actually disappear from the formulas. One
can also define gamma matrices Γα = γk∂αp

k as projections of embedding space gamma
matrices to the string world sheet. In the case of string world sheet one can introduce
light-like coordinates (u, v) as analogous of complex coordinates and the only non-vanishing
component of the metric is guv.

4. The claim is that the time components Jun the bosonic currents

Jαn = b†pv(p)ΓαHnu(p)a† (6.2)

at the Hamiltonian curves with time coordinate t define conserved charges (α ∈ {u, v} at the
string world sheet).

Remark: vp corresponds to momentum −p for the corresponding plane wave in the Fourier
expansion of quark field but the physical momentum is p and the point of M8 that this state
corresponds.

Therefore one should have

Jun
du

= 0 (6.3)

One can check by a direct calculation what additional conditions are possibly required by
this condition.
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5. The first point is that Hn is constant if v = constant coordinate line is a Hamiltonian orbit.
Also oscillator operators creating fermions and antifermions are constant. The derivative of
u(p) is

du(p)

du
=
∂u(p)

∂pk

dpk

du
.

. up is expressible as up = Dua, where D is a massless Dirac operator in M8 and ua is a
constant 8-D quark spinor with fixed chirality. D is sum of M4- and E4 parts and M4 part
is given by D(M4) = γkpk so that one has dpk/dt = γrdp

r/dt.

This gives

d(ΓuHnu(p))

du
= guvγk∂vp

k du(p)

du
= guv∂up · ∂vp .

If the tangent curves of u and v are orthogonal in the induced metric and v = 0 constant
lines are Hamiltonian orbits the bosonic charges are conserved.

One can perform a similar calculation for ddv(p)du and the result is vanishing.

One must also have dguv/du = 0. This should reduce to the covariant constancy of guv. If
the square root of the metric determinant for string world sheet is included it cancels guv.

6. From the bosonic charges one construct corresponding fermionic super charges by replacing
the fermionic or anti-quark oscillator operator part with a constant spinor.

The simplest option is that partonic 2-surfaces contain these operators at points of cognitive
representation. One can ask whether co-product could forces local operators having a higher quark
number. What is clear that this number is limited to the number n = 0 of spin degrees of n = 8.

1. The commutators of bosonic and fermionic charges are fermionic charges and co-product
would in this case be a superposition of tensor products of bosonic and fermionic charges,
whose commutator gives bosonic charge. Now however the bosonic and fermionic charges
commute in the same half-cone of CD. Does this mean that the tensor product in question
must be tensor product for the upper and lower half-cones of CD?

For instance, in the fermionic case one would obtain superposition over pairs of fermions
at say lower half-cone and bosons at the upper half-cone. The momenta would be opposite
meaning that a local bosonic generator would have total momentum 2p at point p and
fermionic generator at opposite cone would have momentum −p. The commutator would
have momentum p as required. In this manner one could create bosons in either half-cone.

2. One can also assign to the bosonic generators a co-product as a pair of bosonic generators
in opposite half-cones commuting to the bosonic generator. Assume that bosonic generator
is at lower half-cone. Co-product must have a local composite of 4 oscillator operators in
the lower half-cone and composite of 2 oscillator operators in the upper half-cone. Their
anti-commutator contracts two pairs and leaves an operator of desired form. It therefore
seems.

Statistics allows only generators with a finite number of oscillator operators corresponding
to 8 spin indices, which suggests an interpretation in terms of the proposed SUSY [L14].
The roots of P are many-sheeted coverings of M4 and this means that there are several
8-momenta with the same M4 projection. This degree of freedom corresponds to Galois
degrees of freedom.

3. Only momenta in cognitive representation are allowed and momentum is conserved. The
products of generators appearing in the sum defining the co-product of a given generator
T , which is a local composite of quarks, would commute or anti-commute to T , and their
momenta would sum-up to the momentum associated with T . The co-product would be
poly-local and receive contributions from the points of the cognitive representation. Also
other quantum numbers are conserved.
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6.2.3 About the physical picture behind Yangian and definition of co-product

The physical picture behind the definition of Yangian in the TGD framework differs from that
adopted by Drinfeld, who has proposed - besides a general definition of the notion of quantum
algebra - also a definition of Yangian. In the Appendix Drinfeld’s definition is discussed in detail:
this discussion appears almost as such in [L3].

1. Drinfeld proposes a definition in terms of a representation in terms of generators of a free
algebra to which one poses relations [?]. Yangian can be seen as an analog of Kac-Moody
algebra but with generators labelled by integer n ≥ 0 as an analog of non-negative conformal
weight. Also super-symplectic algebra has this property and its Yangianization is highly
suggestive. The generators of Yangian as algebra are elements JAn , n ≥ 0, with n = 0 and
n = 1. Elements JA0 define the Lie algebra and elements JA1 transform like Lie-algebra
elements so that commutators at this level are fixed.

Remark: I have normally used generator as synonym for the element of Lie algebra: I hope
that this does not cause confusion

The challenge is to construct higher level generators JAn . Their commutators with JA0 with
JAn are fixed and also the higher level commutators can be guessed from the additivity of n
and the transformation properties of generators JAn . The commutators are very similar to
those for Kac-Moody algebra. In the TGD picture the representation as Hamiltonians fixes
these commutation relations as being induced by a Poisson bracket. The Lie-algebra part of
Yangian can be therefore expressed explicitly.

2. The challenge is to understand the co-product ∆. The first thing to notice is that ∆ is a
Lie algebra homomorphism so that one has ∆(XY ) = ∆(X)∆(Y ) plus formulas expressing
linearity. The intuitive picture is that ∆ adds a tensor factor and is a kind of time reversal
of the product conserving total charges and the total value of the weight n. Already this
gives a good overall view about the general structure of the co-commutation relations.

The multiplication of generators by the unit element Id of algebra gives the generator
itself so that ∆(JA) should involve part Id⊗ JA ⊕ JA ⊗ Id. Generators are indeed additive
in the ordinary tensor product for Lie-algebra generators - for instance, rotation generators
are sums of those for the two systems. However, one speaks of interaction energy: could
the notion of ”interaction quantum numbers” make sense quite generally. Could this notion
provide some insights to proton spin puzzle [?] meaning that quark spins do not seem to
contribute considerably to proton spin? A possible TGD based explanation is in terms of
angular momentum associated with the color magnetic flux tubes [K9], and the formulation
of this notion at M8 level could rely on the notion of ”interaction angular momentum”.

The time reversal rule applied to [JmA , J
n
B ] ∝ fABCJ

m+n
C suggests that ∆(TnA) contains a

term proportional to fCBAJ
m
C ⊗ J

n−m
B . This would suggest that co-product as a time

reversal involves also in the case of J0
A the term k1fCBAJ

0
C ⊗ J0

B , where k1 as an analog
of interaction energy.

Drinfeld’s proposal does not involve this term in accordance with Drinfeld’s intuition that
co-product represents a deformation of Lie-algebra proportional to a parameter denoted by
~, which need not (and cannot!) actually correspond to ~. This view could be also defended
by the fact that JA0 do not create physical states but only measures the quantum numbers
generated by JnA, n > 0. TGD suggests interpretation as the analog of the interaction
energy.

3. In Drinfeld’s proposal, the Lie-algebra commutator is taken to be [J0
A, J

0
B ] = kfABCJ

0
C ,

k = 1. Usually one thinks that generators have the dimension of ~ so that dimensional
consistency requires k = ~. It seems that Drinfeld puts ~ = 1 and the ~ appearing in the
co-product has nothing to do with the actual ~.

The conservation of dimension applied to the co-product would give k1 = 1/~! What could
be the interpretation? The scattering amplitudes in QFTs are expanded in powers of gauge
coupling strengths α = g2/4π~. In ZEO co-product would be essential for obtaining non-
trivial scattering amplitudes and the expansion in terms of 1/~ would emerge automatically
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from the corrections involving co-products - in path integral formalism this expansion
emerges from propagors

This view would also conform with the vision that Mother Nature loves her theoreticians.
The increase of heff/h0 = n as dimension of extension of rationals would be Mother
Nature’s way to make perturbation theory convergent [K4]. The increase of the degree of P
defining the space-time surface increases the algebraic complexity of the space-time surface
but reduces the value of α as a compensation.

4. Drinfeld gives the definition of Yangian in terms of relations for the generating elements
with weight n = 0 and n = 1. From these one can construct the generators by applying ∆
repeatedly. Explicit commutation relations are easier to understand by a physicist like me,
and I do not know whether the really nasty looking representation relations - Drinfeld himself
calls ”horrible” [?] - are the only manner to define the algebra. In the TGD framework the
definition based on the idea about co-product as a strict time reversal of product would mean
deviation in the n = 0 sector giving rise to an interaction term having natural interpretation
as analog of interaction energy.

5. Drinfeld proposes also what is known as Drinfeld’s double [A8] (see http://tinyurl.com/

y7tpshkp) as a fusion of two Hopf algebras and allowing to see product and co-product as
duals of each other. The algebra involves slight breaking of associativity characterized by
Drinfeld’s associator. ZEO suggests [K7] that the members of Drinfeld’s double correspond to
algebra and co-algebra located at the opposite half-cones and there are two different options.
Time reversal occurring in ”big” state functions reductions (BSFRs) would transform the
members to each other and change the roles of algebra and co-algebra (fusion would become
decay).

In the TGD framework there is also an additional degree of freedom related to the momenta
in cognitive representation, which could be regarded also as a label of generators. The idea that
commutators and co-commutators respect conservation of momentum allows the fixing of the
general form of ∆. Co-product of a generator at momentum p ina given half-cone would be
in the opposite half-cone and involve sum over all momentum pairs of generators at p1 and p2
with the constraint p1 + p2 + p = 0.

Summation does not make sense for momenta in the entire extension of rationals. The situation
changes if the momenta are algebraic integers for the extension of rationals considered: quarks
would be particles in a number theoretic box. In the generic case, very few terms - if any -
would appear in the sum but for space-time surfaces as roots of octonionic polynomials this is
not the case. The co-products would as such define the basic building bricks of the scattering
amplitudes obtained as vacuum expectation reducing the pairs of fermions in opposite half-cones
to propagators.

7 Appendix: Some mathematical background about Yan-
gians

In the following necessary mathematical background about Yangians are summarized.

7.1 Yang-Baxter equation (YBE)

YBE has been used for more than four decades in integrable models of statistical mechanics
of condensed matter physics and of 2-D quantum field theories (QFTs) [A7]. It appears
also in topological quantum field theories (TQFTs) used to classify braids and knots [?] (see
http://tinyurl.com/mcvvcqp) and in conformal field theories and models for anyons. Yangian
symmetry appears also in the twistor Grassmann approach to scattering amplitudes [?, ?] and thus
involves YBE. At the same time new invariants for links were discovered and a new braid-type
relation was found. YBEs emerged also in 2-D conformal field theories.

Yang-Baxter equation (YBE) has a long history described in the excellent introduction to YBE
by Jimbo [?] (see http://tinyurl.com/l4z6zyr, where one can also find a list of references).

http://tinyurl.com/y7tpshkp
http://tinyurl.com/y7tpshkp
http://tinyurl.com/mcvvcqp
http://tinyurl.com/l4z6zyr
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YBE was first discovered by McGuire (1964) and 3 years later by Yang in a quantum mechanical
many-body problem involving a delta function potential

∑
i<j δ(xi − xj). Using Bethe’s Ansatz

for building wave functions they found that the scattering matrix factorized that it could be
constructed using as a building brick 2-particle scattering matrix - R-matrix. YBE emerged for
the R-matrix as a consistency condition for factorization. Baxter discovered in 1972 a solution of
the eight vertex model in terms of YBE. Zamolodchikov pointed out that the algebraic mechanism
behind factorization of 2-D QFTs is the same as in condensed matter models.

1978-1979 Faddeev, Sklyanin, and Takhtajan proposed a quantum inverse scattering method
as a unification of classical and quantum integrable models. Eventually the work with YBE led
to the discovery of the notion of quantum group by Drinfeld. Quantum group can be regarded
as a deformation Uq(g) of the universal enveloping algebra U(g) of Lie algebra. Drinfeld also
introduced the universal R-matrix, which does not depend on the representation of algebra used.

R-matrix satisfying YBE is now the common aspect of all quantum algebras. I am not a
specialist in YBE and can only list the basic points of Jimbo’s article. The interested reader can
look for details and references in the article of Jimbo.

In 2-D quantum field theories R-matrix R(u) depends on one parameter u identifiable as
hyperbolic angle characterizing the velocity of the particle. R(u) characterizes the interaction
experienced by two particles having delta function potential passing each other (see the figure of
http://tinyurl.com/kyw6xu6). In 2-D quantum field theories and in models for basic gate
in topological quantum computation the R-matrix is unitary. R-matrix can be regarded as an
endomorphism mapping V1 ⊗ V2 to V2 ⊗ V1 representing permutation of the particles.

7.1.1 YBE

R-matrix satisfies Yang-Baxter equation (YBE)

R23(u)R13(u+ v)R12(v) = R12(v)R13(u+ v)R23(u) (7.1)

having interpretation as associativity condition for quantum algebras.
At the limit u, v →∞ one obtains R-matrix characterizing braiding operation of braid strands.

Replacement of permutation of the strands with braiding operation replaces permutation group for
n strands with its covering group. YBE states that the braided variants of identical permutations
(23)(13)(12) and (12)(13)(23) are identical.

The equations represent n6 equations for n4 unknowns and are highly over-determined so that
solving YBE is a difficult challenge. Equations have symmetries, which are obvious on the basis
of the topological interpretation. Scaling and automorphism induced by linear transformations
of V act as symmetries, and the exchange of tensor factors in V ⊗ V and transposition are
symmetries as also shift of all indices by a constant amount (using modulo N arithmetics).

One can pose to the R-matrix some boundary condition. For V ⊗ V the condition states that
R(0) is proportional to the permutation matrix P for the factors.

7.1.2 General results about YBE

The following lists general results about YBE.

1. Belavin and Drinfeld proved that the solutions of YBE can be continued to meromorphic
functions in the complex plane with poles forming an Abelian group. R-matrices can be
classified to rational, trigonometric, and elliptic R-matrices existing only for sl(n). Rational
and trigonometric solutions have a pole at origin and elliptic solutions have a lattice of
poles. In [?] (see http://tinyurl.com/l4z6zyr) simplest examples about R-matrices for
V1 = V2 = C2 are discussed, one of each type.

2. In [?] it is described how the notions of R-matrix can be generalized to apply to a collection
of vector spaces, which need not be identical. The interpretation is as commutation relations
of abstract algebra with co-product ∆ - say quantum algebra or Yangian algebra. YBE
guarantees the associativity of the algebra.

http://tinyurl.com/kyw6xu6
http://tinyurl.com/l4z6zyr
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3. One can define quasi-classical R-matrices as R-matrices depending on Planck constant like
parameter ~ (which need have anythingto do with Planck constant) such that small values of
u one has R = constant× (I + ~r(u) +O(~2)). r(u) is called classical r-matrix and satisfies
CYBE conditions

[r12(u), r13(u+ v)] + [r12(u), r23(v)] + [r13(u+ v), r23(v)] = 0

obtained by linearizing YBE. r(u) defines a deformation of Lie-algebra respecting Jacobi-
identities. There are also non-quasi-classical solutions. The universal solution for r-matrix
is formulated in terms of Lie-algebra so that the representation spaces Vi can be any repre-
sentation spaces of the Lie-algebra.

4. Drinfeld constructed quantum algebras Uq(g) as quantized universal enveloping algebras
Uq(g) of a Lie algebra g. One starts from a classical r-matrix r and Lie algebra g. The
idea is to perform a “quantization” of the Lie-algebra as a deformation of the universal en-
veloping algebra Uq(g) of U(g) by r. Drinfeld introduces a universal R-matrix independent
of the representation used. This construction will not be discussed here since it does not
seem to be as interesting as Yangian: in this case co-product ∆ does not seem to have a
natural interpretation as a description of interaction. The quantum groups are character-
ized by parameter q ∈ C. For a generic value the representation theory of q-groups does not
differ from the ordinary one. For roots of unity situation changes due to degeneracy caused
by the fact qN = 1 for some N .

5. The article of Jimbo discusses also a fusion procedure initiated by Kulish, Restetikhin,
and Sklyanin allowing to construct new R-matrices from existing one. Fusion generalizes
the method used to construct group representation as powers of fundamental representation.
Fusion procedure constructs the R-matrix in W⊗V 2, where one has W = W1⊗W2 ⊂ V ⊗V 1.
Picking W is analogous to picking a subspace of tensor product representation V ⊗ V 1.

7.2 Yangian

Yangian algebra Y (g(u)) is associative Hopf algebra (see http://tinyurl.com/qfl8dwu) that is
bi-algebra consisting of associative algebra characterized by product µ: A ⊗ A → A with unit
element 1 satisfying µ(1, a) = a and co-associative co-algebra consisting of co-product ∆A ∈ A⊗A
and co-unit ε : A→ C satisfying ε◦∆(a) = a. Product and co-product are “time reversals” of each
other. Besides this one has antipode S as algebra anti-homomorphism S(ab) = S(b)S(a). YBE
has interpretation as an associativity condition for co-algebra (∆ ⊗ 1) ◦∆ = (1 ⊗∆) ◦∆. Also ε
satisfies associativity condition (ε⊗ 1) ◦∆ = (1⊗ ε) ◦∆.

There are many alternative formulations for Yangian and twisted Yangian listed in the slides of
Vidas Regelskis at http://tinyurl.com/ms9q8u4. Drinfeld has given two formulations and there
is FRT formulation of Faddeev, Restetikhin and Takhtajan.

Drinfeld’s formulation [?] (see http://tinyurl.com/qfl8dwu) involves the notions of Lie bi-
algebra and Manin triple, which corresponds to the triplet formed by half-loop algebras with
positive and negative conformal weights, and full loop algebra. There is isomorphism mapping
the generating elements of positive weight and negative weight loop algebra to the elements of
loop algebra with conformal weights 0 and 1. The integer label n for positive half loop algebra
corresponds in the formulation based on Manin triple to conformal weight. The alternative inter-
pretation for n + 1 would be as the number of factors in the tensor power of algebra and would
in TGD framework correspond to the number of partonic 2-surfaces. In this interpretation the
isomorphism becomes confusing.

In any case, one has two interpretations for n + 1 ≥ 1: either as parton number or as oc-
cupation number for harmonic oscillator having interpretation as bosonic occupation number in
quantum field theories. The relationship between Fock space description and classical description
for n-particle states has remained somewhat mysterious and one can wonder whether these two
interpretations improve the understanding of classical correspondence (QCC).

http://tinyurl.com/qfl8dwu
http://tinyurl.com/ms9q8u4
http://tinyurl.com/qfl8dwu
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7.2.1 Witten’s formulation of Yangian

The following summarizes my understanding about Witten’s formulation of Yangian for N = 4
SUSY [?], which does not mention explicitly the connection with half loop algebras and loop algebra
and considers only the generators of Yangian and the relations between them. This formulation
gives the explicit form of ∆ and looks natural, when n corresponds to parton number. Also
Witten’s formulation for Super Yangian will be discussed.

However, it must be emphasized that Witten’s approach is not general enough for the purposes
of TGD. Witten uses the identification ∆(JA1 ) = fABCJ

B
0 × JC0 instead of the general expression

∆(JA1 ) = JA1 ⊗ 1 + 1× JA1 + fABCJ
B
0 × JC0 needed in TGD strongly suggested by the dual roles of

the super-symplectic conformal algebra and super-conformal algebra associated with the light-like
partonic orbits realizing generalized EP. There is also a nice analogy with the conformal symmetry
and its dual twistor Grassmann approach.

The elements of Yangian algebra are labelled by non-negative integers so that there is a
close analogy with the algebra spanned by the generators of Virasoro algebra with non-negative
conformal weight. The Yangian symmetry algebra is defined by the following relations for the
generators labeled by integers n = 0 and n = 1. The first half of these relations discussed in very
clear manner in [?] follows uniquely from the fact that adjoint representation of the Lie algebra
is in question

[
JA, JB

]
= fABC JC ,

[
JA, J (1)B

]
= fABC J (1)C . (7.2)

Besides this Serre relations are satisfied. These have more complex form and read as

[
J (1)A,

[
J (1)B , JC

]]
+
[
J (1)B ,

[
J (1)C , JA

]]
+
[
J (1)C ,

[
J (1)A, JB

]]
=

1

24
fADKfBELfCFMfKLM{JD, JE , JF } ,[[

J (1)A, J (1)B
]
,
[
JC , J (1)D

]]
+
[[
J (1)C , J (1)D

]
,
[
JA, J (1)B

]]
=

1

24
(fAGLfBEMfCDK

+fCGLfDEMfABK )fKFNfLMN{JG, JE , JF } .

(7.3)

The indices of the Lie algebra generators are raised by invariant, non-degenerate metric tensor
gAB or gAB . {A,B,C} denotes the symmetrized product of three generators.

The right hand side often has coefficient ~2 instead of 1/24. ~ need not have anything to do
with Planck constant and as noticed in the main text has dimension of 1/~. The Serre relations
give constraints on the commutation relations of J (1)A. For J (1)A = JA the first Serre relation
reduces to Jacobi identity and second to the antisymmetry of the Lie bracket. The right hand
side involved completely symmetrized trilinears {JD, JE , JF } making sense in the universal
covering of the Lie algebra defined by JA.

Repeated commutators allow to generate the entire algebra, whose elements are labeled by a
non-negative integer n. The generators obtained in this manner are n-local operators arising in
(n − 1)-commutator of J (1): s. For SU(2) the Serre relations are trivial. For other cases the
first Serre relation implies the second one so the relations are redundant. Why Witten includes
it is for the purpose of demonstrating the conditions for the existence of Yangians associated with
discrete one-dimensional lattices (Yangians exist also for continuum one-dimensional index).

Under certain consistency conditions, a discrete one-dimensional lattice provides a repre-
sentation for the Yangian algebra. One assumes that each lattice point allows a representation
R of JA so that one has JA =

∑
i J

A
i acting on the infinite tensor power of the representation

considered. The expressions for the generators J1A in Witten’s approach are given as

J (1)A = fABC
∑
i<j

JBi J
C
j . (7.4)
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This formula gives the generators in the case of conformal algebra. This representation exists
if the adjoint representation of G appears only one in the decomposition of R ⊗ R. This is the
case for SU(N) if R is the fundamental representation or is the representation of by kth rank
completely antisymmetric tensors.

This discussion does not apply as such to N = 4 case the number of lattice points is finite
and corresponds to the number of external particles so that cyclic boundary conditions are needed
guarantee that the number of lattice points reduces effectively to a finite number. Note that the
Yangian in color degrees of freedom does not exist for SU(N) SYM.

As noticed, Yangian algebra is a Hopf algebra and therefore allows co-product. The co-product
∆ is given by

∆(JA) = JA ⊗ 1 + 1⊗ JA ,

∆(J (1)A) = J (1)A ⊗ 1 + 1⊗ J (1)A + fABCJ
B ⊗ JC

(7.5)

∆ allows to imbed Lie algebra into the tensor product in a non-trivial manner and the non-
triviality comes from the addition of the dual generator to the trivial co-product. In the case that
the single spin representation of J (1)A is trivial, the co-product gives just the expression of the
dual generator using the ordinary generators as a non-local generator. This is assumed in the
recent case and also for the generators of the conformal Yangian.

7.2.2 Super-Yangian

Also the Yangian extensions of Lie super-algebras make sense. From the point of physics especially
interesting Lie super-algebras are SU(m|m) and U(m|m). The reason is that PSU(2, 2|4) (P
refers to “projective” ) acting as super-conformal symmetries of N = 4 SYM and this super group
is a real form of PSU(4|4). The main point of interest is whether this algebra allows Yangian
representation and Witten demonstrated that this is indeed the case [?].

These algebras are Z2 graded and decompose to bosonic and fermionic parts which in general
correspond to n- and m-dimensional representations of U(n). The representation associated with
the fermionic part dictates the commutation relations between bosonic and fermionic generators.
The anti-commutator of fermionic generators can involve besides the unit operator also bosonic
generators if the symmetrized tensor product in question contains adjoint representation. This
is the case if fermions are in the fundamental representation and its conjugate. For SU(3) the
symmetrized tensor product of adjoint representations contains adjoint (the completely symmetric
structure constants dabc) and this might have some relevance for the super SU(3) symmetry.

The elements of these algebras in the matrix representation (no Grassmann parameters in-
volved) can be written in the following form

x =

(
a b
c d

)
.

a and d representing the bosonic part of the algebra are n × n matrices and m × m matrices
corresponding to the dimensions of bosonic and fermionic representations. b and c are fermionic
matrices are n ×m and m × n matrices, whose anti-commutator is the direct sum of n × n
and n × n matrices. For n = m bosonic generators transform like Lie algebra generators of
SU(n)× SU(n) whereas fermionic generators transform like n⊗ n⊕ n⊗ n under SU(n)× SU(n).
Supertrace is defined as Str(x) = Tr(a) − Tr(b). The vanishing of Str defines SU(n|m). For
n 6= m the super trace condition removes the identity matrix and PU(n|m) and SU(n|m) are the
same. This does not happen for n = m: this is an important delicacy since this case corresponds
to N = 4 SYM. If any two matrices differing by an additive scalar are identified (projective scaling
as a new physical effect) one obtains PSU(n|n) and this is what one is interested in.

Witten shows that the condition that adjoint is contained only once in the tensor product R⊗R
holds true for the physically interesting representations of PSU(2, 2|4) so that the generalization of
the bilinear formula can be used to define the generators of J (1)A of super Yangian of PU(2, 2|4).
The defining formula for the generators of the Super Yangian reads as
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J
(1)
C = gCC′J (1)C′

= gCC′fC
′

AB

∑
i<j

JAi J
B
j

= gCC′fC
′

ABg
AA′

gBB
′ ∑
i<j

J iA′J
j
B′ .

(7.6)

Here gAB = Str(JAJB) is the metric defined by super trace and distinguishes between PSU(4|4)
and PSU(2, 2|4). In this formula both generators and super generators appear.

8 Conclusions

M8 −H duality plays a crucial role in quantum TGD and this motivated a critical study of the
basic assumptions involved.

8.1 Co-associativity is the only viable option

The notion of associativity of the tangent or normal space as a number theoretical counterpart of
a variational principle. This is not enough in order to have M8 −H duality. The first guess was
that the tangent space is associative and contains a commutative 2-D sub-manifold to guarantee
M8 −H duality.

1. The cold shower came as I learned that 4-D associative sub-manifolds of quaternion spaces are
geodesic manifolds and thus trivial. Co-associativity is however possible since any distribution
of associative normal spaces integrates to a sub-manifold. Typically these sub-manifolds are
minimal surfaces, which conforms with the physical intuitions. Therefore the surface X4

r

given by holography should be co-associative. By the same argument space-time surface
contains string world sheets and partonic 2-surfaces as co-complex surfaces.

2. X = ReQ(o) = 0 and Y = ImQ(P ) = 0 allow M4 and its complement as associative/co-
associative subspaces of Oc. The roots P = 0 for the complexified octonionic polynomials
satisfy two conditions X = 0 and Y = 0.

Surprisingly, universal solutions are obtained as brane-like entities X6
c with real dimension 12,

having real projection X6
r (”real” means that the number theoretic complex valued octonion

norm squared is real valued).

Equally surprisingly, the non-universal solutions to the conditions to X = 0 correspond
complex mass shells with real dimension 6 rather than 8. The solutions to X = Y = 0
correspond to common roots of the two polynomials involved and are also 6-D complex mass
shells.

The reason for the completely unexpected behavior is that the equations X = 0 and Y = 0
are reduced by Lorentz invariance to equations for the ordinary roots of polynomials for the
complexified mass squared type variable. The intersection is empty unless X and Y have a
common root and X4

r belongs to X6
r for a common root.

How to associate to the polynomial P a real 4-surface satisfying the conditions making M8−H-
duality?

1. P would fix complex mass shells in terms of its roots but not the 4-surfaces, contrary to the
original expectations. The fact that the 3-D mass shells belong to the same M4 and also
their tangent spaces are parallel to M4 together with rationality conditions for local SU(3)
element suggests number theoretical holography.

2. The key observation is that G2 as the automorphism group of octonions respects the co-
associativity of the 4-D real sub-basis of octonions. Therefore a local G2 gauge transformation
applied to a 4-D co-associative sub-space M c ⊂ Oc gives a co-associative four-surface as a
real projection. Also octonion analyticity allows G2 gauge transformation. If X4 is the image
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M4 by a local SU(3) element such that it also remains invariant under SU(2) at each point,
one obtains automatically M8 −H duality.

The image of X4 under M8 − H duality depends on g so that gauge invariance is not in
question. The plausible interpretation in case of SU(3) is in terms of Kac-Moody - or even
Yangian symmetry. Note that at QFT limit the gauge potentials defined at H level as
projections of Killing vector fields of SU(3) are replaced by their sums over parallel space-
time sheets to give gauge fields as the space-time sheets are approximated with a single region
of Minkowski space.

The study of octonionic Dirac equation shows that the solutions correspond to momenta at
mass shells m2 = rn obtained as roots of the polynomial P and that co-associativity is an essential
for the octonionic Dirac equation. This conforms with the reduction of everything to algebraic
conditions at the level of M8.

8.2 Construction of the momentum space counter parts of scattering
amplitudes in M8

The construction of scattering amplitudes in M8 was the main topic of this article. ZEO and the
interpretation of M8 as a momentum space analogous to the interior of the Fermi sphere give
powerful constraints on the scattering amplitudes. 0

1. The fact that SU(3) gauge transformation with boundary conditions defined by the mass
shells as roots of polynomial P defines space-time surface and the corresponding gauge field
vanishes plus the fact that at string world sheets the gauge potential defines a conserved
current by holomorphy strongly suggest Yangian symmetry differing from Kac-Moody sym-
metry in that the analogs of conformal weights are non-negative. This leads to a proposal
for how vertex operators can be constructed in terms of co-product using fermionic oscillator
operators but with Kronecker delta anti-commutators since the cognitive representation is
discrete.

2. The main objection is that the scattering amplitudes are trivial if quark momenta belong to
cognitive representations, which are finite in the generic case. This would be the case also
in 2-D integrable theories. The objection can be circumvented. First, the huge symmetries
imply that cognitive representations can contain a very large - even an infinite - number
of points. At partonic 2-surface this number could reduce to finite. Equally importantly,
local composites of quark oscillation operators with collinear quark momenta are possible
and would be realized in terms of representations of Yangian algebra for G2,c serving as the
counterpart for super-symplectic and Kac-Moody algebras at the level of H.

3. ZEO leads to a concrete proposal for the construction of zero energy states - equivalently
scattering amplitudes - by using a representation of Yangian algebra realized in terms of
positive and negative energy quarks in opposite half-cones. Co-product plays a key role in
the construction. Also the proposed local composites of quarks proposed in [L14] make
sense.

4. Momentum conservation conditions and mass shell conditions combined with the requirement
that the momenta are algebraic integers in the extension of rationals determined by the
polynomial P look rather difficult to solve. These conditions however linearize in the sense
that one can express the allowed momenta as squares of integer quaternions.

Also the construction of scattering amplitudes in M8 is considered. ZEO and the interpretation
of M8 as a momentum space analogous to the interior of the Fermi sphere give powerful constraints
on the scattering amplitudes. The fact that G2,c gauge transformation defines space-time surface
and the corresponding gauge field vanishes plus the fact that at string world sheets the gauge
potential defines a conserved current by holomorphy strongly suggest Yangian symmetry differering
from Kac-Moody symmetry in that the analogs of conformal weights are non-negative. This leads
to a proposal for how vertex operators can be constructed in terms of co-product using fermionic
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oscillator operators but with Kronecker delta anticommutators since the cognitive representation
is discrete.

The main objection is that the scattering amplitudes are trivial if quark momenta belong to
cognitive representations, which are finite in the generic case. This would be the case also in
2-D integrable theories. The objection can be circumvented. First, the huge symmetries imply
that cognitive representations can contain a very large - even an infinite - number of points. At
partonic 2-surface this number could reduce to finite. Equally importantly, local composites of
quark oscillation operators with collinear quark momenta are possible and would be realized in
terms of representations of Yangian algebra for G2,c serving as the counterpart for super-symplectic
and Kac-Moody algebras at the level of H.

ZEO leads to a concrete proposal for the construction of zero energy states - equivalently
scattering amplitudes - by using a representation of Yangian algebra realized in terms of positive
and negative energy quarks in opposite half-cones. Co-product plays a key role in the construction.
Also the proposed local composites of quarks proposed in [L14] make sense.

Momentum conservation conditions and mass shell conditions combined with the requirement
that the momenta are algebraic integers in the extension of rationals determined by the polynomial
P look rather difficult to solve. These conditions however linearize in the sense that one can express
the allowed momenta as squares of integer quaternions.
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