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Abstract

This article is the first part of an article representing a critical re-examination of M® —
H duality, which is one of the cornerstones of Topological Geometrodynamics (TGD). The
original version of M® — H duality assumed that space-time surfaces in M® can be identified as
associative or co-associative surfaces. If the surface has associative tangent or normal space and
contains a complex or co-complex surface, it can be mapped to a 4-surface in H = M* x CP;.

Later emerged the idea that octonionic analyticity realized in terms of real polynomials P
algebraically continued to polynomials of complexified octonion could fulfill the dream. The
vanishing of the real part Req(P) (imaginary part Img(P)) in the quaternionic sense would
give rise to an associative (co-associative) space-time surface.

The realization of the general coordinate invariance motivated the notion of strong form of
holography (SH) in H allowing realization of a weaker form of M® — H duality by assuming
that associativity/co-associativity conditions are needed only at 2-D string world sheet and
partonic 2-surfaces and possibly also at their light-like 3-orbits.

The outcome of the re-examination yielded both positive and negative surprises.

1. Although no interesting associative space-time surfaces are possible, every distribution
of normal associative planes (co-associativity) is integrable.

2. Another positive surprise was that Minkowski signature is the only possible option.
Equivalently, the image of M* as real co-associative subspace of O, (complex valued
octonion norm squared is real valued for them) by an element of local G2 or rather, its
subgroup SU (3), gives a real co-associative space-time surface.

3. The conjecture based on naive dimensional counting, which was not correct, was that the

polynomials P determine these 4-D surfaces as roots of Req(P). The normal spaces of
these surfaces possess a fixed 2-D commuting sub-manifold or possibly their distribution
allowing the mapping to H by M® — H duality as a whole.
If this conjecture were correct, strong form of holography (SH) would not be needed and
would be replaced with extremely powerful number theoretic holography determining
space-time surface from its roots and selection of real subspace of O, characterizing the
state of motion of a particle. erate

4. The concrete calculation of the octonion polynomial was the most recent step - carried
already earlier [L2] L3} [L4] but without realizing the implications of the extremely simple
outcome. The imaginary part of the polynomial is proportional to the imaginary part
of octonion itself. It turned out that the roots P = 0 of the octonion polynomial
P are 12-D complex surfaces in O, rather than being discrete set of points defined as
zeros X = 0,Y = 0 of two complex functions of 2 complex arguments. The analogs
of branes are in question. Already earlier 6-D real branes assignable to the roots of the
real polynomial P at the light-like boundary of 8-D light-cone were discovered: also their
complex continuations are 12-D [L8| [L11].

5. P has quaternionic de-composition P = Req(P)+IsImq(P) to real and imaginary parts
in a quaternionic sense. The naive expectation was that the condition X = 0 implies
that the resulting surface is a 4-D complex surface X2 with a 4-D real projection X2,
which could be co-associative.
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The expectation was wrong! The equations X = 0 and Y = 0 involve the same(!)
complex argument o? as a complex analog for the Lorentz invariant distance squared from
the tip of the light-cone. This implies a cold shower. Without any additional conditions,
X = 0 conditions have as solutions 7-D complex mass shells H, determined by the roots
of P. The explanation comes from the symmetries of the octonionic polynomial.

There are solutions X = 0 and Y = 0 only if the two polynomials considered have a

common a2 as a root! Also now the solutions are complex mass shells H, .

How could one obtain 4-D surfaces X2 as sub-manifolds of H.? One should pose a condition

eliminating 4 complex coordinates: after that a projection to M* would produce a real 4-
surface X* .

1. The key observation is that G2 acts as the automorphism group of octonions respects the

co-associativity of the 4-D real sub-basis of octonions. Therefore a local G2 gauge trans-
formation applied to a 4-D co-associative sub-space O. gives a co-associative four-surface
as a real projection. Octonion analyticity would correspond to G2 gauge transformation:
this would realize the original idea about octonion analyticity.

. A co-associative X2 satisfying also the conditions posed by the existence of M® — H

duality is obtained by acting with a local SUs transformation g to a co-associative plane
M* Cc M. If the image point g(p) is invariant under U(2), the transformation cor-
responds to a local C P, element and the map defines M® — H duality even if the co-
associativity in geometric sense were not satisfied.

The co-associativity of the plane M* is preserved in the map because G2 acts as an
automorphism group of the octonions. If this map also preserves the value of 4-D complex
mass squared, one can require that the intersections of X2 with H? correspond to 3-D
complex mass shells. One obtains holography with mass shells defined by the roots of P
giving boundary data. The condition H images are analogous to Bohr orbits, corresponds
to number theoretic holography.

The group SU(3) has interpretation as a Kac-Moody type analog of color group and
the map defining space-time surface. This picture conforms with the H-picture in which
gluon gauge potentials are identified as color gauge potentials. Note that at QFT limit
the gauge potentials are replaced by their sums over parallel space-time sheets to give
gauge fields as the space-time sheets are approximated with a single region of Minkowski
space.

Before continuing, I must apologize for the still fuzzy organization of the material related

to M® — H duality. The understanding of its details has been a long and tedious process,
which still continues, and there are unavoidably inaccuracies and even logical inconsistencies
caused by the presence of archeological layers present.

Keywords: Octonions, quaternions, polynomials, (co-)associativity, minimal surfaces, branes,
M?® — H duality.
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1 Introduction

M8 — H duality [L10, L8, L9, [L15] has become a cornerstone of quantum TGD but several aspects
of this duality are still poorly understood.

1.1 Development of the idea about M® — H duality

A brief summary about the development of the idea is in order.

1. The original version of M8 — H duality assumed that space-time surfaces in M?® can be iden-

tified as associative or co-associative surfaces. If the surface has associative tangent/normal
space and contains a complex co-complex surface, it can be mapped to a 4-surface in
M* x CPs.

. Later emerged the idea that octonionic analyticity realized in terms of a real polynomials

P algebraically continued to polynomials of complexified octonion might realize the dream
[L2] L3 [L4]. The original idea was that the vanishing condition for the real/imaginary part
of P in quaternion sense could give rise to co-assocative/associative sense.

M?® — H duality concretizes number theoretic vision [L5, [L6] summarized as adelic physics
fusing ordinary real number based physics for the correlates of sensory experience and various
p-adic physics (p = 2,3,...) as physics for the correlates of cognition. The polynomials of
real variable restricted to be rational valued defines an extension or rationals via the roots of
the polynomials and one obtains an evolutionary hierachy associated with these extensions
increasing in algebraic complexity. These extensions induce extensions of p-adic numbers
and the points of space-time surface in M® with coordinates in the extension of rationals
define cognitive representations as unique discretizations of the space-time surface.

. The realization of the general coordinate invariance in TGD framework [K2| K1, [K4] [L18]

[L16] motivated the idea that strong form of holography (SH) in H could allow realizing
M® — H duality by assuming associativity/co-associativity conditions only at 2-D string
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world sheet and partonic 2-surfaces and possibly also at their light-like 3-orbits at which the
signature of the induced metric changes from Minkowskian to Euclidian.

Critical re-examination of the notion

In this article M8 — H duality is reconsidered critically.

1.

The healthy cold shower was the learning that quaternion (associative) sub-spaces of quater-
nionic spaces are geodesic manifolds [AI]. The distributions of quaternionic normal spaces
are however always integrable. Hence, co-associativity remains the only interesting option.
Also the existence of co-commutative sub-manifolds of space-time surface demanding the ex-
istence of a 2-D integrable sub-distribution of subspaces is possible. This learning experience
motivated a critical examination of the M® — H duality hypothesis.

. The basic objection is that for the conjectured associative option, one must assign to each

state of motion of a particle its own octonionic structure since the time axis would correspond
to the octonionic real axis. It was however clear from the beginning that there is an infinite
number of different 4-D planes O, in which the number theoretical complex valued octonion
inner product reduces to real - the number theoretic counterpart for Riemann metric. In
the co-associative case this is the only option. Also the Minkowski signature for the real
projection turns out to be the only physically acceptable option. The mistake was to assume
that Euclidian regions are co-associative and Minkowskian regions associative: both must be
co-associative.

The concrete calculation of the octonion polynomial was the most recent step - carried already
earlier [L2] [L3] [L4] but without realizing the implications of the extremely simple outcome.
The imaginary part of the polynomial is proportional to the imaginary part of octonion itself.
It turned out that the roots P = 0 of the octonion polynomial P are 12-D complex surfaces
in O, rather than being discrete set of points defined as zeros X = 0,Y = 0 of two complex
functions of 2 complex arguments. The analogs of branes are in question. Already earlier
6-D real branes assignable to the roots of the real polynomial P at the light-like boundary
of 8-D light-cone were discovered: also their complex continuations are 12-D L8], [LT1].

. P has quaternionic de-composition P = Req(P) + I4Img(P) to real and imaginary parts in

a quaternionic sense. The naive expectation was that the condition X = 0 implies that the
resulting surface is a 4-D complex surface X+ with a 4-D real projection X*, which could be
co-associative.

The expectation was wrong! The equations X = 0 and Y = 0 involve the same(!) complex
argument 02 as a complex analog for the Lorentz invariant distance squared from the tip
of the light-cone. This implies a cold shower. Without any additional conditions, X = 0
conditions have as solutions 7-D complex mass shells H! determined by the roots of P. The
explanation comes from the symmetries of the octonionic polynomial.

There are solutions X = 0 and Y = 0 only if the two polynomials considered have a common

a? as a root! Also now the solutions are complex mass shells H/.

How could one obtain 4-D surfaces X as sub-manifolds of H? One should pose a condition
eliminating 4 complex coordinates: after that a projection to M* would produce a real
4-surface X4 .

A co-associative X2 is obtained by acting with a local SUs transformation g to a co-associative
plane M* C M3. If the image point g(p) is invariant under U(2), the transformation corre-
sponds to a local C'P, element and the map defines M®— H duality even if the co-associativity
in geometric sense were not satisfied.

The co-associativity of the plane M* is preserved in the map because Gy acts as an au-
tomorphism group of the octonions. If this map also preserves the value of 4-D complex
mass squared, one can require that the intersections of X2 with H correspond to 3-D com-
plex mass shells. One obtains holography with mass shells defined by the roots of P giving
boundary data. The condition H images are analogous to Bohr orbits, corresponds to number
theoretic holography.
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It this, still speculative, picture is correct, it would fulfil the original dream about solving
classical TGD exactly in terms of roots for real/imaginary parts of octonionic polynomials in M3
and by mapping the resulting space-time surfaces to H by M® — H duality. In particular, strong
form of holography (SH) would not be needed at the level of H, and would be replaced with a
dramatically stronger number theoretic holography.

2 The situation before the cold shower

The view about M8 — H duality before the cold shower - leading to what I dare to call a break-
through - helps to gain idea about the phenomenological side of M® — H duality. Most of the
phenomenology survives the transition to a more precise picture. This section is however not
absolutely necessary for what follows it.

2.1 Can one deduce the partonic picture from M® — H duality?

The M?® counterparts for partons and their light like orbits in H can be understood in terms of
octonionic Dirac equation in M® as an analog for the algebraic variant of ordinary Dirac equation
at the level of momentum space [L15] [L14] but what about the identification of partonic 2-surfaces
as interaction vertices at which several partonic orbits meet? Can one deduce the phenomenological
view about elementary particles as pairs of wormhole contacts connected by magnetic flux tubes
from M® — H duality? There is also the question whether partonic orbits correspond to their own
sub-CDs as the fact that their rest systems correspond to different octonionic real axes suggests.

There are also some questions which have become obsolote. For instance: ghy should the
partonic vertices reside at ¢ = r,, branes? This became obsolste with the realization that M? is
analogous to momentum space so that the identification as real octonionic coordinate corresponds
now to a component of 8-momentum identifiable as energy. Furthermore, the assumption the
associativity of the 4-surface in M® had to be replaced with-co-associtivity and octonionic real
coordinate does not have interpretation as time coordinate is associative surface

M?® — H duality indeed conforms with the phenomenological picture about scattering diagrams
in terms of partonic orbits [L18, [L17] [LI7, [L18] [L18], and leads to the view about elementary
particles as pairs of Euclidian wormhole contacts associated with flux tubes carrying monopole
flux.

2.2 What happens to the ”very special moments in the life of self”’?

The original title was "What happens at the ”very special moments in the life of self?” but it
turned out that ”"at” must be replaced with ”to”. The answer to the new question would be ” They
disappear from the glossary”.

The notion of ”very special moments in the life of self” (VPM) [L8, [L11] makes sense if M®
has interpretation as an 8-D space-time. M?* projections of VPMs were originally identified as
hyperplanes ¢t = r,,, where t is time coordinate and r, is a root of the real polynomial defining
octonionic polynomial as its algebraic continuation.

The interpretation of M?® as cotangent space of H was considered from the beginning but
would suggest the interpretation of M?® as the analog of momentum space. It is now clear that this
interpretation is probably correct and that M® — H duality generalizes the momentum-position
duality of wave mechanics. Therefore one should speak of E = r, plane and simply forget the
misleading term VMP. VPMs would correspond to constant values of the M?® energy assignable to
M* time coordinate.

The identification of space-time surface as co-associative surface with quaternionic normal space
containing integrable distribution of 2-D commutative planes essential for M® — H duality is also
in conflict with the original interpretation. Also the modification of M® — H duality in M* degrees
of freedom forced by Uncertainty Principle [[22] has led to the conclusion that VMPs need not
have a well-defined images in H.

2.3 What does SH mean and its it really needed?

SH has been assumed hitherto but what is its precise meaning?
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1. Hitherto, SH at the level of H is believed to be needed: it assumes that partonic 2-surfaces
and/or string world sheets serve as causal determinants determining X* via boundary con-
ditions.

(a) The normal or tangent space of X* at partonic 2-surfaces and possibly also at string
world sheets has been assumed to be associative that is quaternionic. This condition
should be true at the entire X*.

(b) Tangent or normal space has been assumed to contain preferred M? which could be
replaced by an integrable distribution of M?(x) C M*. At string world sheets only
the tangent space can be associative. At partonic 2-surfaces also normal space could
be associative. This condition would be true only at string world sheets and partonic
2-surfaces so that only these can be mapped to H by M8 — H duality and continued to
space-time surfaces as preferred extremals satisfying SH.

The current work demonstrates that although SH could be used at the level of SH, this is not
necessary. Co-associativity together with co-commutativity for string world sheets allows the

mapping of the real space-time surfaces in M?® to H implying exact solvability of the classical
TGD.

2.4 Questions related to partonic 2-surfaces
There are several questions related to partonic 2-surfaces.

Q1: What are the M8 pre-images of partons and their light-like partonic orbits in H?

It will be found that the octonionic Dirac equation in M® implies that octo-spinors are located
to 3-D light-like surfaces Y;? - actually light-cone boundary and its 3-D analogs at which
number theoretic norm squared is real and vanishes - or to the intersections of X2 with the
6-D roots of P in which case Dirac equation trivializes and massive states are allowed. They
are mapped to H by M8 — H duality.

Remark: One can ask whether the same is true in H in the sense that modified Dirac
action would be localized to 3-D light-like orbits and 3-D ends of the space-time surfaces
at the light-like boundaries of CD having space-like induced metric. Modified Dirac action
would be defined by Cherm-Simons term and would force the classical field equations for
the bosonic Chern-Simons term. If the interior part of the modified Dirac action is absent,
the bosonic action is needed to define the space-time surfaces as extremals. They would be
minimal surfaces and universal by their holomorphy and would not depend on coupling
parameters so that very general actions can have them as preferred extremals. This issue
remains still open.

The naive - and as it turned out, wrong - guess was that the images of the light-like surfaces

should be light-like surfaces in H at the boundaries of Minkowskian and Euclidian regions
(wormhole contacts). In the light-like case Y,? corresponds to the light-cone boundary so
that this would be the case. X2 however turns out to correspond to a hyperboloid in M*
as an analog of a mass shell and is not identifiable as a partonic orbit.

It turned out that the complex surface X2 allows real sections in the sense that the number

theoretic complex valued metric defined as a complex continuation of Minkowski norm is
real at 4-D surfaces: call them Z2*. They are bounded by a 3-D region at Z? at which the
value of norm squared vanishes. This surface is an excellent candidate for the pre-image of
the light-like orbit of partonic 2-surface serving as a topological vertex. One has therefore
strings worlds sheets, partonic 2-surfaces and their light-like orbits and they would connect
the "mass shells” at X2. All ingredients for SH would be present.

The intersections of Z2 with X3 identifiable as the section of X a = constant hyperboloid
would give rise to partonic 2-surfaces appearing as topological reaction vertices.

The assumption that the 4-D tangent space at these light-like 3-surfaces is co-associative,
would give an additional condition determining the image of this surface in H, so that the
boundary conditions for SH would become stronger. One would have boundary conditions
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at light-like partonic orbits. Note that string world sheets are assumed to have light-like
boundaries at partonic orbits.

Q2: Why should partonic 2-surfaces appear as throats of wormhole contact in H? Wormhole
contacts do not appear in M?8.

1. In M? light-like orbits are places where the Minkowskian signature changes to Euclid-
ian. Does M® — H duality map  the images of these coinciding roots for Euclidian and
Minkowskian branches to different throats of the wormhole contact in H so that the
intersection would disappear?

2. This is indeed the case. The intersection of Euclidian and Minkowskian branches defines a
single 3-surface but the tangent and normal spaces of branches are different. Therefore
their H images under M® — H duality for the partonic 2-surface are different since normal
spaces correspond to different C' P, coordinates. These images would correspond to the two
throats of wormhole contact so that the H-image by SH is 2-sheeted. One would have
wormhole contacts in H whereas in M?® the wormhole contact would reduce to a single
partonic 2-surface.

3. The wormhole contact in H can have only Euclidian signature of the induced metric. The
reason is that the M* projections of the partonic surfaces in H are identical so that the points
with same M* coordinates have different C'P, coordinates and their distance is space-like.

Q3: In H picture the interpretation of space-time surfaces as analogs of Feynman graphs
assumes that several partonic orbits intersect at partonic 2-surfaces. This assumption could be of
course wrong.This raises questions.

What the pre-images of partonic 2-surfaces are in M®? Why should several partonic orbits
meet at a given partonic 2-surface? Is this needed at all?

The space-time surface X associated intersects the surface X8 associated with different particle
- say with different value of mass along 2-D surface. Could this surface be identified as partonic
2-surface X?2? This occurs symmetrically so that one has a pair of 2-surfaces X2. What does this
mean? Could these surface map to the throats of wormhole contact in H?

Why several partonic surfaces would co-incide in topological reaction vertex at the level of H?
At this moment is is not clear whether this is forced by M8 picture.

Octonionic Dirac equation implies that M8 has interpretation as analog of momentum space so
that interaction vertices are replaced by multilocal vertices representing momenta and propagators
become local being in this sense analogous to vertices of QFT. One could of course argue that
without the gluing along ends there would be no interactions since the interactions in X¢ for two
3-surfaces consist in the generic case of a discrete set of points. One could also ask whether the
surfaces Y,? associated with the space-time surfaces X associated with incoming particles must
intersect along partonic 2-surface rather than at discrete set of points.

The meeting along ends need not be true at the level of M® since the momentum space inter-
pretation would imply that momenta do not differ much so that particles should have identical
masses: for this to make sense one should assume that the exchanged virtual particles are massless.
One other hand, if momenta are light-like for Y;?, this might be the case.

Q4: Why two wormhole contacts and monopole flux tubes connecting them at the level of H?
Why monopole flux?

1. The tangent spaces of the light-like orbits have different light-like direction. Intuitively, this
corresponds to different directions of light-like momenta. Momentum conservation requires
more than one partonic orbit changing its direction meeting at partonic 2-surface. By light-
likeness, the minimum is 2 incoming and two outgoing lines giving a 4-vertex. This allows the
basic vertices involving ¥ and Psi at opposite throats of wormhole contacts. Also a higher
number of partonic orbits is possible.

2. A two-sheeted closed monopole flux tube having wormhole contacts as its ”ends” is suggested
by elementary particle phenomenology. Since M?® homology is trivial, there is no monopole
field in M8. If M8 — H duality is continuous it maps homologically trivial partonic 2-surfaces
to homologically trivial 2-surfaces in H. This allows the wormhole throats in H to have
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opposite homology charges. Since the throats cannot correspond to boundaries there must
be second wormhole contact and closed flux tube.

3. What does the monopole flux for a partonic 2-surface mean at the level of M3? The distri-
bution of quaternionic 4-D tangent/normal planes containing preferred M? and associated
with partonic 2-surface in M® would define a homologically on-trivial 2-surface in CP,. The
situation is analogous to a distribution of tangent planes or equivalently normal vectors in

S2.

Q4: What is the precise form of M — H duality: does it apply only to partonic 2-surfaces and
string world sheets or to the entire space-time surfaces?

M8 — H duality is possible if the X* in M?® contains also integrable distribution of complex
tangent or normal 2-planes at which 4-D tangent space is quaternionic/associative. String world
sheets and partonic 2-surfaces define these distributions.

The minimum condition allowed by SH in H is that string world sheets and there is a finite
number of partonic 2-surfaces and string world sheets. In this case only these 2-surfaces can be
mapped to H and SH assigns to them a 4-D space-time surface. The original hypothesis was that
these surfaces define global orthogonal slicings of the X* so that M® — H duality could be applied
to the entire X*. This condition is probably too strong.

3 Challenging M?® — H duality

M?®— H duality involves several alternative options and in the following arguments possibly leading
to a unique choice are discuses.

1. Are both associativity and co-associativity possible or is only either of these options allowed?
Is it also possible to pose the condition guaranteeing the existence of 2-D complex sub-
manifolds identifiable as string world sheets necessary to map the entire space-time surface
from M® to H? In other words, is the strong form of holography (SH) needed in M® and/or
H or is it needed at all?

2. The assignment of the space-time surface at the level of M8 to the roots of real or imaginary
part (in quaternionic sense) of octonionic polynomial P defined as an algebraic continuation
of real polynomial is an extremely powerful hypothesis in adelic physics [L6l [L5] and would
mean a revolution in biology and consciousness theory.

Does P fix the space-time surface with the properties needed to realize M® — H duality or is
something more needed? Does the polynomial fix the space-time surface uniquely - one would
have extremely strong number theoretic holography - so that one would have number theoretic
holography with coefficients of a real polynomial determining the space-time surface?

3. M® — H duality involves mapping of M* C M® to M* C H. Hitherto it has been
assumed that this map is direct identification. The form of map should however depend
on the interpretation of M2. In octonionic Dirac equation M?® coordinates are in the role of
momenta [[15]. This suggests the interpretation of M® as an analog of 8-D momentum
space. If this interpretation is correct, Uncertainty Principles demands that the map M* C
M® — M* C H is analogous to inversion mapping large momenta, to small distances.

4. Twistor lift of TGD [K8| is an essential part of the TGD picture. Ttwistors and momentum
twistors provide dual approaches to twistor Grassmann amplitudes. Octonionic Dirac equa-
tion suggests that M8 and H are in a similar dual relation. Could M® — H duality allow a
generalization of twistorial duality to TGD framework?

3.1 Explicit form of the octonionic polynomial

What does the identification of the octonionic polynomial P as an octonionic continuation of a
polynomial with real or complexified coefficients imply? In the following I regard M? as O% and
consider products for complexified octonions.
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Remark: In adelic vision the coefficients of P must be rationals (or at most algebraic numbers
in some extension of rationals).

One interesting situation corresponds to the real subspace of O, spanned by {Iy, I}, = 1,..7,
with a number theoretic metric signature (1, —1, —1..., —1) of M® which is complex valued except at
in various reals subspaces.This subspace is associative. The original proposal was that Minkowskian
space-time regions as projections to this signature are associative whereas Euclidian regions are co-
associative. It however turned out that associative space-time surfaces are physically uninteresting.

The canonical choice (ily, I1, I2,il3, 14,5, I, iI7) defining the complexification of the tangent
space represents a co-associative sub-space realizing Minkowski signature. It turns out that both
Minkowskian and Euclidian space-time regions must be co-associative .

3.1.1 Surprises

The explicit calculation of the octonionic polynomial yielded a chilling result. If one poses (co-
)associativity conditions as vanishing of the imaginary or real part in quaterionic sense: Img(P) =
0 or Reg(P) = 0, the outcome is that the space-time surface is just M* or E*. Second chilling
result is that quaternionic sub-manifolds are geodesic sub-manifolds. This led to the question how
to modify the (co-)associativity hypothesis.

The vision has been that space-time surfaces can be identified as roots for the imaginary
(co-associative) part I'mg(O) or real part Img(O) of octonionic polynomial using the standard
decomposition (1, eq, ez, €3).

1. The naive counting of dimensions suggests that one obtains 4-D surfaces. The surprise was
that also 6-D brane like entities located at the boundary of M?® light-cone and with topology
of 6-sphere S® are possible. They correspond to the roots of a real polynomial P(o) for the
choice (1,ily,...,iI7). The roots correspond to the values of the real octonion coordinate
interpreted as values of linear M* time in the proposal considered. Also for the canonical
proposal one obtains a similar result. In O, they correspond to 12-D complex surfaces X¢
satisfying the same condition conditions x3 + 72 = 0 and P(z¢) = 0.

2. There was also another surprise. As already described, the general form for the octo-
nionic polynomial P(0) induced from a real polynomial is extremely simple and reduces
to X (t2,72) Iy +iY (t2,72)Im(0). There are only two complex variables ¢ and 72 involved and
the solutions of P = 0 are 12-D complex surfaces X¢ in O.. Also the special solutions have
the same dimension.

3. In the case of co-associativity 8 conditions are needed for Reg(P) = 0: note that X = 0
is required. The naive expectation is that this gives a complex manifold X2 with 4-D real
projection X2 as an excellent candidate for a co-associative surface.

The expectation turned out to be wrong: in absence of any additional conditions the solutions
are complex 7-dimensional mass shells! This is due to the symmetries of the octonionic
polynomials as algebraic continuation of a real polynomial.

4. The solution of the problem is to change the interpretation completely. One must assign to
the 7-D complex mass shell HT a 3-D complex mass shell H2.

One can do this by assuming space-time surface is surface intersecting the7-D mass shell
obtained as a deformation of M2 C M2 by acting with local SU(3) gauge transformation
and requiring that the image point is invariant under U(2). If the 4-D complex mass squared
remains invariant in this transformation, X2 intersects H_.

With these assumptions, a local CP, element defines X2 and X} is obtained as its real
projection in M*. This definition assigns to each point of M* a point of C'P, so that M® — H
duality is well-defined.

One obtains holography in which the fixing of 3-D mass shells fixes the 4-surface and also
assigns causal diamond with the pair of mass shells with opposite energies. If the space-time
surface is analog of Bohr orbit, also its preimage under M® — H duality should be such and
P would determine 4-surface highly uniquely [L24] and one would have number theoretic
holography.
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3.1.2 General form of P and of the solutions to P =0, Reg(P) =0, and Img(P) =0

It is convenient to introduce complex coordinates for O, since the formulas obtained allow projec-
tions to various real sections of O..

1. To see what happens, one can calculate 0. Denote o, by o, = tIy+ 0, and the norm squared
of 0 by r?, where 72 = > 07 where o, are the complex coordinates of octonion. Number
theoretic norm squared for o, is t? + r? and reduces to a real number in the real sections of
O.. For instance, in the section (I1,il3,ils,il7) the norm squared is —x? + 23 + 22 + 22 and
defines Minkowskian norm squared.

For 02 one has:

=t —r?42A6=Xo+Y, .

For 03 one obtains

OsitX276'72+t?2+X25 .

Clearly, Img(0™) has always the same direction as Img(o). Hence one can write in the
general case

o"=X+Yo . (3.1)

This trivial result was obtained years ago but its full implications became evident only while
preparing the current article. The point is that the solutions to associativity/co-associativity
conditions by putting Re(Q(P) = 0 or Img(P) = 0 are trivial: just M* or E*. What goes
wrong with basic assumptions, will be discussed later.

Remark: In M?® sub-space one has imaginary o is proportional to the commuting imaginary
unit.

2. It is easy to deduce a recursion formula for the coefficients for X and Y for n:th power of
oc. Denote by t the coordinate associated with the real octonion unit (not time coordinate).
One obtains

op = Xplp+Y,0 ,
Xn = tXn,1 - 7"Yn,1 5 (32)
Yn = tYn,1 + 7’an1 .

In the co-associative case one has ¢ = 0 or possibly constant ¢ = T' (note that in the recent
interpretation ¢ does not have interpretation as time coordinate). The reason is that the
choice of octonionic coordinates is unique apart from translation along the real axis from the
condition that the coefficients of P remain complex numbers in powers of the new variable.

3. The simplest option correspond to ¢ = 0. One can criticize this option since the quaternion-
icity of normal space should not be affected if ¢ is constant different from zero. In any case,
for ¢ = 0 the recursion formula gives for the polynomial P(o.) the expression

P(oc) = Y (=1)"1*™(p2n—11o + p200) - (3.3)

Denoting the even and of odd parts of P by Peyen, and Ppgq, the roots 7y oqq of X = Re(P(o.))
are roots P,qq and roots 7y epen, 0f Y = Im(P(0.)) are roots of Peye,. Co-associativity gives
roots of X and the roots of P as simultaneous roots of P,yq and Pe.ye,. The interpretation
of roots is as in general complex mass squared values.
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In the general case, the recursion relation would give the solution

A= ( i ;r ) (3.4)

One can diagonalize the matrix appearing in the iteration by solving the eigenvalues Ay =
t + ir and eigenvectors X4 = (+i,1) and by expressing (X1,Y1) = (¢,7) in terms of the
eigenvectors as (t,7) = ((it + )Xy + (r — it)X_)/2. This gives

() =3 () 55
This gives

P(o.) = PiIp + Pyo

Pi(r) =Y Xppar?® (3.6)

Py(r) = 3 Yopur®® .
For the restriction to M2, 72 reduces to complex 4-D mass squared given by the root 7.
In general case 72 corresponds to complex 8-D mass squared. All possible signatures are
obtained by assuming M? coordinates to be either real or imaginary (the number theoretical
norm squared is real with this restriction).

3.1.3 How does one obtain 4-D space-time surfaces?

If one poses no restrictions, the solutions of the conditions are 7-D complex mass shells 72 = 7, |
as roots of Pi(r) = 0 or r? = r, 5 of P5(r) = 0. A solution of both conditions requires that P;
and P, have a common root but the solution remains a 7-D complex mass shell! This is one of the
many cold showers during the development of the ideas about M® — H duality! It seems that the
adopted interpretation is somehow badly wrong. Here zero energy ontology (ZEO) and holography
come to the rescue.

1. Could the roots of P; or P, define only complex mass shells of the 4-D complex momentum
space identifiable as M2? ZEO inspires the question whether a proper interpretation of mass
shells could be as pre-images of boundaries of c¢d:s (intersections of future and past directed
light-cones) as pairs of mass shells with opposite energies. If this is the case, the challenge
would be to understand how X2 is determined if P does not determine it.

Here holography, considered already earlier, suggests itself: the complex 3-D mass shells
belonging to X would only define the 3-D boundary conditions for holography and the real
mass shells would be mapped to the boundaries of cds. This holography can be restricted
to Xj“%. Bohr orbit property at the level of H suggests that the polynomial P defines the
4-surface almost uniquely.

2. Let us take the holographic interpretation as a starting point. In order to obtain an X2 mass
shell from a complex 7-D light-cone, 4 complex degrees of freedom must be eliminated.
M?® — H duality requires that X? allows M2 coordinates.

Note that if one has X* = M2, the solution is trivial since the normal space is the same
for all points and the H image under M® — H duality has constant CP, = SU(3)/U(2)
coordinates. X2 should have interpretation as a non-trivial deformation of M2 in M?.
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3. By M®—H duality, the normal spaces should be labelled by C P, = SU(3)/U(2) coordinates.

M8 — H duality suggests that the image g(p) of a momentum p € M2 is determined
essentially by a point s(p) of the coset space SU(3)/U(2). This is achieved if M2 is deformed
by alocal SU(3) transformation p — ¢(p) in such a manner that each image point is invariant
under U(2) and the mass value remains the same: g(p)? = p?> so that the point represents a
root of P; or Ps.

Remark: I have earlier considered the possibility of G2 and even G . local gauge transfor-
mation. It however seems that that local SU(3) transformation is the only possibility since
G2 and G would not respect M® — H duality. One can also argue that only real SU(3)
maps the real and imaginary parts of the normal space in the same manner: this is indeed
an essential element of M8 — H duality.

This option defines automatically M® — H duality and also defines causal diamonds as images
of mass shells m? = r,. The real mass shells in H correspond to the real parts of r,,.
The local SU(3) transformation g would have interpretation as an analog of a color gauge
field. Since the H image depends on g, it does not correspond physically to a local gauge
transformation but is more akin to an element of Kac-Moody algebra or Yangian algebra
which is in well-defined half-algebra of Kac-Moody with non-negative conformal weights.

The following summarizes the still somewhat puzzling situation as it is now.

1.

The most elegant interpretation achieved hitherto is that the polynomial P defines only the
mass shells so that mass quantization would reduce to number theory. Amusingly, I started
to think about particle physics with a short lived idea that the d’Alembert equation for a
scalar field could somehow give the mass spectrum of elementary particles so that the issue
comes full circle!

. Holography assigns to the complex mass shells complex 4-surfaces for which M8 — H duality

is well-defined even if these surfaces would fail to be 4-D co-associative. These surfaces are
expected to be highly non-unique unless holography makes them unique. The Bohr orbit
property of their images in H indeed suggests this apart from a finite non-determinism [L.24].
Bohr orbit property could therefore mean extremely powerful number theoretical duality for
which the roots of the polynomial determine the space-time surface almost uniquely. SU(3)
as color symmetry emerges at the level of M8, By M® — H duality, the mass shells are
mapped to the boundaries of CDs in H.

Do we really know that X;! co-associative and has distribution of 2-D commuting subspaces
of normal space making possible M® — H duality? The intuitive expectation is that the
answer is affirmative [A]. In any case, M® — H duality is well-defined even without this
condition.

. The special solutions to P = 0, discovered already earlier, are restricted to the boundary of

CDg and correspond to the values of energy (rather than mass or mass squared) coming as
roots of the real polynomial P. These mass values are mapped by inversion to ”very special
moments in the life of self” (a misleading term) at the level of H as special values of light-cone
proper time rather than linear Minkowski time as in the earlier interpretation [?] The new
picture is Lorenz invariant.

The experience with the octonionic Dirac equation [L15] reducing to mass shell condition -
to be discussed in the sequel in detail - forces the interpretation m - m as mass squared. M?
would be the analog of momentum space.

Non vanishing mass squared values for octonionic spinors correspond to common roots of
P.yenn and P,gq. The special solutions to P = 0, discovered already earlier, are restricted
to the boundary of CDg and correspond to the values of energy (rather than mass squared)
coming as roots of the real polynomial P. These mass values are mapped by inversion to
7very special moments in the life of self” at the level of H as special values of light-cone
proper time rather than linear Minkowski time as in the earlier interpretation [L§]. The new
picture is Lorenz invariant.
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Non-vanishing mass squared values for octonionic spinors correspond to a common root of
P.yen and P,zq implying that the complex mass shells are identical. The restriction of the
momenta to the base space produces a 4-D set of momenta.

3.1.4 What about string world sheets and partonic 2-surfaces?

One can apply the above arguments also to the identification of 2-D string world sheets and
partonic 2-surfaces.

1. One has two kinds of solutions: M? and 3-D surfaces of X* as analogs of 6-brane. The
interpretation for 3-D resp. 2-D branes as a light-like 3-surface associated with the octonionic
Dirac equation representing mass shell condition resp. string world sheet is attractive.

2. M? would be replaced with an integrable distribution of M?(z) in local tangent space
M*(z). The space for the choices of M?(x) would be S corresponding to the selection of
a preferred quaternion imaginary unit equal to the choices of preferred octonion imaginary
unit.

The choices of the preferred complex subspace M?(x) at a given point would be char-
acterized by its normal vector and parameterized by sphere S?: the interpretation as a
quantization axis of angular momentum is suggestive. One would have space S® x S2. Also
now the integrability conditions de4 = 0 would hold true.

3. String world sheets could be regarded as analogs of superstrings connecting 3-D brane like
entities defined by the light-like partonic orbits. The partonic 2-surfaces at the ends of light-
like orbits defining also vertices could correspond to the 3-surfaces at which quaternionic
4-surfaces intersect 6-branes.

3.2 Is (co-)associativity possible?

The number theoretic vision relying on the assumption that space-time surfaces are 8-D complex
4-surfaces in 0° determined as algebraic surfaces for octonionic continuations of real polynomials,
which for adelic physics would have coefficients which are rational or belong to an extension of
rationals. The projections to subspaces Re® of of defined as space for which given coordinate is
purely real or imaginary so that complexified octonionic norm is real would give rise to real 4-D
space-time surfaces. M® — H duality would map these surfaces to geometric objects in M* x CP;.
This vision involves several poorly understood aspects and it is good to start by analyzing them.

3.2.1 Challenging the notions of associativity and co-associativity

Consider first the notions of associativity resp. co-associativity equivalent with quaternionicity
resp. co-quaternionicity. The original hope was that both options are possible for surfaces of real
sub-spaces of O, ("real” means here that complexified octonionic metric is real).

1. The original idea was that the associativity of the tangent space or normal space of a
real space-time surface X* reduces the classical physics at the level of M® to associativ-
ity. Associativity/co-associativity of the space-time surface states that at each point of the
tangent-/normal space of the real space-time surface in O is quaternionic. The notion gen-
eralizes also to X2 C O8. (Co-)associativity makes sense also for the real subspaces space of
O with Minkowskian signature.

2. It has been however unclear whether (co-)associativity is possible. The cold shower came as I
learned that associativity allows only for geodesic sub-manifolds of quaternionic spaces about
which octonions provide an example [AI]. The good news was that the distribution of co-
associative tangent spaces always defines an integrable distribution in the sense that one can
find sub-manifold for which the associative normal space at a given point has tangent space
as an orthogonal complement. Should the number theoretic dynamics rely on co-associativity
rather than associativity?
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3. Minkowskian space-time regions have been assumed to be associative and to correspond
to the projection to the standard choice for basis as {1,il1,il3,il3}. The octonionic units
{1, 11, Iz, I3} define quaternionic units and associative subspace and their products with unit
I, define the orthogonal co-associative subspace as {I4,Is = I411,Is = I4lo, Iy = I4I5}.
This result forces either to weaken the notion of associativity or to consider alternative
identifications of Minkowskian regions, which can be co-associative: fortunately, there exists
a large number of candidates.

The article [Al] indeed kills the idea about the associativity of the space-time surface. The
article starts from a rather disappointing observation that associative sub-manifolds are geodesic
sub-manifolds and therefore trivial. Co-associative quaternion sub-manifolds are however possible.
With a motivation coming from this observation, the article discusses what the author calls RC
quaternionic sub-manifolds of quaternion manifolds. For a quaternion manifold the tangent space
allows a realization of quaternionic units as antisymmetric tensors. These manifolds are constant
curvature spaces and typically homogeneous spaces.

1. Quaternion sub-manifold allows a 4-D integrable distribution of quaternion units. The normal
complement of this distribution is expressible in terms of the second fundamental form and
the condition that it is trivial implies that the second fundamental form is vanishing so
that one has a geodesic submanifold. Quaternionic sub-manifolds are thus too trivial to be
interesting. As a diametric opposite, one can also define totally real submanifolds for which
the normal space contains a distribution of quaternion units. In this case the distribution is
always integrable. This case is much more interesting from the TGD point of view.

2. Author introduces the notion of CR quaternion sub-manifold N C M, where M is quaternion
manifold with constant sectional curvatures. N has quaternion distribution D in its tangent
spaces if the action of quaternion units takes D to itself. D' is the co-quaternionic orthogonal
complement D in the normal space N. D would take also D+ to itself. D+ can be expressed
in terms of the components of the second fundamental form and vanishes for quaternion
sub-manifolds.

3. Author deduces results about CR quaternion sub-manifolds, which are very interesting from
the TGD point of view.

(a) Sub-manifold is CR quaternion sub-manifold only if the curvature tensor of Rjy; of
the imbedding space satisfies Ry/(D, D, D+, D ) = 0. The condition is trivial if the
quaternion manifold is flat. In the case of octonions this would be the case.

(b) D is integrable only if the second fundamental form restricted to it vanishes meaning
that one has a geodesic manifold. Totally real distribution D+ is always integrable to a
co-associative surface.

(c) If D+ integrates to a minimal surface then N itself is a minimal surface.

Could one consider RC quaternion sub-manifolds in TGD framework? Both octonions and
their complexifixation can be regarded as quaternionic spaces. Consider the real case.

1. If the entire D is quaternionic then N is a geodesic sub-manifold. This would leave only E*
and its Minkowskian variants with various signatures. One could have however 4-D totally
real (co-associative) space-time surfaces. Simple arguments will show that the intersections
of the conjectured quaternionic and co-quaternionic 4-surfaces have 2- and 3-D intersections
with 6-branes.

Should one replace associative space-time surfaces with CR sub-manifolds with d < 3 inte-
grable distribution D whereas the co-quaternionic surfaces would be completely real having
4-D integrable D+? Could one have 4-D co-associative surfaces for which D integrates to
n > 1-dimensional minimal surface (geodesic line) and the X* itself is a minimal surface?

Partially associative CR manifold do not allow M8H duality. Only co-associative surfaces
allow it and also their signature must be Minkowskian: the original idea [L10, L2 L3} [L4]
about Euclidian (Minkowskian) signature for co-associative (associative) surfaces was wrong.
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2. The integrable 2-D sub-distributions D defining a distribution of normal planes could define
foliations of the X4 by 2-D surfaces. What springs to mind is foliations by string world sheets
and partonic 2 surfaces orthogonal to them and light-like 3-surfaces and strings transversal
to them. This expectation is realized.

3.2.2 How to identify the Minkowskian sub-space of O.7

There are several identifications of subspaces of O, with Minkowskian signature. What is the
correct choice has been far from obvious. Here symmetries come in rescue.

1. Any subspace of O° with 3 (1) imaginary coordinates and 1 (3) real coordinates has Minkowskian
signature in octonionic norm algebraically continued to O, (complex valued continuation of
real octonion norm instead of real valued Hilbert space norm for O.). Minkowskian regions
should have local tangent space basis consisting of octonion units which in the canonical
case would be {I,ils,il5,il;}, where i is commutative imaginary unit. This particular basis
is co-associative having whereas its complement {ilo, I, I4, Is} is associative and has also
Minkowskian signature.

2. The size of the isometry group of the subspace of M$ depends on whether the tangent basis
contains real octonion unit 1 or not. The isometry group for the basis containing I is SO(3)
acting as automorphisms of quaternions and SO(k,3 — k) when 3 — k units are proportional
to i. The reason is that G (and its complexification G ) and its subgroups do not affect
Iy. For the tangent spaces built from 4 imaginary units I and ¢I; the isometry group is

SO(k,4 — k) C Ga..

The choice therefore allows larger isometry groups and also co-associativity is possible for a
suitable choice of the basis. The choice {I1,ils,il5,il;} is a representative example, which
will be called canonical basis. For these options the isometry group is the desired SO(1,3)
as an algebraic continuation of SO(4) C Gq acting in {I1,Is, I5, Iz}, to SO(1,3) C Ga.

Also Minkowskian signature - for instance for the original canonical choice {Iy,il1,ils,il3} -
can have only SO(k,3—k) as isometries. This is the basic objection against the original choice
{lo,il1,il2,iI3}. This identification would force the realization of SO(1,3) as a subgroup of
SO(1,7). Different states of motion for a particle require different octonion structure with
different direction of the octonion real axis in M8. The introduction of the notion of moduli
space for octonion structures does not look elegant. For the option {Iy,ils,il5,il;} only a
single octonion structure is needed and G5 . contains SO(1, 3).

Note that also the signatures (4,0), (0,4) and (2,2) are possible and the challenge is to
understand why only the signature (1,3) is realized physically.

Co-associative option is definitely the only physical alternative. The original proposal for the
interpretation of the Minkowski space in terms of an associative real sub-space of M* had a serious
problem. Since time axis was identified as octonionic real axis, one had to assign different octonion
structure to particles with non-parallel moment: SO(1,7) would relate these structures: how to
glue the space-time surfaces with different octonion structures together was the problem. This
problem disappears now. One can simply assign to particles with different state of motion real
space-time surface defined related to each other by a transformation in SO(1,3) C Ga.

3.2.3 The condition that M® — H duality makes sense

The condition that M® — H duality makes sense poses strong conditions on the choice of the real
sub-space of M$.

1. The condition that tangent space of O, has a complexified basis allowing a decomposition to
representations of SU(3) C G is essential for the map to M® — H although it is not enough.
The standard representation of this kind has basis {£ily + I1} behaving like SU(3) singlets
{I5 + €ils, Iy + €il5, elg + il7} behaves like SU(3) triplet 3 for € = 1 and its conjugate 3 for
e = —1. Gy, provides new choices of the tangent space basis consistent with this choice.
SU(3) leaves the direction I; unaffected but more general transformations act as Lorentz
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transformation changing its direction but not leaving the M* plane. Even more general G .
transformations changing M* itself are in principle possible.

Interestingly, for the canonical choice the co-associative choice has SO(1,3) as isometry
group whereas the complementary choice failing to be associative correspond to a smaller
isometry group SO(3). The choice with M* signature and co-associativity would provide
the highest symmetries. For the real projections with signature (2,2) neither consistent with
color structure, neither full associativity nor co-associativity is possible.

2. The second essential prerequisite of M® — H duality is that the tangent space is not only
(co-)associative but contains also (co-)complex - and thus (co-)commutative - plane. A more
general assumption would be that a co-associative space-time surface contains an integrable
distribution of planes M?(z), which could as a special case reduce to M?2.

The proposal has been that this integrable distribution of M?(x) could correspond to string
sheets and possibly also integrable orthogonal distribution of their co-complex orthogonal
complements as tangent spaces of partonic 2-surfaces defining a slicings of the space-time
surface. It is now clear that this dream cannot be realized since the space-time surface
cannot be even associative unless it is just E4 or its Minkowskian variants.

3. As already noticed, any distribution of the associative normal spaces integrates to a co-
associative space-time surface. Could the normal spaces also contain an integrable distribu-
tion of co-complex planes defined by octonionic real unit 1 and real unit Iy (x), most naturally
I in the canonical example? This would give co-commutative string world sheet. Commuta-
tivity would be realized at the 2-D level and associativity at space-time level. The signature
of this plane could be Minkowskian or Euclidian. For the canonical example {I;,il3,il5,il7}
the 2-D complex plane in quaternionic sense would correspond to (a X 1, +noly +n4ls+nels,
where the unit vector n; has real components and one has a = 1 or a = i is forced by the
complexification as in the canonical example.

Since the distribution of normal planes integrates to a 4-surface, one expects that its sub-
distribution consting of commutative planes integrates to 2-D surface inside space-time sur-
face and defines the counterpart of string worlds sheet. Also its normal complement could
integrate to a counterpart of partonic 2-surface and a slicing of space-time surface by these
surfaces would be obtained.

4. The simplest option is that the commutative space does not depend on position at X*. This
means a choice of a fixed octonionic imaginary unit, most naturally I; for the canonical
option. This would make SU(3) and its sub-group U(2) independent of position. In this case
the identification of the point of CP, = SU(3)/U(2) labelling the normal space at a given
point is unique.

For a position dependent choice SU(3)(x) it is not clear how to make the specification of
U(2)(x) unique: it would seem that one must specify a unique element of Ga(z) relating
SU(3)(x) to a choice at special point xg and defining the conjugation of both SU(3)(z) and
U(2)(x). Otherwise one can have problems. This would also mean a unique choice for the
direction of time axis in O and fixing of SO(1, 3) as a subgroup of G2 .. Also this distribution
of associative normal spaces is integrable. Physically this option is attractive but an open
question is whether it is consistent with the identification of space-time surfaces as roots
Reg(P)=0of P.

3.2.4 Co-associativity from octonion analyticity or/and from G, holography?

Candidates for co-associative space-time surfaces X are defined as restrictions X for the roots
X2 of the octonionic polynomials such that the O. coordinates in the complement of a real co-
associative sub-space of O, vanish or are constant. Could the surfaces X} or even X2 be co-
associative?

1. X} is analogous to the image of real or imaginary axis under a holomorphic map and defines a
curve in complex plane preserving angles. The tangent vectors of X* and X2 involve gradients
of all coordinates of O, and are expressible in terms of all octonionic unit vectors. It is not
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obvious that their products would belong to the normal space of X a strong condition would
be that this is the case for X2.

. Could octonion analyticity in the proposed sense guarantee this? The products of octonion

units also in the tangent space of the image would be orthogonal to the tangent space.
Ordinary complex functions preserve angles, in particular, the angle between x- and y-axis is
preserved since the images of coordinate curves are orthogonal. Octonion analyticity would
preserve the orthogonality between tangent space vectors and their products.

This idea could be killed if one could apply the same approach to associative case but this
is not possible! The point is that when the real tangent space of O, contains the real
octonion unit, the candidate for the 4-D space-time surface is a complex surface X2. The
number theoretic metric is real only for 2-D X2 so that one obtains string theory with co-
associativity replaced with co-commutativity and M?* x CP, with M? x S2. One could of
course ask whether this option could be regarded as a ”sub-theory” of the full theory.

My luck was that I did not realize the meaning of the difference between the two cases first

and realized that one can imagine an alternative approach.

1. G2 as an automorphism group of octonions preserves co-associativity. Could the image of a

co-associative sub-space of O, defined by an octonion analytic map be regarded as an image
under a local Gy gauge transformation. SU(3) C G2 is an especially interesting subgroup
since it could have a physical interpretation as a color gauge group. This would also give a
direct connection with M® — H duality since SU(3) corresponds to the gauge group of the
color gauge field in H.

One can counter-argue that an analog of pure gauge field configuration is in question at the
level of M8. But is a pure gauge configuration for Ga . a pure gauge configuration for G?
The point is that the G . connection g~'8,g trivial for Ga . contains by non-linearity cross
terms from gog,c = g2.1 + 9922, which are of type Re = X[g2,1,92.1] — X[g2,2,92,2] = 0 and
Im =1iZ[g21,g2,2] = 0. If one puts g, 2 contributions to zero, one obtains Re = X[g2 1, g2,1],
which does not vanish so that SU(3) gauge field is non-trivial.

X2 could be also obtained as a map of the co-associative M* plane by a local G . element.
It will turn out that G2 . could give rise to the speculated Yangian symmetry [L1] at string
world sheets analogous to Kac-Moody symmetry and gauge symmetry and crucial for the
construction of scattering amplitudes in M8.

The decomposition of the co-associative real plane of O, should contain a preferred complex
plane for M® — H duality to make sense. Gz . transformation should trivially preserve this
property so that SH would not be necessary at H side anymore.

There is a strong motivation to guess that the two options are equivalent so that Gz . holography

would be equivalent with octonion analyticity. The original dream was that octonion analyticity
would realize both associative and co-associative dynamics but was exaggeration!

3.2.5 Does one obtain partonic 2-surfaces and strings at boundaries of ACDg?

It is interesting to look for the dimensions of the intersections of the light-like branes at the
boundary of C'Dg giving rise to the boundary of C D4 in M* to see whether it gives justification for
the existing phenomenological picture involving light-like orbits of partonic 2-surfaces connected
by string world sheets.

1. Complex light-cone boundary has dimension D = 14. P = 0 as an additional condition at

0C Dg gives 2 complex conditions and defines a 10-D surface having 5-D real projections.

The condition Img(P) = 0 gives 8 conditions and gives a 2-D complex surface with 1-D real
projection. The condition Reg(P) = 0 gives 3 complex conditions since X = 0 is already
satisfied and the solution is a 4-D surface having 2-D real projection. Could the interpretation
be in terms of the intersection of the orbit of a light-like partonic surface with the boundary
of CDg?
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3. Associativity is however not a working option. If only co-associative Minkowskian surfaces
allowing mapping to H without SH are present then only 4-D space-time surfaces with
Minkowskian signature, only partonic 2-surfaces and their light-like orbits would emerge
from co-associativity.

This option would not allow string world sheets for which there is a strong intuitive support.
What could a co-complex 2-surface of a co-associative manifold mean? In the co-associative
case the products of octonion imaginary units are in the normal space of space-time surface.
Could co-complex surface X2 C X2 be defined by an integrable co-complex sub-distribution
of co-associative distribution. The 4-D distribution of normal planes is always integrable.

Could the 2-D sub-distributions of co-associative distribution integrate trivially and define
slicings by string world sheets or partonic 2-surfaces. Could the distribution of string distri-
butions and its orthogonal complement be both integrable and provide orthogonal slicings
by string world sheets and partonic 2-surfaces? String world sheets with Minkowskian signa-
ture should intersect the partonic orbits with Euclidian signature along light-like lines. This
brings in mind the orthogonal grid of flow lines defined by the Re(f) = 0 and Im(f) =0
lines of an analytic function in plane.

4. In this picture the partonic 2-surfaces associated with light-like 3-surface would be physically
unique and could serve as boundary values for the distributions of partonic 2-surfaces. But
what about string world sheets connecting them? Why would some string world sheets be
exceptional? String world sheets would have a light-like curve as an intersection with the
partonic orbit but this is not enough.

Could the physically special string world sheets connect two partonic surfaces? Could the
string associated with a generic string world sheet be like a flow line in a hydrodynamic
flow past an obstacle - the partonic 2-surface? The string as a flowline would go around the
obstacle along either side but there would be one line which ends up to the object.

Interactions would correspond geometrically to the intersections of co-associative space-time
surfaces X} associated with particles and corresponding to different real sub-spaces of O, related
by Lorentz boost in SO(1,3) C G2.. In the generic case the intersection would be discrete. In
the case that X and Y have a common root the real surfaces X* C X¢ associated with quarks and
depending on their state of motion would reside inside the same 6-D surface X° and have a 2-D
surface X? as intersection. Could this surface be interpreted as a partonic 2-surface? One must
however bear in mind that partonic 2-surfaces as topological vertices are assumed to be non-generic
in the sense that the light-like partonic orbits meet at them. At the level of H, the intersections
would be partonic 2-surfaces X2 at which the four 3-D partonic orbits would meet along their
ends. Does this hold true at the level of M8? Or can it hold true even at the level H?

The simplest situation corresponds to 4 external quarks. There are 6 different intersections.
Not all of them are realized since a given quark can belong only to a single intersection. One must
have two disjoint pairs -say 12 and 34. Most naturally positive resp. negative energy quarks
form a pair. These pairs are located in different half-cones. The intersections would give two
partonic 2-surfaces and this situation would be generic. This suggests a modification of the
description of particle reaction in M8 . M® — H duality suggests a similar description in H.

3.2.6 What could be the counterparts of wormhole contacts at the level of M8?7

The experience with H, in particular the presence of extremals with Euclidian signature of the
induced metric and identified as building bricks of elementary particles, suggest that also the light-
like 3-surfaces in M2 could have a continuation with an Euclidian signature of the number theoretic
metric with norm having real values only for the projections to planes allowing real coordinates.

The earlier picture has been that the wormhole contacts as C P, type extremals correspond
to co-associative regions and their exteriors to associative regions. If one wants M® — H duality
in strong form and thus without need for SH, one should assume that both these regions are
co-associative.

1. The simplest option is that the real Minkowskian time coordinate becomes imaginary. In-
stead of the canonical (Iy,il3,il5,iI7) the basis would be (ily,ils,il5,4l7) having Euclidian
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signature and SO(4) as isometry group. The signature would naturally change at light-like
3-surface the time coordinate along light-like curves becomes zero - proper time for photon
vanishes - and can ransforms continuously from real to imaginary.

2. Wormbhole contacts in H behave like pairs of magnetic monopoles with monopole charges at
throats. If one does not allow point-like singularity, the monopole flux must go to a parallel
Minkowskian space-time sheet through the opposite wormhole throat. Wormhole contact
with effective magnetic charge would correspond in M2 to a distribution of normal 4-planes
at the partonic 2-surfaces analogous to the radial magnetic field of monopole at a sphere
surrounding it. To avoid singularity of the distribution, there must be another light-like
3-surface M® such that its partonic throat has a topologically similar distribution of normal
planes.

In the case of X2 dimension does not allow co-quaternion structure: could they allow 4-D
co-associative sub-manifolds? It will be found that this option is not included since co-associative
tangent space distributions in a quaternion manifold (now O) are always integrable.

3.3 Octonionic Dirac equation and co-associativity

Also the role of associativity concerning octonionic Dirac equation in M® must be understood.
It is found that co-associativity allows very elegant formulation and suggests the identification
of the points appearing as the ends of quark propagator lines in H as points of boundary of CD
representing light-like momenta of quarks. Partonic vertices would involve sub-CDs and momentum
conservation would have purely geometric meaning bringing strongly in mind twistor Grassmannian
approach [B2| [BIl B3]. I have discussed the twistor lift of TGD replacing twistors as fields with
surfaces in twistor space having induced twistor structure in [K8, [K6, [K9] [L12] [L13].

3.3.1 Octonionic Dirac equation

The following arguments lead to the understanding of co-associativity in the case of octonion
spinors. The constant spinor basis includes all spinors but the gamma matrices appearing in the
octonionic Dirac equation correspond to co-associative octonion units.

1. At the level of O, the idea about massless Dirac equation as partial differential equation
does not make sense. Dirac equation must be algebraic and the obvious idea is that it
corresponds to the on mass shell condition for a mode of ordinary Dirac equation with well-
define momentum: pFv;, ¥ = 0 satisfying p*pr = 0. This suggests that octonionic polynomial
P defines the counterpart of p*~, so that gamma matrices v, would be represented as octonion
components. Does this make sense?

2. Can one construct octonionic counterparts of gamma matrices? The imaginary octonion
units I indeed define the analogs of gamma matrices as v, = ily satisfying the conditions
{7k, 1} = 20k defining Euclidian gamma matrices. The problem is that one has Ip[;k +
I Iy = 2I;. One manner to solve the problem would be to consider tensor products Iyos
and Ipoe where o3 and sigmao are Pauli’s sigma matrices with anti-commutation relations
{0i,0;} = 0; ;. Note that I}, do not allow a matrix representation.

Co-associativity condition suggests an alternative solution. The restriction of momenta to be
co-associative and therefore vanishing component p° as octonion, would selects a sub-space
spanned by say the canonical choice {Is,I3,il5,iI;} satisfying the anticommutation rela-
tions of Minkowskian gamma matrices. Octonion units do not allow a matrix representation
because they are not associative. The products for a co-associative subset of octonion units
are however associative (a(bc) = (ab)c so that they can be mapped to standard gamma ma-
trices in Minkowski space. Co-associativity would allow the representation of 4-D gamma
matrices as a maximal associative subset of octonion units.

3. What about octonionic spinors. The modes of the ordinary Dirac equation with a well-defined
momentum are obtained by applying the Dirac operator to an orthogonal basis of constant
spinors u; to give ¥ = pFy,u;. Now the counterparts of constant spinors u; would naturally
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be octonion units {Iy, I }: this would give the needed number 8 of real spinor components
as one has for quark spinors.

Dirac equation reduces to light-likeness conditions p*p, = 0 and p;, must be chosen to be real
- if pk are complex, the real and imaginary parts of momentum are parallel. One would obtain
an entire 3-D mass shell of solution and a single mode of Dirac equation would correspond
to a point of this mass shell.

Remark: Octonionic Dirac equation is associative since one has a product of form (pgvyi)%u;
and octonion products of type 22y are associative.

4. p* would correspond to the restriction of P(o.) to M* as sub-space of octonions. Since co-

associativity implies P(o.) = Y (0.)o, restricted to counterpart of M* (say subspace spanned
by {I2,iI3,il5,il;}), Dirac equation reduces to the condition oo, = 0 in M* defining a
light-cone of M*. This light-cone is mapped to a curved light-like 3-surface X?® in o, as
0. — P(o.) = Yo.. M® — H duality maps points of space-time surface on M® H and
therefore the light-cone of M* corresponds to either light-like boundary of CD. It seems that
the image of X3 in H has M* projection to the light-like boundary of CD.

Co-associative space-time surfaces have 3-D intersections X3 with the surface P = 0: the
conjecture is that X corresponds to a light-like orbit of partonic 2-surfaces in H at which the
induced metric signature changes. At X3 one has besides X = 0 also Y = 0 so that octonionic
Dirac equation P(o.)¥ = P*I, ¥ = Yp*I,,U = 0 is trivially satisfied for all momenta p* = o*
defined by the M* projections of points of X3 and one would have P* = Yp* = 0 so that
the identification of P* as 4-momentum would not allow to assign non-vanishing momenta,
to X3. The direction of p* is constrained only by the condition of belonging to X3 and the
momentum would be in general time-like since X3 is inside future light-cone.

Y = 0 condition conforms with the proposal that X3 defines a boundary of Minkowskian and
Euclidian region: Euclidian mass shell condition for real P* requires P* = 0. The general
complex solution to P? = 0 condition is P = P, + iP, with P? = P2.

A single mode of Dirac equation with a well-defined value of p* as the analog of 4-momentum
would correspond to a selection of single time-like point at X3 or light-like point at the light-like
boundary of CD. X3 intersects light-cone boundary as part of boundary of 7-D light-cone. The
picture about scattering amplitudes - consistent with the view about cognitive representations as a
unique discretization of space-time surface - is that quarks are located at discrete points of partonic
2-surfaces representing the ends of fermionic propagator lines in H and that one can assign to them
light-like momenta.

3.3.2 Challenging the form of M8 — H duality for the map M* c M8 to M*C H

The assumption that the map M* C M® to M* C H in M® — H duality is a simple identification
map has not been challenged hitherto.

1. Octonionic Dirac equation forces the identification of M?® as analog of 8-D momentum space
and the earlier simple identification is in conflict with Uncertainty Principle. Inversion
allowed by conformal invariance is highly suggestive: what comes first in mind is a map
mk — heffmk/mkmk.

At the light-cone boundary the map is ill-defined. Here on must take as coordinate the linear
time coordinate m® or equivalently radial coordinate r3; = m°. In this case the map would
be of fporm ¢ — hesp/m°: m has interpretation as energy of massless particle.

The map would give a surprisingly precise mathematical realization for the intuitive argu-
ments assigning to mass a length scale by Uncertainty Principle.

2. Additional constraints on M® — H duality in M* degrees of freedom comes from the fol-
lowing argument. The two half-cones of CD contain space-time surfaces in M?® as roots of
polynomials P;(0) and P»(2T — o) which need not be identical. The simplest solution is
Py(0) = P1(2T — 0): the space-time surfaces at half-cones would be mirror images of each
other. This gives Py(T,Impg(0)) = Pi(T — Img(0)) Since P; depends on t* — 6 only, the
condition is identically satisfied for both options.
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There are two options for the identification of the coordinate ¢.

Option a): t is identified as octonionic real coordinate or identified and also time
coordinate as in the original option. In the recent option octonion ogp would correspond
to the Euclidian analog of time coordinate. =~ The breaking of symmetry from SO(4) to
SO(3) would distinguish ¢ as a Newtonian time.

At the level of M®, The M* projection of CDg is a union of future and past directed light-
cones with a common tip rather than CDy4. Both incoming and outgoing momenta have the
same origin automatically. This identification is the natural one at the level of M.

Option b): ¢ isidentified as a Minkowski time coordinate associated with the imaginary
unit [; in the canonical decomposition {Iy,il3,il5,iI7}. The half-cone at 0 = 0 would be
shifted to O = (0,27,0...0) and reverted. ~M* projection would give CDy4 so that this
option is consistent with ZEQO. This option is natural at the level of Hbut not at the level
of M8.

If Option a) is realized at the level of M® and Option b) at the level of H, as seems
natural, a time translation m® — m® 4 2T of the past directed light-cone in M* C H is
required in order to to give upper half-cone of C'Dy.

3. The map of the momenta to imbedding space points does not prevent the interpretation of the
points of M® as momenta also at the level of H since this information is not lost. One cannot
identify p* as such as four-momentum neither at the level of M® nor H as suggested by the
naive identification of the Cartesian factors M* for M® and H. This problem is circumvented
by a conjugation in M? changing the sign of 3-momentum. The light-like momenta along
the light-cone boundary are non-physical but transform to light-like momenta arriving into
light-cone as the physical intuition requires.

Therefore the map would have in the interior of light-cone roughly the above form but there
is still a question about the precise form of the map. Does one perform inversion for the
M* projection or does one take M* projection for the inversion of complex octonion. The
inversion of M* projection seems to be the more plausible option. Denoting by P(o.) the
real M* projection of X* point one therefore has:

~—

Pl(o.
P(Oc)%heffp (

(Oc) : P(Oc) . (37)

Note that the conjugation changes the direction of 3-momentum.

At the light-cone boundary the inversion is ill-defined but Uncertainty Principle comes in
rescue, and one can invert the M* time coordinate:

1
Re(mo) =t— heffz . (3.8)

A couple of remarks are in order.

1. The presence of K.y instead of A is required by the vision about dark matter. The value of
Regr/ho is given by the dimension of extension of rationals identifiable as the degree of P.

2. The image points p* in H would naturally correspond to the ends of the propagator lines in
the space-time representation of scattering amplitudes.

The information about momenta is not lost in the map. What could be the interpretation of
the momenta 7* at the level of H?

1. Super-symplectic generators at the partonic vertices in H do not involve momenta as labels.
The modes of the imbedding space spinor field assignable to the ground states of super-
symplectic representations at the boundaries of CD have 4-momentum and color as labels.
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The identification of p* as this momentum label would provide a connection with the classical
picture about scattering events.

At the partonic 2-surfaces appearing as vertices, one would have a sum over the ground states
(spinor harmonics). This would give integral over momenta but M® — H duality and number
theoretic discretization would select a finite subset and the momentum integral would reduce
to a discrete sum. The number of M?® points with coordinates in a given extension of rationals
is indeed finite.

. M* C M?8 could be interpreted as the space of 4-momenta labeling the spinor harmonics of

M?. Same would apply at the level of H: spinor harmonics would correspond to the ground
states of super-symplectic representations.

. The interpretation of the points of M2 as complex 4-momenta inspires the question whether

the interpretation of the imaginary part of the momentum squared in terms of decay decay
width so that M?® picture would code even information about the dynamics of the particles.

How to achieve periodic dynamics at the level of M*xCP,?

Assuming M® — H duality, how could one achieve typical periodic dynamics at the level of H - at
least effectively?

It seems that one cannot have an ”easy” solution to the problem?

1. Irreducible polynomials which are products of monomials corresponding to roots 7, which

are in good approximation evenly spaced r,, = ro+nr;Ar, would give ”very special moments
in the life of self” as values of M* time which are evenly spaced [L10}, [L8]. This could give
rise to an effective periodicity but it would be at the level of M8, not H, where it is required.

. Is it enough that the periodic functions are only associated with the spinor harmonics of H

involved with the construction of scattering amplitudes in H [L17]? For the modified Dirac
equation [K3| the periodic behavior is possible. Note also that the induced spinors defining
ground states of super-symplectic representations are restrictions of second quantized spinors
of H proportional to plane waves in M*. These solutions do not guarantee quantum classical
correspondence.

4.1 The unique aspects of Neper number and number theoretical uni-

versality of Fourier analysis

Could one assume more general functions than polynomials at the level of H? Discrete Fourier basis
is certainly an excellent candidate in this respect but does it allow number theoretical universality?

1. Discrete Fourier analysis involves in the Euclidian geometry periodic functions exp(27z), n

integer and in hyperbolic geometry exponential functions exp(kx).

Roots of unity exp(i27/n) allow to generalize Fourier analysis. The p-adic variants of exp(iz)
exist for rational values of x = k27 /n for n = K if exp(i27/K) belongs to the extension of
rationals. © = k = 2pi/n does not exist as a p-adic number but exp(x) = exp(i27/n) can
exist as phase replacing x as coordinate in extension of p-adics. One can therefore define
Fourier basis {exp(inz)|n € Z} which exist at discrete set of rational points x = k/n

Neper number e is also p-adically exceptional in that eP exists as a p-adic number for all
primes p. One has a hierarchy of finite-D extensions of p-adic numbers spanned by the roots
e!/™. Finiteness of cognition might allow them. Hyperbolic functions exp(nzx), n = 1,2...
would have values in extension of p-adic number field containing exp(1/N) in a discrete set
of points {x = k/N|k € Z}.

. (Complex) rationality guarantees number theoretical universality and is natural since CP,

geometry is complex. This would correspond to the replacement x — exp(iz) or x — exp(x)
for powers z”. The change of the signature by replacing real coordinate = with iz would
automatically induce this change.
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3. Exponential functions are in a preferred position also group theoretically. Exponential map
maps g — exp(itg) the points of Lie algebra to the points of the Lie group so that the tangent
space of the Lie algebra defines local coordinates for the Lie group. One can say that tangent
space is mapped to space itself. M* defines an Abelian group and the exponential map would
mean replacing of the M* coordinates with their exponential, which are p-adically more
natural. Ordinary Minkowski coordinates have both signs so that they would correspond to
the Lie algebra level.

4. CP, is a coset space and its points are obtained as selected points of SU(3) using exponenti-
ation of a commutative subalgebra ¢ in the decomposition ¢ = h +t + ¢ in the Lie-algebra of
SU(3). One could interpret the C'P; points as exponentials and the emergence of exponential
basis as a basis satisfying number theoretical universality.

4.2 Are CP, coordinates as functions of M* coordinates expressible as
Fourier expansion

Exponential basis is not natural at the level of M®. Exponential functions belong to dynamics,
not algebraic geometry, and the level H represents dynamics.

It is the dependence of C'P, coordinates on M* coordinates, where the periodicity is needed.
The map of the tangent spaces of X* C M?3 to points of CP; is slightly local since it depends on
the first derivatives crucial for dynamics. Could this bring in dynamics and exponential functions
at the level of H?

These observations inspire the working hypothesis that C' P, points as functions of M* coordi-
nates are expressible as polynomials of hyperbolic and trigonometric exponentials of M* coordi-
nates.

Consider now the situation in more detail.

1. The basis for roots of e would be characterized by integer K in e'/%. This brings in a
new parameter characterizing the extension of rationals inducing finite extensions of p-adic
numbers. K is analogous to the dimension of extension of rationals: the p-adic extension has
dimension d = Kp depending on the p-adic prime explicitly.

2. If CD size T is given, e~ T/% defines temporal and spatial resolution in H. K or possibly

Kp could naturally correspond to the gravitational Planck constant [L7] [K5] [?] K = ng, =
gy /ho.

3. In [LI9] many-sheetedness with respect to C' P, was proposed to correspond to flux tubebun-
dles in M* forming quantum coherent structures. A given C' P, point corresponds to several
M* points with the same tangent space and their number would correspond to the number
of the flux tubes in the bundle.

Does the number of these points relate to K or Kp? p-Adic extension would have finite
dimension d = Kp. Could d = Kp be analogous to a degree of polynomial defining the
dimension of extension of rationals? Could this be true in p-adic length scale resolution
O(p?) = 0 The number of points would be Kp and very large. For electron one has p =
Mgy = 2127 — 1.

4. The dimension n4 Abelian extension associated with EQ would naturally satisfy ng = K
since the trigonometric and hyperbolic exponentials are obtained from each other by replacing
a real coordinate with an imaginary one.

5. There would be two effective Planck constants. heyy = nhy would be defined by the degree
n of the polynomial P defining X* C M8. kg, = ng-ho would define infra-red cutoff in
M* as the size scale of CD in H = M* x CP,. n resp. ng = Kp would characterize
many-sheetedness in M 4 resp. CPy degrees of freedom.

4.3 Connection with cognitive measurements as analogs of particle re-
actions

There is an interesting connection to the notion of cognitive measurement [L19, .20} [L.21].
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. The dimension n of the extension of rationals as the degree of the polynomial P = P, 0P, ,o0...

is the product of degrees of degrees n;: n = [[, n; and one has a hierarchy of Galois groups G;
associated with P, o.... G;1 is a normal subgroup of G; so that the coset space H; = G;/G;41
is a group of order n;. The groups H; are simple and do not have this kind of decomposition:
simple finite groups appearing as building bricks of finite groups are classified. Simple groups
are primes for finite groups.

The wave function in group algebra L(G) of Galois group G of P has a representation as an
entangled state in the product of simple group algebras L(H;). Since the Galois groups act
on the space-time surfaces in M?® they do so also in H. One obtains wave functions in the
space of space-time surfaces. G has decomposition to a product (not Cartesian in general) of
simple groups. In the same manner, L(G) has a representation of entangled states assignable
to L(H;) [L19, [L21].

This picture leads to a model of analysis as a cognitive process identified as a cascade of ”small

state function reductions” (SSFRs) analogous to ”weak” measurements.

1. Cognitive measurement would reduce the entanglement between L(H;) and L(Hz), the be-

tween L(H3) and L(H3) and so on. The outcome would be an unentangled product of wave
functions in L(H;) in the product L(H;) X L(Hj3) X .... This cascade of cognitive measure-
ments has an interpretation as a quantum correlate for analysis as factorization of a Galois
group to its prime factors. Similar interpretation applies in M* degrees of freedom.

. This decomposition could correspond to a replacement of P with a product [[, P; of polyno-

mials with degrees n = nins..., which is irreducible and defines a union of separate surfaces
without any correlations. This process is indeed analogous to analysis.

The analysis cannot occur for simple Galois groups associated with extensions having no
decomposition to simpler extensions. They could be regarded as correlates for irreducible
primal ideas. In Eastern philosophies the notion of state empty of thoughts could corre-
spondto these cognitive states in which SSFRs cannot occur.

An analogous process should make sense also in the gravitational sector and would mean
the splitting of K = n4 appearing as a factor ng. = Kp to prime factors so that the sizes
of CDs involved with the resulting structure would be reduced. This process would reduce
to a simultaneous measurement cascade in hyperbolic and trigonometric Abelian extensions.
The IR cutoffs having interpretation as coherence lengths would decrease in the process as
expected. Nature would be performing ordinary prime factorization in the gravitational
degrees of freedom.

Cognitive process would also have a geometric description.

1. For the algebraic EQs, the geometric description would be as a decay of n-sheeted 4-surface

with respect to M* to a union of n;-sheeted 4-surfaces by SSFRs. This would take place for
flux tubes mediating all kinds of interactions.

In gravitational degrees of freedom, that is for trascendental EQs, the states with ng,. = Kp
having bundles of Kp flux tubes would deca to flux tubes bundles of ny, ; = K;p, where K; is
a prime dividing K. The quantity log(K) would be conserved in the process and is analogous
to the corresponding conserved quantity in arithmetic quantum field theories (QFTs) and
relates to the notion of infinite prime inspired by TGD [K7].

This picture leads to ask whether one could speak of cognitive analogs of particle reactions
representing interactions of ”thought bubbles” i.e. space-time surfaces as correlates of cogni-
tion. The incoming and outgoing states would correspond to a Cartesian product of simple
subgroups: G = Hlx H;. In this composition the order of factors does not matter and the sit-
uation is analogous to a many particle system without interactions. The non-commutativity
in general case leads to ask whether quantum groups might provide a natural description of
the situation.
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Interestingly, Equivalence Principle is consistent with the splitting of gravitational flux tube
structures to smaller ones since gravitational binding energies given by Bohr model in 1/r
gravitational potential do not depend on the value of Ay, if given by Nottale formula by, =
GMm/vg [L23]. The interpretation would be in terms of spontaneous quantum decoherence
taking place as a decay of gravitational flux tube bundles as the distance from the source
increases.

Still some questions about M® — H duality

There are still on questions to be answered.

1.

The map p* — m* = A, ¥ fpk /p-p defining M® — H duality is consistent with Uncertainty

Principle but this is not quite enough. Momenta in M8 should correspond to plane waves
in H.
Should one demand that the momentum eigenstate as a point of cognitive representation
associated with X4 C M?® carrying quark number should correspond to a plane wave with
momentum at the level of H = M* x CP,? This does not make sense since X* ¢ CD
contains a large number of momenta assignable to fundamental fermions and one does not
know which of them to select.

One can however weaken the condition by assigning to CD a 4-momentum, call it P. Could
one identify P as

(a) the total momentum assignable to either half-cone of CD

(b) or the sum of the total momenta assignable to the half-cones?

The first option does not seem to be realistic. The problem with the latter option is that
the sum of total momenta is assumed to vanish in ZEO. One would have automatically zero
momentum planewave. What goes wrong?

1.

Momentum conservation for a single CD is an ad hoc assumption in conflict with Uncertainty
Principle, and does not follow from Poincare invariance. = However, the sum of momenta
vanishes for non-vanishing planewave when defined in the entire M* as in QFT, not for
planewaves inside finite CDs. Number theoretic discretization allows vanishing in finite
volumes but this involves finite measurement resolution.

. Zero energy states represent scattering amplitudes and at the limit of infinite size for the

large CD zero energy state is proportional to momentum conserving delta function just as
S-matrix elements are in QFT. If the planewave is restricted within a large CD defining the
measurement volume of observer, four-momentum is conserved in resolution defined by the
large CD in accordance with Uncertainty Principle.

Note that the momenta of fundamental fermions inside half-cones of CD in H should be
determined at the level of H by the state of a super-symplectic representation as a sum
of the momenta of fundamental fermions assignable to discrete images of momenta in
X*CH.

4.4.1 M?® — H-duality as a generalized Fourier transform

This picture provides an interpretation for M® — H duality as a generalization of Fourier transform.

1. The map would be essentially Fourier transform mapping momenta of zero energy as points of

X* C CD c M? to plane waves in H with position interpreted as position of CD in H. CD
and the superposition of space-time surfaces inside it would generalize the ordinary Fourier
transform . A wave function localized to a point would be replaced with a superposition of
space-time surfaces inside the CD having interpretation as a perceptive field of a conscious
entity.
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2. M8 — H duality would realize momentum-position duality of wave mechanics. In QFT this
duality is lost since space-time coordinates become parameters and quantum fields replace
position and momentum as fundamental observables. Momentum-position duality would
have much deeper content than believed since its realization in TGD would bring number
theory to physics.

4.4.2 How to describe interactions of CDs?

Any quantum coherent system corresponds to a CD. How can one describe the interactions of
CDs? The overlap of CDs is a natural candidate for the interaction region.

1. CD represents the perceptive field of a conscious entity and CDs form a kind of conscious
atlas for M® and H. CDs can have CDs within CDs and CDs can also intersect. CDs can
have shared sub-CDs identifiable as shared mental images.

2. The intuitive guess is that the interactions occur only when the CDs intersect. A milder
assumption is that interactions are observed only when CDs intersect.

3. How to describe the interactions between overlapping CDs? The fact the quark fields are
induced from second quantized spinor fields in in H resp. M?® solves this problem. At the
level of H, the propagators between the points of space-time surfaces belonging to different
CDs are well defined and the systems associated with overlapping CDs have well-defined
quark interactions in the intersection region. At the level of M® the momenta as discrete
quark carrying points in the intersection of CDs can interact.

4.4.3 Zero energy states as scattering amplitudes and subjective time evolution as
sequence of SSFRs

This is not yet the whole story. Zero energy states code for the ordinary time evolution in the QFT
sense described by the S-matrix. What about subjective time evolution defined by a sequence of
"small” state function reductions (SSFRs) as analogs of ”weak” measurements followed now and
then by BSFRs? How does the subjective time evolution fit with the QFT picture in which single
particle zero energy states are planewaves associated with a fixed CD.

1. The size of CD increases at least in statistical sense during the sequence of SSFRs. This
increase cannot correspond to M? time translation in the sense of QFTs.  Single unitary
step followed by SSFR can be identified as a scaling of CD leaving the passive boundary of
the CD invariant. One can assume a formation of an intermediate state which is quantum
superposition over different size scales of CD: SSFR means localization selecting single size
for CD. The subjective time evolution would correspond to a sequence of scalings of CD.

2. The view about subjective time evolution conforms with the picture of string models in
which the Lorentz invariant scaling generator Lg takes the role of Hamiltonian identifiable in
terms of mass squared operator allowing to overcome the problems with Poincare invariance.
This view about subjective time evolution also conforms with super-symplectic and Kac-
Moody symmetries of TGD.

One could perhaps say that the Minkowski time T' as distance between the tips of CDs
corresponds to exponentiated scaling: T' = exp(Lot). If t has constant ticks, the ticks of T'
increase exponentially.

The precise dynamics of the unitary time evolutions preceding SSFRs has remained open.

1. The intuitive picture that the scalings of CDs gradually reveal the entire 4-surface determined
by polynomial P in M?®: the roots of P as ”very special moments in the life of self’ would
correspond to the values of time coordinate for which SSFRs occur as one new root emerges.
These moments as roots of the polynomial defining the space-time surface would correspond
to scalings of the size of both half-cones for which the space-time surfaces are mirror images.
Only the upper half-cone would be dynamical in the sense that mental images as sub-CDs
appear at ”geometric now” and drift to the geometric future.



4.4 Still some questions about M2 — H duality 27

2. The scaling for the size of CD does not affect the momenta associated with fermions at the
points of cognitive representation in X4 C M?® so that the scaling is not a genuine scaling of
M* coordinates which does not commute with momenta. Also the fact that Lo for super
symplectic representations corresponds to mass squared operator means that it commutes
with Poincare algebra so that M* scaling cannot be in question.

3. The Hamiltonian defining the time evolution preceding SSFR could correspond to an expo-
nentiation of the sum of the generators Lg for super-symplectic and super-Kac Moody rep-
resentations and the parameter ¢ in exponential corresponds to the scaling of CD assignable
to the replaced of root r,, with root 7,41 as value of M* linear time (or energy in M8). Lo
has a natural representation at light cone boundaries of CD as scalings of light-like radial
coordinate.

4. Does the unitary evolution create a superposition over all over all scalings of CD and does
SSFR measure the scale parameter and select just a single CD?

Or does the time evolution correspond to scaling? Is it perhaps determined by the increase
of CD from the size determined by the root r, as ”geometric now” to the root r,41 so that
one would have a complete analogy with Hamiltonian evolution? The scaling would be the
ratio rp41/7r, which is an algebraic number.

Hamiltonian time evolution is certainly the simplest option and predicts a fixed arrow of time
during SSFR sequence. Ly identifiable essentially as a mass squared operator acts like
conjugate for the logarithm of the logarithm of light-cone proper time for a given half-cone.

One can assume that Lj as the sum of generators associated with upper and lower half-cones
if the fixed state at the lower half-cone is eigenstate of L.

How does this picture relate to p-adic thermodynamics in which thermodynamics isdetermined
by partition function which would in real sector be regarded as a vacuum expectation value of
an exponential exp(iLot) of a Hamiltonian for imaginary time ¢t = i [ = 1/T defined by
temperature. Lg is proportional to mass squared operator.

1. In p-adic thermodynamics temperature T is dimensionless parameter and 8 = 1/T is integer
valued. The partition function as exponential exp(—H/T) is replaced with p?L0), g = n,
which has the desired behavior if Ly has integer spectrum. The exponential form elo/Tr)
Br = nlog(p) equivalent in the real sector does not make sense p-adically since the p-adic
exponential function has p-adic norm 1 if it exists p-adically.

2. The time evolution operator exp(—iLgt) for SSFRs (¢ would be the scaling parameter) makes
sense for the extensions of p-adic numbers if the phase factors for eigenstates are roots of
unity belonging to the extension. ¢ = 27k/n since Lo has integer spectrum. SSFRs would
define a clock. The scaling exp(t) = exp(27k/n) is however not consistent with the scaling
by 7n—1/Tn.

Both the temperature and scaling parameter for time evolution by SSFRs would be quantized
by number theoretical universality. p-Adic thermodynamics could have its origins in  the
subjective time evolution by SSFRs.

3. In the standard thermodynamics it is possible to unify temperature and time by introducing
a complex time variable 7 = ¢ + i3, where § = 1/T is inverse temperature. For the space-
time surface in complexified M®, M* time is complex and the real projection defines the
4-surface mapped to H. Could thermodynamics correspond to the imaginary part of the
time coordinate?

Could one unify thermodynamics and quantum theory as I have indeed proposed: this
proposal states that quantum TGD can be seen as a ”complex square root” of thermo-
dynamics. The exponentials U = exp(7Lo/2) would define this complex square root and
thermo-dynamical partition function would be given by UUT = exp(—SBLo).
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5 Conclusions

M?® — H duality plays a crucial role in quantum TGD and this motivated a critical study of the
basic assumptions involved.

5.1 Co-associativity is the only viable option

The notion of associativity of the tangent or normal space as a number theoretical counterpart of
a variational principle. This is not enough in order to have M8 — H duality. The first guess was
that the tangent space is associative and contains a commutative 2-D sub-manifold to guarantee
M?® — H duality.

1. The cold shower came as I learned that 4-D associative sub-manifolds of quaternion spaces are
geodesic manifolds and thus trivial. Co-associativity is however possible since any distribution
of associative normal spaces integrates to a sub-manifold. Typically these sub-manifolds are
minimal surfaces, which conforms with the physical intuitions. Therefore the surface X2
given by holography should be co-associative. By the same argument space-time surface
contains string world sheets and partonic 2-surfaces as co-complex surfaces.

2. X = Reg(o) = 0 and Y = Img(P) = 0 allow M* and its complement as associative/co-
associative subspaces of O.. The roots P = 0 for the complexified octonionic polynomials
satisfy two conditions X =0 and Y = 0.

Surprisingly, universal solutions are obtained as brane-like entities X8 with real dimension 12,
having real projection X¢ ("real” means that the number theoretic complex valued octonion
norm squared is real valued).

Equally surprisingly, the non-universal solutions to the conditions to X = 0 correspond
complex mass shells with real dimension 6 rather than 8. The solutions to X =Y =0

correspond to common roots of the two polynomials involved and are also 6-D complex mass
shells.

The reason for the completely unexpected behavior is that the equations X =0 and Y =0
are reduced by Lorentz invariance to equations for the ordinary roots of polynomials for the
complexified mass squared type variable. The intersection is empty unless X and Y have a
common root and X belongs to X¢ for a common root.

How to associate to the 6-D complex mass shell a real 4-surface satisfying the conditions making
M8 — H-duality? One can consider two approaches.

1. Physical considerations suggest that 4-D space-time surfaces are obtained by posing the
additional condition that either M2 or E? (M2 = M? x E?) coordinates are real. Physical
intuition suggests that it is possible to replace fixed M? (E?) with an integrable distribution
M?(z) (E*(z)) giving rise to Hamilton-Jacobi structure. The intuitive expectation, which
might be wrong, is that there is a large number of Hamilton-Jacobi structures serving as a
moduli space for self-dual Kihler forms in M*?.

The H images of X* C X% would depend on this distribution. P would fix complex mass
shells in terms of its roots but not the 4-surfaces, contrary to the original expectations
predicting extremely powerful number theoretical holography.

2. The key observation is that G2 as the automorphism group of octonions respects the co-
associativity of the 4-D real sub-basis of octonions. Therefore a local Gy (or even Gs . ) gauge
transformation applied to a 4-D co-associative sub-space O, gives a co-associative four-surface
as a real projection. Octonion analyticity would correspond to G5 gauge transformation: this
would realize the original idea about octonion analyticity.

Remarkably, the group SU(3). C Gz has interpretation as a complexified color group and
the map defining space-time surface defines a trivial gauge field in SU(3). whereas the con-
nection in SU(3) is non-trivial. Color confinement could mean geometrically that SU(3).
reduces to SU(3) at large distances. This picture conforms with the H-picture in which gluon
gauge potentials are identified as color gauge potentials. Note that at QFT limit the gauge
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potentials are replaced by their sums over parallel space-time sheets to give gauge fields as
the space-time sheets are approximated with a single region of Minkowski space.

Both approaches involve a formal analog for the choice of a gauge. The image of X* under
M?® — H duality however depends on this choice and corresponds to different physics. A physically
motivated conjecture is that the two views are equivalent. The plausible interpretation in case of
Ga,c is in terms of Yangian symmetry, possibly restricted to SU(3).

Minkowski signature turns out to be the only possible option for X. Also the phenomenological
picture based on co-associative space-time sheets, light-like 3-surfaces, string world sheets and
partonic 2-surfaces, and wormhole contacts carrying monopole flux emerges.

5.2 The input from octonionic Dirac equation

Octonionic Dirac equation allows a second perspective on associativity. For the co-associative
option the co-associate octonions can represent gamma matrix algebra and it also allows a matrix
representation. The octonionic Dirac equation is an analog of the momentum space variant of
ordinary Dirac equation and forces the interpretation of M® as momentum space. The original
wrong belief was that mass shell condition implies a localization of the octonionic spinor to a
light-like 3 surface, which actually corresponds to light-cone boundary.

In the intersection of the space-time surface with 6-D brane-like surface Dirac equation is
trivially satisfied and does not pose a condition on the mass of the quark. This intersection is
either empty or the space-time surface is in the interior of this 6-D surface so that quarks can
propagate in the entire X 2. This conforms with the fact that in H picture quark spinors can exist
both in the interior of X* and at light-like 3-D partonic orbits and 2-D string world sheets. In the
first case only massless quarks arriving at the boundary of CD are possible. The interpretation is
as a number theoretic counterpart for a transitions from massless phase to massive phase. This
applies at all levels of dark matter hierarchy. It seems also that the cognitive representations for
both light-like boundary and X2 are not generic consisting of a finite set of points but infinite due
to the Lorentz symmetry: a kind of cognitive explosion would happen when massivation occurs.

5.3 How the new picture differs from the earlier one?

The new view about M® — H duality differs from the earlier one rather dramatically so that an
explicit summary of the differences is in order to minimize confusions.

1. Octonionic Dirac equation as counterpart of Dirac equation in momentum space forced the
interpretation of M?® as the analog of momentum space so that space-time surfaces in M?
would be the analogs of Fermi ball and mass shells would correspond to Fermi surfaces.
The earlier solutions of the octonionic Dirac equation consisted of only massless solutions
located to light-like surfaces (actually the boundary CD rather than inverse images of light-
like partonic orbits).

Co-associativity also allows massive quarks for which this localization does not occur: this
conforms with the view that in H the induced spinor fields are possible also in the space-time
interior. The transition from massless to massive phase for quarks has a number theoretic
interpretation as the appearance of a common root of P,;q and P.yey,.

2. M* must be identified as co-associative rather than associative sub-space of octonions -
earlier Minkowskian resp. Euclidian regions were proposed to be associative resp. associative.
All space-time surfaces in M?® would be co-associative surfaces and would contain string
world sheets as co-complex sub-manifolds. Slicing by partonic 2-surfaces and string world
sheets is suggestive.

The earlier view was that M — H duality allows to map only string world sheets, partonic
2-surfaces, and possibly also their light-like orbits to H so that SH would be needed at the
level of H. In the new picture one can map the entire co-associative space-time 4-surfaces
in M8 to 4-surfaces in H by M® — H duality.
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